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Abstract

In this paper, for a connected graph G and a real α 6= 0, we define a
new graph invariant σα (G)-as the sum of the αth powers of the normalized
signless Laplacian eigenvalues of G. Note that σ1/2 (G) is equal to Randić
(normalized) incidence energy which have been recently studied in the liter-
ature [5,15]. We present some bounds on σα (G) (α 6= 0, 1) and also consider
the special case α = 1/2.
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1. Introduction

Let G be a simple connected graph with n vertices and m edges and let V (G) =
{v1, v2, . . . , vn} denote the set of vertices of G. Let di be the degree of the vertex
vi ∈ V (G) , for i = 1, 2, . . . , n.

Let A (G) be the (0, 1)-adjacency matrix of a graph G. The eigenvalues of G
are the eigenvalues of A (G) [9] and denoted by λ1 ≥ λ2 ≥ · · · ≥ λn. Let D (G)
be the diagonal matrix of vertex degrees of G. The Laplacian matrix of G is the
matrix L (G) = D (G) − A (G) with eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn = 0. The
matrix Q (G) = D (G) +A (G) is called as the signless Laplacian matrix of G. Let
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q1 ≥ q2 ≥ · · · ≥ qn be the eigenvalues of Q (G) . The eigenvalues of the matrices
L (G) and Q (G) are said to be the Laplacian and signless Laplacian eigenvalues
of G, respectively. For more details on the spectral theory of L (G) and Q (G),
see [11–13,28,29].

The energy of a graph G is defined as the sum of absolute values of its eigen-
values, i.e., [16]

E = E (G) =

n∑
i=1

|λi| .

This concept is originated from theoretical chemistry where it is closely associated
with the total π-electron energy of a molecule [17, 18]. There is an extensive
literature on E (G). For more details see the book [23] and the references cited
therein.

The graph energy concept was extended to energy of any matrix in the following
manner [32]. The singular values of any (real) matrix M are equal to the square
roots of the eigenvalues of MMT , where MT is the transpose of M . Then the
energy of the matrix M is defined as the sum of its singular values [32]. Evidently,
E (A (G)) = E (G).

The incidence matrix I (G) of a graphG with the vertex set V (G) = {v1, . . . , vn}
and edge set E (G) = {e1, . . . , em} is the matrix whose (i, j)-entry is 1 if the vertex
vi is incident with the edge ej and is 0 otherwise. In the light of the paper [32],
Jooyandeh et al. [22] introduced the incidence energy of G, denoted by IE (G), as
the sum of singular values of I (G). Since Q (G) = I (G) I (G)

T , it was discovered
that [19]

IE = IE (G) =

n∑
i=1

√
qi.

For the basic properties and the details of IE, see [4, 19,20,22,35].

In [27], Liu and Liu defined the Laplacian energy-like invariant as

LEL = LEL (G) =

n−1∑
i=1

√
µi.

For survey and more inforation on the quantity LEL, see [21, 26]. Since the
Laplacian and signless Laplacian eigenvalues of bipartite graphs coincide [10, 28,
29], LEL is equal to IE for bipartite graphs [19].

The Randić matrix R (G) of a graph G is the matrix whose (i, j)-entry is
1/
√
didj if the vertices vi and vj are adjacent and is 0 otherwise [2]. Since G

is connected, D (G) is non-singular, then the Randić matrix of G is also defined
as R (G) = D (G)

−1/2
A (G)D (G)

−1/2 [9]. The Randić eigenvalues of G are the
eigenvalues of its Randić matrix and denoted by ρ1 = 1 ≥ ρ2 ≥ · · · ≥ ρn [2, 9, 25].
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The normalized Laplacian and the normalized signless Laplacian matrices of a
connected graph G are defined as [7]

L− (G) = D (G)
−1/2

L (G)D (G)
−1/2

= In −R (G) (1)

and
L+ (G) = D (G)

−1/2
Q (G)D (G)

−1/2
= In +R (G) (2)

respectively. In here, In is the n×n unit matrix. Let γ−1 ≥ γ
−
2 ≥ · · · ≥ γ−n = 0 be

the eigenvalues of L− (G) and γ+1 ≥ γ+2 ≥ · · · ≥ γ+n be the eigenvalues of L+ (G).
These eigenvalues are called as the normalized Laplacian and normalized signless
Laplacian eigenvalues of G, respectively. For more details, see [7].

