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Abstract

The graph energy is a graph—spectrum—based quantity, introduced in
the 1970s. After a latent period of 20-30 years, it became a popular topic of
research both in mathematical chemistry and in “pure” spectral graph theory,
resulting in over 600 published papers. Eventually, scores of different graph
energies have been conceived. In this article we provide the basic facts on
graph energies, in particular historical and bibliographic data.
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1. Introduction

The number of papers concerned with various graph energies, published since 2001
(i-e., in the 21st century), increased well over 600, showing no sign of attenuation.
To be more precise: these > 600 are the publications known to the authors of
this survey (at the moment of writing it in March 2016). There certainly exists
a non-negligible number of additional publications, in particular in the nowadays
mushrooming obscure electronic journals. Anyway, in good fate that all hitherto
published, scientifically significant, contributions to the theory of graph energy
have been noticed and recorded, it may be purposeful to offer a few statistical
data on their bibliography.

Throughout this article, the number of vertices and edges of the graph G will be
denoted by n and m, respectively. For the definitions of other graph—theoretical
notions and the meaning of the symbols used, the readers should consult the
references quoted or the books [105,115,116].
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2. History

The first paper in which graph energy was defined as the sum of absolute values
of the eigenvalues of the (0, 1)-adjacency matrix, namely as

E(G) =Y |\ (1)
i=1

appeared in 1978 [3]. The paper [3] is based on a series of lectures held by the
author on a graph—theoretical conference in Stift Rein, Austria, in 1978. It is
published (in English language) in a difficult-to-find journal whose full title is
“Berichte der Mathematisch—Statistischen Sektion im Forschungszentrum Graz’.
A scanned copy of [3] is appended at the end of this article.

The idea to define E(G) as in Eq. (1) and to name it “energy” comes from
quantum chemistry.

If the eigenvalues of a molecular graph (of a conjugated m-electron system) are
labeled as

AM>X 2> 2>, (2)

then the total m-electron energy E, (of the underlying molecule in its ground
electronic state), as calculated within the Hiickel molecular orbital (HMO) ap-
proximation, is equal to

n/2

E,=na+p 22)\1-

i=1

if n is even, and
(n—1)/2

Eﬂr = no + 5 )\(7;+1)/2 + 2 Z )\7

=1

if n is odd, with o and 3 being constants.
For many molecular graphs, the conditions

)\n/g >0> )\n/2+1 (3)

in the case of even n, and
/\(n+1)/2 =0 (4)

in the case of odd n, hold, which in the 1970s was a well known fact. For such
graphs, it is elementary to show that

E.=na+p

im] .

i=1
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Studying HMO theory, one of the authors of the present survey noticed that
two important earlier discovered results, namely Coulson’s integral formula [1]

iz ¢ (G,ix)
E.=na+ (- /{ TeRT) }dz

and McClelland’s inequality [7]

n/2 (n—1)/2
22)\1‘ S\/M or )\(i+1)/2+2 Z A S\/M
i=1 i=1

hold if and only if the conditions (3) or (4) are satisfied. In other words, the actual
results of Coulson and McClelland were

+oo
- 1 iz ¢’ (G,ix)
;|)\’|_7r/ [n— (G in) dx
and .
ZP\Z\ <+V2mn.
i=1

This observation was the prime motivation to move from the mathematically
repelling expressions for HMO total m-electron energy, equal to

n/2 (n—1)/2
2 Z )\z or )\(1’+1)/2 +2 Z )\1
i=1 i=1

to the much simpler expression Z [A;|. By means of this change, the previous

HMO results would anyway remain Vahd for the majority (but not all!) chemically
interesting cases.

The other motivation was that the right-hand side of Eq. (1) is independent
of the labeling of graph eigenvalues, i.e., it does not require the validity of (2), i.e.,
the graph energy is a symmetric function of graph eigenvalues. By this, graph
energy belongs among the algebraically much studied symmetric functions.

By introducing the concept of graph energy, Eq. (1), the author of [3] hoped
that it will attract the attention of “pure” mathematicians, and that the Coulson
and McClleland formulas are just the first in a long series of exact and non-trivial
mathematical results for E(G) to be discovered.

This indeed happened, but more than a quarter-of-century later.

Already before the publication of [7], a few results that pertain to the energy of
trees were obtained [2]. Paper [3] was followed by several attempts to popularize
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the graph—energy concept (e.g., [4-6]), but the mathematical and mathematico—
chemical community remained uninterested until the beginning of the 21-st cen-
tury. The only exception was the Chinese mathematician Fuji Zhang (e.g. [8,9]).
Then, however, a dramatic change happened, and almost suddenly a large number
of colleagues, from unrelated and geographically very distant places, started to
study graph energy. It may be that a conference lecture, later published as [5],
has triggered this turn.
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3. Statistics

Somewhere around the year 2007, the number of publications on graph energy
started to significantly increase. This trend is illustrated by the Table 1 and
Figure 1 where the distribution of graph—energy—papers by years in the last two
decades are shown.