From the Equations (1) and (2), it follows that [15,25]

γ−i = 1− ρn−i+1 and γ+i = 1 + ρi, for i = 1, 2, . . . , n. (3)

Considering Randić matrix and incidence matrix, Gu et al. [15] defined the n×m
Randić incidence matrix IR (G) of G whose (i, j)-entry is 1/

√
di if the vertex vi

is incident with the edge ej and is 0 otherwise. The Randić incidence energy of
G, denoted by IRE (G), is defined as the sum of singular values of its Randić
incidence matrix [15]. In [15], It was shown that L+ (G) = IR (G) IR (G)

T . Then,
by full analogy with the incidence energy [19], the authors also defined the Randić
incidence energy as [15]

IRE = IRE (G) =

n∑
i=1

√
γ+i .

This quantity is studied under the name normalized incidence energy in [5].

By analogy to Laplacian energy-like invariant [27], the Laplacian incidence
energy of G is defined as [33]

LIE = LIE (G) =

n−1∑
i=1

√
γ−i .

For a connected graph G and a real number α 6= 0, the sum of the αth powers of
the non-zero normalized Laplacian eigenvalues of G is defined as the following [3]

sα = sα (G) =

n−1∑
i=1

(
γ−i
)α
.

The case α = 1 is trivial as s1 = n. In [1,3,8,24], some bounds on sα was given and
the case α = −1 was discussed since 2ms−1 is equal to the degree Kirchoff index [6].
Furher note that, s1/2 = LIE which was recently studied in the literature [30,33].
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For a connected graph G and a real number α 6= 0, we now introduced the
sum of the αth powers of the normalized signless Laplacian eigenvalues of G as
the following

σα = σα (G) =

n∑
i=1

(
γ+i
)α
.

Note that the case α = 1 is trivial as σ1 = n. Furthermore, for α = 1/2, σ1/2 =
IRE.

In this paper, we present some upper and lower bounds on σα (G) (α 6= 0, 1)
and also consider the special case α = 1/2.

2. Lemmas

Let G and t = t(G) denote the complement and the number of spanning tress of
a graph G, respectively. Let G1 × G2 be the cartesian product of the graphs G1

and G2 [9]. Throughout this paper, for a graph G, we use the following auxiliary
quantity,

t1 = t1 (G) =
2t (G×K2)

t (G)
. (4)

Lemma 2.1. If G is a bipartite graph, then the eigenvalues of L− (G) and L+ (G)
coincide.

Proof. From the Equation (3), we have γ−i = 1 − ρn−i+1 and γ+i = 1 + ρi, for
1 ≤ i ≤ n [15,25]. Note that Randić eigenvalues of a bipartite graph are symmetric
with respect to the zero point of the real axis, i.e., ρi = −ρn−i+1, for 1 ≤ i ≤ n [9]
(p. 109). Then, we get the required result.

By Lemma 2.1, we directly have:

Lemma 2.2. If G is a bipartite graph, then σα coincide with sα. Especially, for
bipartite graphs, σ1/2 = IRE = LIE = s1/2.

Lemma 2.3. [9] Let G be a connected graph with n vertices, m edges and t

spanning trees. Then,
∏n−1
i=1 γ

−
i = 2mt∏n

i=1 di
.

Lemma 2.4. [12] Let G be a connected non-bipartite graph with n vertices. Then,
detQ (G) =

∏n
i=1 qi = t1.

Lemma 2.5. If G is a connected bipartite graph with n vertices, m edges and
t spanning trees, then

∏n−1
i=1 γ

−
i =

∏n−1
i=1 γ

+
i = 2mt∏n

i=1 di
. If G is a connected non-

bipartite graph with n vertices, then
∏n
i=1 γ

+
i = t1∏n

i=1 di
.
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Proof. By Lemmas 2.1 and 2.3, for connected bipartite graphs, one can directly
get that

n−1∏
i=1

γ−i =

n−1∏
i=1

γ+i =
2mt∏n
i=1 di

.

Since L+ (G) = D (G)
−1/2

Q (G)D (G)
−1/2, taking the determinant of both of two

sides, we obtain that

detL+ (G) =

n∏
i=1

γ+i =
detQ (G)∏n

i=1 di
.