Survey of Graph Energies 89
L e

Table 1: Number of papers on graph energies published in the last twenty years,
a total of over 630 papers. In the last few years, such papers were produced faster
than one per week (= o.p.w.). Based on these data, an attenuation of this speed
is not to be expected in the foreseen future. The authors of this table are aware
of the fact that there must be numerous additional papers published in China
(especially those in Chinese language) that are not accounted for.

year | no. | comment || year | no. | comment
1996 2 2007 | 34
1997 0 2008 | 54 | > o.p.w.
1998 2 2009 | 68 | > o.p.w.
1999 6 2010 | 62 | > o.p.w.
2000 4 2011 | 56 | > o.p.w.
2001 | 12 2012 | 57 | > o.p.w.
2002 3 2013 | 57 | > o.p.w.
2003 5 2014 | 59 | > o.p.w.
2004 9 2015 | 77 | > o.p.w.
2005 | 15 2016 | 35 | as in March
2006 | 11

“ # papers

2007 208 2009 2010 200 02 o3 204 15— 2016

" year

10
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Figure 1: Distribution of the published graph energy papers by years.
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Table 2 and Figures 2 and 3 show the distribution of authors of graph—energy—
papers by the country of affiliations. In Figure 2 is shown a world map indi-
cating the countries in which these authors were employed, when creating their
graph—energy articles. Figure 3 indicates the relative number of authors who were
publishing graph—energy—papers by their affiliation’s countries.

country no. | country no. | country no. | country no.
Australia 5 | Georgia 1 | Mexico 1 | Slovenia 1
Austria 1 | Germany 9 | Norway 1 | South Africa 2
Belgium 1 | Greece 2 | Netherlands 4 | South Korea 7
Brazil 14 | Hungary 2 | Pakistan 7 | Spain 2
Canada 9 | India 91 | Portugal 2 | Sweden 1
Chile 11 | Indonesia 1 | Romania 2 | Thailand 2
China 203 | Iran 35 | Russia 1 | Turkey 11
Colombia 8 | Ireland 1 | Saudi Arabia 1| UK 6
Croatia 4 | Ttaly 6 | Serbia 32 | USA 38
France 3 | Japan 2 | Slovakia 2 | Venezuela 8

Table 2: Number of scholars from various countries who authored or coauthored at
least one article on graph energy in the period 1996-2016 (as on March 31, 2016).
Their true count is somewhat greater because we did not distinguish between
scholars with the same surname and different names beginning with the same
letter. Thus, Xia Li, Xuechao Li, and Xueliang Li were counted as one. Note that
all continents, with the regretful exception of Antarctica, are represented in this
field of research.

Figure 2: Countries where researches on graph energy were conducted.

The bibliography on which the data in Tables 1 and 2 are based, is the one
compiled by the authors of this survey. They made it as complete as they could,
but it certainly is not 100% complete. This implies that in reality, the count of
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USA

India

Rest of the World

Figure 3: Relative number of authors by countries where they have been work-
ing in the time when their graph—energy articles were produced. This pie-chart
emphasize countries where the percentage of authors is greater than 5% .

articles and authors, stated in Tables 1 and 2, is still greater. It also may be that
some more countries would need to be added to Table 2.

It should be noted that the mentioned bibliography does not include papers
that are not directly related to graph energies. Thus, among others, not included
are the papers concerned with the following topics:

e Excluded are the countless approximate formulas for total m-electron energy
(in terms of m, m, and other graph parameters), in particular such formulas
for E, of benzenoid hydrocarbons.

e Excluded are empirical correlations between E, and various structural pa-
rameters, in particular the “Hall rule” relating F(G) and the number of
perfect matchings.

e Excluded are researches on the Tiirker angle ©, defined as cos © = E(G)/v/2mn,
and on similar “angles”.

e Excluded are resonance energies, defined as the difference between E, and
an appropriately designed “reference energy”. This, in particular, applies to
the “topological resonance energy” equal to the difference between E(G) and
what nowadays is called “matching energy”.

e Excluded are studies of the energy effect of individual cycles in polycyclic
conjugated molecules, defined as the difference between F(G) and an appro-
priately designed cycle-dependent reference.
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4. The Multitude of Graph Energies

Graph energy, Eq. (1), is based on the eigenvalues of the ordinary (0, 1)-adjacency
matrix. Its mathematical examination resulted in scores of newly established
properties and, consequently, in scores of published papers. In view of this success,
a natural idea was to look for some variant of graph energy that would also provide
a basis for prolific mathematical researches.

The most obvious step in this direction was to employ eigenvalues of another
graph matrix. The most obvious candidate for this was the Laplacian matrix. Let
its eigenvalues be denoted by p1, o, ..., tn. Then, in analogy with Eq. (1) one
could conceive the Laplacian energy of the graph G as

LENG) =3 |ml.
=1

However, because all Laplacian eigenvalues are non-negative, and because their
sum is equal to 2m, we would arrive at the trivial result LE!(G) = 2m. The way
out of this difficulty was found by defining the Laplacian energy as [39]

- 2m

i — —

Alas, as a consequence of this definition, LE(G1 UG2) = LE(G1)+ LE(Gz) is not
satisfied in the general case.