Considering this with Lemma 2.4, we get the required result for connected non-
bipartite graphs.

Lemma 2.6. [14] Let G be a connected graph with n > 2 vertices. Then γ−2 =
γ−3 = · · · = γ−n−1 if and only if G ∼= Kn or G ∼= Kp,q (p+ q = n).

The proof of the following lemma can be found in the proof of Theorem 2.2
in [15].

Lemma 2.7. [15] Let G be a graph of order n ≥ 2 without isolated vertices. Then
γ+2 = γ+3 = · · · = γ+n if and only if G ∼= Kn.

Lemma 2.8. [34] Let a1, a2, . . . , aN be non-negative real numbers. Then

N

 1

N

N∑
i=1

ai −

(
N∏
i=1

ai

)1/N
 ≤ N

N∑
i=1

ai −

(
N∑
i=1

√
ai

)2

(5)

≤ N (N − 1)

 1

N

N∑
i=1

ai −

(
N∏
i=1

ai

)1/N
 .

Moreover, the equality holds on both sides of (5) if and only if a1 = a2 = · · · = aN .

Lemma 2.9. [31] Let ai > 0, i = 1, 2, . . . , p be p real numbers. Then

p (Ap −Gp) ≥ (p− 1) (Ap−1 −Gp−1) , (6)

where Ap =
∑p

i=1 ai
p and Gp =

(
p∏
i=1

ai

)1/p

.

3. Main Results
In this section, we present some bounds on σα (G) (α 6= 0, 1) and also discuss the
special case α = 1/2.
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Theorem 3.1. Let G be a connected non-bipartite graph with n ≥ 3 vertices and
let t1 be given by (4) and α 6= 0, 1 be a real number. Then

σα (G) ≥ 2α +

√
σ2α − 4α + (n− 1) (n− 2)

(
t1

2
∏n
i=1 di

)2α/(n−1)

(7)

and

σα (G) ≤ 2α +

√
(n− 2) (σ2α − 4α) + (n− 1)

(
t1

2
∏n
i=1 di

)2α/(n−1)

. (8)

Moreover, equalities in (7) and (8) hold if and only if G ∼= Kn.

Proof. By replacing N with n−1 and taking ai =
(
γ+i
)2α, i = 2, 3, ..., n, in Lemma

2.8, we get

T ≤ (n− 1)

n∑
i=2

(
γ+i
)2α −( n∑

i=2

(
γ+i
)α)2

≤ (n− 2)T

where T = (n− 1)

[
1

n−1

∑n
i=2

(
γ+i
)2α − (∏n

i=2

(
γ+i
)2α)1/(n−1)

]
. Note that γ+1 =

2 [15] and
∑n
i=1

(
γ+i
)2α

= σ2α, then we obtain

T ≤ (n− 1) (σ2α − 4α)− (σα − 2α)
2 ≤ (n− 2)T (9)

and

T = (n− 1)

[
1

n− 1

∑n

i=2

(
γ+i
)2α − (∏n

i=2

(
γ+i
)2α)1/(n−1)

]
= (n− 1)

[
1

n− 1
(σ2α − 4α)−

(∏n

i=2
γ+i

)2α/(n−1)
]

= (σ2α − 4α)− (n− 1)

(
t1

2
∏n
i=1 di

)2α/(n−1)

, by Lemma 2.5. (10)

Combining (9) and (10), we arrive at the inequalities (7) and (8). Now we
assume that the equalities hold in (7) and (8). Then, by Lemma 2.8, γ+2 = γ+3 =
· · · = γ+n . From Lemma 2.7, this implies that G ∼= Kn.

Conversely, one can easily see that the equalities in (7) and (8) hold for G ∼=
Kn.

For α = 1/2 in Theorem 3.1, we have the following result on Randić incidence
energy of connected non-bipartite graphs.
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Corollary 3.2. Let G be a connected non-bipartite graph with n ≥ 3 vertices
and let t1 be given by (4). Then

IRE (G) ≥
√
2 +

√
n− 2 + (n− 1) (n− 2)

(
t1

2
∏n
i=1 di

)1/(n−1)

(11)

and

IRE (G) ≤
√
2 +

√
(n− 2)

2
+ (n− 1)

(
t1

2
∏n
i=1 di

)1/(n−1)

. (12)

Moreover, equalities in (11) and (12) hold if and only if G ∼= Kn.