The Laplacian energy was the first in a long series of energies based on other
graph matrices. It was followed by the distance energy (based on the eigenvalues
of the distance matrix) [41], signless Laplacian energy (based on the eigenvalues
of the signless Laplacian matrix) [10], normalized Laplacian energy (based on the
eigenvalues of the normalized Laplacian matrix) [24], resistance—distance or Kirch-
hoff energy (based on the eigenvalues of the resistance—distance matrix) [28,50],
skew energy (based on the eigenvalues of the skew adjacency matrix) [13], Seidel
energy (based on the eigenvalues of the Seidel matrix) [40], etc. Consonni and
Todeschini [26] defined the energy of any real symmetric matrix with eigenvalues

glaf%"wgn as

Ecr = Z
i=1
where S = & + & + -+ + &, . The definition of the Hermitian energy [48] is
analogous.
An often used method for designing a new graph energy is to start from a
topological index of the form

&— 2

n

TI(G) = f(vi,v;)

Vi, U5
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where vy, vs,...,v, are the vertices of the graph G and the summation goes over
all pairs of its adjacent vertices. Based on the above formula, one defines the
matrix Mp; = (m;) as

fvi,v5) if v; and v; are adjacent
mij =
0 otherwise.

The respective energy is then the sum of absolute values of the eigenvalues of M.
Such are the Randié [23], Szeged [30], geometric—arithmetic [64], and common—
neighbourhood energy [20], based on the Randi¢, Szeged, geometric-arithmetic,
and common-neighbourhood indices, respectively.

Nikiforov extended the energy—concept to any matrix [58]. If M is a p X ¢
matrix (where p and ¢ need not be equal), then the positive square roots of the
eigenvalues of MM are the singular values of M. Their sum if defined as the
energy of the matrix M. In the case of real and symmetric (square) matrices, the
new and the old energy—concepts coincide.

The first non-square matrix to which Nikiforov’s concept was applied was the
incidence matrix, resulting in the incidence energy IFE(G) [44]. Short time earlier,
Liu and Liu [49] introduced the so-called Laplacian—energy—like invariant, defined
as

LEMQ:E:WE

From a formal point of view, LEL is not a graph energy. However, it was soon
discovered that for bipartite graphs, LEL(G) = IE(G), whereas in the general
case (including non-bipartite graphs),

TE(G) = zn: N

where pf, u3 ..., put are the eigenvalues of the signless Laplacian matrix.

Followed the oriented incidence energy [66], normalized incidence energy [25],
Laplacian incidence energy [65], Randi¢ incidence energy [31], etc.

A subset D of the vertex set V of the graph G is said to be a dominating set
of G if every vertex of V'\ D is adjacent to some vertex in D. Any dominating set
with minimum cardinality is said to be a minimum dominating set. The minimum
dominating adjacency matrix of G, denoted by Ap = (a};), is the n X n matrix
defined as

1 if Vi ~ Uy

b 1 ifi=j, v, €D

0 otherwise.

The minimum dominating energy is defined as [61]
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Ep(G) = Z A7
i=1

where AP | i =1,2,... n, are the eigenvalues of Ap.

A subset C of V is said to be a covering set of G if every edge of G is incident
to at least one vertex of C. Any covering set with minimum cardinality is called
a minimum covering set. The minimum covering matrix of G, denoted by A¢ =
(af;), is the n x n matrix defined as

1 Vi ~ Vj
&, =<1 i=juv€ecC
0 otherwise.

The minimum-covering energy is defined as [14]

n

Ec(G) =) |Af]

=1

where /\ic , 1=1,2,...,n, are the eigenvalues of A¢.

If T is a tree of order n, then its ordinary energy satisfies the Coulson integral

formula

where (G, )\) denotes the matching polynomial of the graph G. Extending the
validity of the right—hand side of (5) to all graphs, one arrived at the concept of
matching energy [38]:

oo . / .
ME@G) = 1 / {n ”O‘(Gm)} da .
v a(G,ix)
— 00

A coloring of a graph G is a coloring of its vertices such that adjacent vertices
have different colors. The minimum number of colors needed for coloring of a graph
is the its chromatic number. For such a coloring, the color matrix is defined so
that its (4, j)-entry is equal to +1 (resp. —1) if the vertices v; and v; are adjacent
and thus differently colored (resp. non-adjacent and equally colored), and is zero
otherwise. The sum of the absolute values of the eigenvalues of the color matrix
is referred to as the color energy [15].

The “ultimate” generalization of the energy—concept is achieved by consider-
ing an n-tuple X of real numbers, x1,xo,...,x, which need not have a graph—
theoretical or any other interpretation. If the arithmetic average of these numbers
is T, then the ultimate energy of X is [36]
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n

UB(X) =) |z;—=|.

i=1

It is remarkable that already such a poorly defined energy is bounded as

\nVar(@) + n(n - 1)|P@)/" < UE(X) < ny/Var(z) (6)

n
where Var(z) is the variance of the numbers x1, za, . . ., ¥, whereas P(z) = [] (x—

i=1
x;). The bounds (6) were first established in 1971 by McClelland (for the ordinary
graph energy), and were then repeatedly “discovered” for dozens of other graph
energies.

* ko okox ok

In our records, we have data on more than 60 different graph energies. In
what follows, we give a list thereof, ordered according to the time of their first
occurrence in the literature, with reference to the place where these have been
considered for the first time. In reality, the number of existing graph energies may
be still greater, and more such will for sure appear in the future.

no graph energy reference
1 (ordinary) graph energy [35]
2 Laplacian energy [39]
3 energy of matrix [58]
4 robust domination energy [11]
5 energy of set of vertices [12]
6 distance energy [41]
7 Laplacian—energy-like invariant [49]
8 Consonni-Todeschini energies [26]
9 energy of (0,1)-matrix [45]
10 incidence energy [44]
11  maximum-degree energy [16]
12 skew Laplacian energy [17]
13  oriented incidence energy [66]
14 skew energy [13]
15 Randi¢ energy [23]
16 normalized Laplacian energy [24]
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no graph energy reference
17  energy of matroid [19]
18 energy of polynomial [52]
19 Harary energy [34]
20 sum-connectivity energy [69]
21 second-stage energy [21]
22 signless Laplacian energy [10]
23 PI energy [55]
24 Szeged energy [30]
25 He energy [27]
26 energy of orthogonal matrix [22]
27  common-neighbourhood energy [20]
28 matching energy [38]
29 ultimate energy [36]
30 minimum-covering energy [14]
31 resistance-distance energy [28]
32 Kirchhoff energy [50]
33 color energy [15]
34 normalized incidence energy [25]
35 Laplacian distance energy [68]
36 Laplacian incidence energy [65]
37 Laplacian minimum dominating energy [60]
38 minimum-domination energy [61]
39 minimum-covering distance energy [59]
40 Seidel energy [40]
41 domination energy [46]
42  general Randié¢ energy [32]
43  Randié¢ incidence energy [31]
44  Laplacian minimum-covering energy [62]
45  e-energy [54]
46 n-energy [54]
47 Hermitian energy [48]
48 minimum hub distance energy [51]
49  minimum monopoly energy [56]

50 minimum monopoly distance energy [57]
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no graph energy reference
51 complementary dominating energy [53]
52  minimum-maximal-domination energy [29]
53 minimum-covering color energy [63]
54  a-distance energy [47]
55 a-incidence energy [47]
56  so-energy [42]
57 Nikiforov energy [18]
58 resolvent energy [37]
59 Laplacian resolvent energy [67]
60 signless Laplacian resolvent energy [67]
61 skew Randi¢ energy [33]
62 geometric—arithmetic energy [64]
63  o-energy [43]
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5. Applications of Graph Energies

In addition to its standard chemical application (in view of its close relations with
the HMO total m-electron energy), the ordinary graph energy, Eq. (1), and some
other graph energies found unexpected applications in other areas of science.

Use of E(G) in QSPR/QSAR studies was attempted in [74,76]. In particular,
graph energies are related to entropy [72,75]. Properties of proteins (especially
those of biological relevance) were modeled in [73,78,80]. Graph energy was used
in the search for the genetic causes of Alzheimer disease [71] and for modeling of
the spread of epidemics [79].

The Laplacian energy found applications in image analysis [77,81], which, in
addition, is attempted to be used in medical investigations of brain activity [70].

More details along these lines can be found in the references quoted.
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7. Appendix

The seminal paper on graph energy [I. Gutman, The energy of a graph, Ber.
Math—Statist. Sekt. Forschungsz. Graz 103 (1978) 1-22.] is frequently cited even
though it is quite hard to acquire its copy. In order to help authors in the future,
the scanned copy of this article is given below.
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THE ENERGY OF A GRAPH

Ivan Gutman
Faculty of Sciences, University of Kragujevac, P.0.Box
60, 34000 Kragujevae, Tugoslavia

Summary. The energy E(G) of a graph G is the sum of the
absolute values of all the graph eigenvalues, eq. (1). Results
concerning E(G) are exposed, with an emphasis on the dependence

of E(G) on the structure of G.

In the present work we shall consider a quantity célled
in theoretical chemistry "the total %electron energy of a
conjugated hydrocarbon, as calculated with the Hiickel molecular
orbital method", but we will call it simply "energy" and denote
it by E. TFor details of Hickel theory and how it is related to
graph spectral theory see7’21. The reader should also consult .
the booka7’21 and the references cited therein for all chemi-
cal aspeets of our considerations.

Conjugated hydrocarbons are of great lmportence for both
science and technology. A conjugated hydrocarbon can be charace—
terized as a molecule composed entirely of carbon and hydrogen
atoms, every carbon atom having exactly three neighbours (which
nay be either carbon or hydrogen atoms). Butadiene (I), benzyl
(II) and azulene (III) are examples of conjugated hydrocarbons.
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There are theoretical reasuna7’2l

to associate a graph
with a conjugated hydrocarbon according to the following rule:
every carbon atom is represented by a vertex and every carbon-
-carbon bond by an edge. l-.ﬁrd.rosen atoms are ignored. Thus
the graphs Ggr G, and G, are "the molecular graphs" of the com—

pounds I, II and III, respectively. It is worth mentioning

Sac s (s > &

that for chemical reasons these "molecular graphs" are neces-
sarily connected and their vertex degrees must not exceed three.
However, both these restrictions are important only for the che=
mical interpretation of the obtained results and they need not
be taken into account in mathematical considerations., Thus in
the following we shall deal with arbitrary graphs.

It is assumed that the reader is familiar with elements
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of graph theory, but no special knowledge of graph spectral
theory4 is required. We introduce now our notation and termi-
nology.

Iet G be a simple graph (i.e. a graph without loops and
multiple edges) with n = n(G) vertices and m edges. Let the
vertices of G be labeled by V1sVpseess Ve The adjacency matrix
Ahor a (labeled) graph G is a square matrix of order n defined

p

qu = 0 1f the vertices vp and vq are not adjacent and if p = q.

The characteristic polynomial of this matrix, P(G, x) =

via qu = 1 1f the vertices v_ and v, are adjacent, and

= det{xJL —15), is called the characteristic polynomial of the

graph G. The eigenvalues Xy sXnpees Xy ofuﬁ’are called the eigen-

values of G. They form the spectrum of G, The characteristic

volynonial and the spectrum are, of course, independent of the
labeling of the vertices of the grasph.
The enercy E = E(&) of a graph G is then defined as the sum

of the absolute values of all the elements of the spectrum of G:

(1) E .-.Zn |=d'

J=1

When G is a molecular graph, then E is rather important for
theoretical chemistry. One of the problems which arise there
is how E depends on the molecular structure. From a mathemati-=

cian’s point of view this question reads: how E(G), as defired

by eq. (1), depends on the structure of the graph G? What can

be said about E(G) if the structure of & is lmown, but without
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the actual calculation of the spectrum of G? Such kind of prob-
lems will be considered in our paper.

Research in this direction started some fourty years 3502
and has a continuation up to the present days. A recent biblio-
graphy'® of the work in this field contains 65 bitles.

THE SACHS THEOREM

The characteristic polynomial of a graph G will be written
in the form

n
(2) P(G, x) = Z U B

k=0

.where, of course, 8y = 1 for all G. The dependence of the coef-
ficients 8, = ak(GJ on the structure of the graph is summarized
in a remarkable theorem of Sachs.4’22

(3) a‘k - E (_IJPQB) EC{E)

sES,

Here s denotes a so called "basic figure". Basic figures“ are
graphs, the only components of which are complete graphs with

two vertices and/or cycles. The summation in (3) goes over the

¥ In chemical literature basic figures are usually called "Sachs

graphs",
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set S = Sk(G) of all basic figures with exactly k vertices
which are, as subgraphs, contained in G. There are p(s) com~
ponents and emong them c¢(8) cyclic components in the basic fi-

gurﬂ 8.
Substituting (3) back into (2) we obtain

() PG, x) = (-1)P(8) yc(8) n(@)-n(s)

s€S

where S = S(G) is the set of all basic figures contained in
G, and n(s) is the number of vertices of s.

Elementary consequences of the Sachs theorem (3) are a = 0
and a, = -m, since there are no basic figures with one vertex,
and every edge represents a basic figure with two vertices.

Therefrom,

n
(5) Z xja = 2m
J=1

From the Sachs theorem we can deduce important spectral
properties of bipartite graphs and forests. In the following
we denote bipartite graphs by B, forests by F and trees by T.
If not stated otherwise, it i1s assumed that these graphs possess
n vertices.

A graph is bipartite if, and only if it contains no odd-
-membered cycles. Now, basic figures with odd number of verti-

ces must possess at least one odd-membered cycle. Therefore,
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bipartite graphs contain no basic figures with odd number of
vertices, S5p1(B) =9 for all k and all B. Consequently,

(6) 85,1(B) = 0 for all k; P(B, x) = E ey L2k
: k

1f G is not bipartite, then at least one 32k+1(3) differs from
zero.

The even coefficients of P(B, x) alternate in sign, i.e.
(=1)¥ a5, (B) >0 for all k.

Bipartite graphs are ﬁarticularly important in chemical
applications. Namely, the great majority of molecular graphs
which are of chemical interest are bipartite. (Instead of "bi-
partite" chemists use to say "alternant".) Therefore formulas
and theorems for E, valid only for bipartite graphs might be
rather useful in practice. It is a fortunate fact that the
spectral properties of graphs are oftén considerably simplified
if one restricts to bipartite graphs.

A greph F is called a forest if it contains no cycles. X
connected forest T is called a tree. BSince a forest contains
no cycles, it must be c¢(8) = O for all s€S(F). In other
words, basic figures of forests represent selections of inde~
pendent edges (of this forest). Let p(G, k) be the number of
ways in which one can select k independent edges in & and let
PG, 0) = 1. Then we have
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, /2]
7 ¥, x) = > (-1)F p(F, k) 2
k=0

If G is not a forest, at least one azk(l}) differs from
-1)¥ p(6, X).

We give now without proof two properties of the numbers
p(G, k), which we shall need later.}1'1® First, p(u, 1) = m.
Second, if ¥y is a terminal vertex of G (i.e. 3 is adjacent

to a unique vertex, say qu. then

(8) p(G, k) = pLu-vp, k) + pLG—vp—vq, k-1)

The Sachs theorem solved the problem of the dependence of
P(&, x) on the structure of G. The importance of this result
for the study of E becomes evident if we kmow that it is pos-
sible to express the energy of a graph as a function of its cha-
racteristic polynomial. This is eprsed in the subsequent sec-
tion. '

INTEGRAL FORMULAS FUR ENERGY

In the following we shall use the abbreviate notation
Yoo
1 }
i jrm =) = (7)
- 00
for a frequently occuring type of integrals.
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Theorem 1.2 ILet P?(G, x) be the first derivative (with respect
to x) of the characteristic polynomial and i the square root
of -1. Then

9) E < up'(c,u)> < S 108 B(o ix)>
( = - e, 10 = {2~ X 3z log P(G,

Proof. The above identity is easily obtained by means of con-
tour integrat:ion.a We offer here another elementary and straight-
forward derivation of (9), based on the observation that

n
P(G, x) 1

PG, x) 5 X=Xy

Let us comsider the simple integrals I; = {t2/(t%x®)) = [t|;
I, = {xt/(4%4x®) > = 0. Since [t] = I, +1iL,, we obtain
[6] = LEPrixt)/(t242)D> = K1 - ix/(1x-t)> . Therefrom,

i"‘a\ =Z<1-ax—i'xg> =&n- 31—1:—,3>=
Jal o1

J=1

ix P*(G, ix)
= <n T —— Q-Eon-
P(G, ix)

Corollary 1.1.3'19 ILet G and H be graphs with equal number
of vertices. Then,



Survey of Graph Energies 115
N

-9 -
P(G, ix) P(G, ix)
10 E(G) = BE(H) = {1
(10) (6) = E(H) <os s m} (roe lm.mb’
Proof. From eq. (9)3
400

4 PG, in) . H(G, ix)
E(G) - E(H) = = —_1 e = =X 1 e e e
(6) - B(H) < & o oo u)) x 1og o .

PG, ix) b
Sop T 28D
& < °8 F(H, 1) >
P(G, ix)

Eq. (10) follows now from x log ———— —>C for x—>1 00
P(H, ix)

and from the fact that energy is a real number. Q.E.D.

InlB

Corollary 1.2.
(11) E = (x"'z log Q(G, x)> = (x"a log [Q(G, x)|>

is proved another

Iwhere Q(G, x) = (-ix)® P(G, i/x). Note that

pe}

a(G, x) ;Z ay (-ix)¥ =
%=0

=Z 1% oy P* - 1 E -1 a,,, 2T
k k

Substitution of this latter equation back into (11) gives
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et el ) (T ) T
_k J k

Using (6) we gain a considerable simplification for bipartite
graphs: Q(B, x) = 21: (—1}k & x2k is real and

(12) E(B) = <x'2 iogZ (-1 ayy z2k>
: k

Further integral formulas for energy are collected else-
'w'l:ua::‘e.f”9 All such results enable one to calculate E(G) from
the knowledge of P(G, x). We can symbolize this fact by an

operator. f.

(13) B(G) = £ B(G, x)

On the other hend, using eq. (4) one can calculate P(G,x) from
the knowledge of all basic figures of G. We cen symbolize this
operation by

(1) P(G, x) = & 5(G)

L~
Then, of course, E(G) = fg S(G).

BOUNDS FOR ENERGY

Several lower and upper bounds for E are known. ©Some of

them will be presented in this section.
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Theorem 2.20 Let D be the absolute walue of the determinant
of the adjacency matrix A. Then,

2m + n(n-1) p2/n ..{Ez < onm

Proof of the left inequality. We start with an identity for
E, based on eq. (5). N

n 2 n
E2 .-:(Z |x3\) = Z sz + E Ixj”IjJ =2m + lejl kal
J=1 J=1 . J#k ik

Since for non-negative numbers the arithmetic mean is not smaller

then the geometric mean,

1/n(n-1)

;(n—iry Z"‘a”‘ﬁ:l? ‘ ,Ilelxkl
Ak Ak

5 ‘ 1/n(n-1) : 2/n
___(’d—;l lxdlatn'n) - (m (xd\) - P/R

J=1

Combination of the above two relations gives the lower bound
for energy. Q.E.D.
Proof of the right inequality. From

" ;lef -(il |xdl) TS gl - 15l

i<k
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which is a special case of the Lagrange identity, one gets

n
2m - P = D> (x] - |x])? 0. QED.
i<k

Corollary 2.1. If D #£ O, then E°>2m + n(n-1).
Corollary 2.2, If D £ O, then E 2n.
Proof. If D £ O then also a  # O and consequently G possesses
a basic figure with n vertices. BSuch a basic figure contains
at least n/2 edges. Therefore m>2n/2 and corollary 2.2 fol-
lows from corollary 2.1, Q.E.D.

Theorem 2 was later improved.
Theorem 2_8 Por all graphs, U <2nm - o < (n-1)U, while for
bipartite graphs, 2U < 2nm -~ E2 = (n-2)U, where U = 2m - n J.lz/n) 0.

Freely spoken, theorems 2 and 3 imply that the gross part
(some 95%) of E is determined by only three invariants of the
graph: n, m and D. In addition, E is roughly proportional to
(::l:il)J'/‘".g These conclusions are of some value for chemical ap-

plications.
Let Gi: be a graph of the form

O B
where Bl and B;2 are arbitrary bipartite subgraphs. Thus Gx
is obtained by attaching two fragments Bl and B, to the terminal
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vertices of the path Pk with k vertices. Without proof we state
Theorem 8.30 2({5 - 1) S E(G.,,) - BG) £2(J3 + 1 - {2).

These bounds are the best possible. (There is a pair of graphs
P, and P,, such that E(P,) = 2{5 end E(P,) = 2 and enother pair
of graphs P5 and P3, such that E(Ps) = 2(.[3_+ 1) and E(P5) = 2{5.)

In addition, E(Gk+2) - E(Gk) —> 8/, when k —> oo ,

FORESTS AND TREES WITH EXTREMAL ENERGY

Combinetion of eqs. (7) and (12) yields for a forest F

(15) () = {x72 :Logz p(F, k) x2k>
: 3

Hgnce E(P) is a monotonously .increasing function of the numbers
(7, X). ' '
Iet O Dbe the graph comﬁosed of n isolated wertices. Llet
P, be the path and S, the star with n vertices. (The path is
the tree with minimal number (=2) of terminal vertices, the
star is the tree with maximal number (zn-1) of terminal verti-
ces.)
Theorem.i.ll For all forests F with n vertices, E(O.) LEBHL
< E(R).
Proof. According to (15) it is sufficient to show that for all
k=1,2,...,[0/2]
p(0,, ¥) £ p(F, k) £ p(B,, k)
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The left inequalitiesz are, of course, trivial since p{On, k) =0
for all k. The validity of the right inequalities is easily
checked for n = 1,2,3 and 4. Suppose now that they hold for
all forests with less than n vertices. Let ¥, be the forest
with n vertices, such that p(Pn. k) ?p{l’. k) for all k. We
show that Fn = Pn.

First, Fn must possess at least one edge and therefore
also a terminal vertex. Let o be such a terminal vertex adja=-
cent to the vertex v_. From eq. (8), p(Fn, k) = p(F ~v_, k) +

q n 'p
+ P(Fy=vy=vgs k=1). But p(Ey, k) is maximal if both p(F-v,, k)
and p(F,~ Y k-1) are maximal. According to our assumption,
it must be (a) By=vp, = By ; end (v) Fy=vp~Vq = Byoe Now
from (a) it follows that F, is obtained by joining a vertex o

q
be a terminal vertex of P _,. Therefore F, = P . Q.E.D.
Theorem 6.1 For all trees T with n vertices, K(S,) < ET) €
<E(E).
Proof. The right inequality holds because of theorem 5. In
order to prove the left inequality, note that for all trees

to some vertex Yaq of the path F _,. Because of (b), v, must

p(T, 1) = n-1, because all trees with n vertices have n-1 edges.
In addition, p(sn. 2) = p(Sn. 3) = vs» = 0. But the star is .
the unique tree containing no pairs of independent edges. Hen-
ce p(T, 2) >0 for all other trees. Therefore, p(S,, k) =<
< p(T, k) for all k. Q.E‘.u.

It should be mentioned that E(Q;) = 0, E(S,) = 2{n-1 and
E(P,) = 2 cosec % -2 1if n is even and E(F,) = 2 cotg Z—TJ’E’_E -
- 2 if n is odd.
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Inll are found further extremal trees. We present here
without proof the following result, Let Tl be obtained by
joining a vertex to a terminal vertex of Sn—l' Let T, be ob-
ta_ined by joining two vertices to a terminal vertex of sn-Z'
Let '1'3 be obtained by joining a vertex of P2 to a terminal
vertex of 5 . Iet T, be obtained by joining a vertex of I-"‘,_1

to the vertex vy of B~

T

T 5

T T, 3
Theoren 2.11 If T 4is a tree with n vertices, different than
Spr Tyv oo _'25. T, and Py, then E(8,) <E(Ty) <-E(T2) <’E('1‘3)<'
< E(T) <E(T,) < E(R,).
Theorens 5 - 7 identify the forests and trees with maximal
and minimal energy. It is natural to pose the same question
for other classes of graphs, However, this seems to be a much
more difficult task and even the unicyclic graphs with extremal
. energy are not known.
Conjecture. Among graphs with n vertices, the complete graph

has maximal energy (which is equal %o 2n-2).
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THE HUCEKEL RULE

The dependence of E on the type and size of cycles which
are present in the graph is a populer problem in the chemistry
of coﬁjugated hydrocarbons. An observation made long ago is
nown in chemistry as the Hickel 4m+2 rule: cycles of length

4ms+2 (m=1,2,...) contained in G have a positive (increasing)
effect on the value of E(G)j cycles of length 4m (m=1,2,...)

contained in G have a negative (decreasing) effect on E(u).

Tt was recently established that this rule is not generally
valid.16 Nevertheless, its mathematical content is worth further
discussion.

Tirst one has to determine the exact meaning of "the effect
of a cycle on E". Let C be a cycle of the length |c| contained
as subgraph in G, According to (13) and (14), E(G) is a func-
tion of all basic figures contained in G. Some of these basic
figures contain C as a component. )

Tet S(G/C) denote the set of all basic figures of G which
do not contain C as component. Then using (13) and (14) we can
calculate the polynomial P(G/C, x) = E 8(G/C) and ﬁhe numbexr
E(G/C, x) = ® B(G/C, x) = & S(G/C). Note, however, that neither
is P(G/C, x) the characteristic polynomial, nor is E(G/C) the
energy of some graph.

Now, the effect ef(G, C) of the cycle C on the energy of
the graph G is defined as

(16) ef(G, C) = E(G) - E(G/C)
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Comparison of eq. (16) with corollary 1.1 yields

P(G, ix) l :>

P(G/C, ix)

Lemma. Let G=C be the subgraph obtained by deletion of the

cycle C from G. Then P(G/C, x) can be calculated from the

Coroll 1.3.
e2(G, C) = <1

characteristic polynomials of & end G-C as follows.
P(G/C, x) = P(G, x) + 2 P(G-C, x)

Proof. The basic figures from S(G) either contain C as compo-
nent or not. Those basic figures which do not contain C form
the subset S(G/C). Those which contain C are in a one-to-one
correspondence with the basic figures s’ of 5(G-C). Every

s € 8(G) which contains C ie obtained when C is joined to a ba=-
sic figure s8°’€ S(G-C) and vice versa. Then, of course, p(s) =
p(s’) +1, c(s) =ec(s”) +1 and n(G) - n(s) = n(G-C) - n(s”’).
From (4),

(G, x) = E (-1)P(8) pe(s) n(G)-nle) |
5(6) '

= E (_1)P(B) 2¢(8) L2(6@)-nls) E (_1)11(8')4-1 ,e(87)+1
s(G/C) : S(G=C)

. 2(6C)-n(s8") _ pegre, x) - 2 P(G-C, x) Q.E.D.
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= 18"«

Theoreﬁ 8. 13,16

Proof,

ef(B, C) €0 when |C| = 4m (m=1,2,...).

(B, C) = <l . IP(B/C ix)l> , :

P(B, ix)
) <log P(B, ix) + 2 P(B-C, ix) ’>= ) <l°g 142 va>

P(B, ix)
where W(x) = P(B-C, ix)/P(B, ix). Using (6) we can calculate

> (1) ay (B0 2~ lol-2x
Wx) = (<1172 E

Z (=~ lJk 25 (B) 1!1-21:

Since for bipartite graphs (-1)k a2k>/ 0, W(x) is positive
when [C| =4m and negative when [C| = 4m+2 (m=1,2,...).
Therefore, if |C| = 4m, then Il + 2 W(x){ 1 and

log Il + 2 W(x)l > 0 for all real values of x. Q.E.D.

¢ |c| = 4m+2, then W(x) <0 and 1log |1 + 2 W(x)| cen
have both positive and negative values, Therefore no simple
and generally valid regularity for the sign of ef(G, C) can
be expected when |C| = 4m+2. (In many of the studied cases
ef(B, C) was positive when |C{ = 4m+2, but examples are known
where also ef(B, C) <0.)

The extension of theorem 8 to non-bipartite graphs is
missing. The factors governing the sign of ef(G, C) when \C\
is odd are at the present moment obscure.

The quantity ef(G, C) measures thel effect which a parti-

cular cycle C has on E(t¢). A related problem was also exten-
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sively studied in literature, namely the effect of all cycles.

- Iet S(G/¢) be the set of all basic figures contained in u
which have the property c(s) = O. We introduce now the poly-
nomial P(G/c, x) = E 8(G/c) and the number E(u/c) = EE S(G/¢e).
The polynomial P(G/c, x) is called the matching polynomial of G.?

Its mathematical properties are rather interesting“ii and were

recently reviewed.lu 1t cen be shown thatl'l?
n/2] ’
B(G/c, ) = (-1)* p(e, k) 73
k=0

where the quantities p(G, k) have been defined in connection
with eq. (7). In the case of forests the matching and the che-
racteristic polynomials coincide.

B(G) = E(G/c) is called the topological resonance energy

and is of certain importence in chemistry.l'l? We cannot discuss

" these concepts in more detail here.
Hom oo Moo= H === H-——F

Tn the present work a few properties of the energy of a
graph were exposed. ln fact, this should be an almost complete
collection of statements about energy, which can be rigorously
proved in the mathematical sense of this word. However, there

are numerous known results in this field which are approximate

*1, previous work by the authorl2:1%:17  p(G/c, x) was called
"the acyclic polynomial”. The term "matching polynomial" was
first used by FarrellE.



126 I. Gutman and B. Furtula
e

- 20 -

or based on purely empirical observations. These were not con—
sidered here. '

Some unsolved problems are indicated. The author would
be satisfied if his expository paper could stimulate further
research.

Hope should be also expressed that new . = interesting
results about energy are to be expected in the future.
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