Remark 1. For a graph G of order n ≥ 2 without isolated vertices, Gu et al.
obtained that [15]

IRE (G) ≤
√
2 +

√
(n− 1) (n− 2). (13)

The equality holds in (13) if and only if G ∼= Kn. By using arithmetic-geometric
mean inequality, one can conclude that the upper bound (12) is better than the
upper bound (13) for connected non-bipartite graphs.

Considering γ+1 = 2 [15] and similar arguments in Theorem 3.1 and using
Lemmas 2.1, 2.5, 2.6 and 2.8, we have:

Theorem 3.3. Let G be a connected bipartite graph with n ≥ 3 vertices, m edges
and t spanning trees and let α 6= 0, 1 be a real number. Then

sα (G) = σα (G) ≥ 2α +

√
σ2α − 4α + (n− 2) (n− 3)

(
mt∏n
i=1 di

)2α/(n−2)

(14)

and

sα (G) = σα (G) ≤ 2α +

√
(n− 3) (σ2α − 4α) + (n− 2)

(
mt∏n
i=1 di

)2α/(n−2)

. (15)

Moreover, equalities in (14) and (15) hold if and only if G ∼= Kp,q (p+ q = n).

For α = 1/2 in Theorem 3.3, we obtain the following result.

Corollary 3.4. Let G be a connected bipartite graph with n ≥ 3 vertices, m
edges and t spanning trees. Then

LIE (G) = IRE (G) ≥
√
2 +

√
n− 2 + (n− 2) (n− 3)

(
mt∏n
i=1 di

)1/(n−2)

(16)

and

LIE (G) = IRE (G) ≤
√
2 +

√
(n− 2) (n− 3) + (n− 2)

(
mt∏n
i=1 di

)1/(n−2)

. (17)

Moreover, equalities in (16) and (17) hold if and only if G ∼= Kp,q (p+ q = n).
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Theorem 3.5. [3] Let G be a connected bipartite graph of order n ≥ 3. If
0 < α < 1, then

sα (G) = σα (G) ≤ n+ 2(2α−1 − 1). (18)

The equality holds in (18) if and only if G ∼= Kp,q (p+ q = n).

Remark 2. For a bipartite graph G of order n without isolated vertices, Gu et al.
obtained that [15]

IRE (G) ≤ n− 2 +
√
2. (19)

The equality holds in (19) if and only if G is a complete bipartite graph. In
fact, for connected bipartite graphs, (19) is a special case of (18) when α = 1/2.
Furthermore,by arithmetic-geometric mean inequality, we conclude that (17) is
better than (19) for connected bipartite graphs.

As well known in graph theory every tree is bipartite. Furthermore, for a tree
T , m = n− 1 and t = 1. Then, from Theorem 3.3, we have:

Corollary 3.6. Let T be a tree with n ≥ 3 vertices and let α 6= 0, 1 be a real
number. Then

sα (T ) = σα (T ) ≥ 2α +

√
σ2α − 4α + (n− 2) (n− 3)

(
n− 1∏n
i=1 di

)2α/(n−2)

(20)

and

sα (T ) = σα (T ) ≤ 2α +

√
(n− 3) (σ2α − 4α) + (n− 2)

(
n− 1∏n
i=1 di

)2α/(n−2)

. (21)

Moreover, equalities in (20) and (21) hold if and only if G ∼= K1,n−1.

Setting α = 1/2 in Corollary 3.6, we obtain:

Corollary 3.7. Let T be a tree with n ≥ 3 vertices. Then

LIE (T ) = IRE (T ) ≥
√
2 +

√
n− 2 + (n− 2) (n− 3)

(
n− 1∏n
i=1 di

)1/(n−2)

(22)

and

LIE (T ) = IRE (T ) ≤
√
2 +

√
(n− 2) (n− 3) + (n− 2)

(
n− 1∏n
i=1 di

)1/(n−2)

. (23)

Moreover, equalities in (22) and (23) hold if and only if G ∼= K1,n−1.
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Theorem 3.8. Let G be a connected graph with n ≥ 3 vertices, m edges and t
spanning trees and let t1 be given by (4) and α 6= 0, 1 be a real number.

(i) If G is bipartite, then there exists a real number ε ≥ 0 such that [24]

sα (G) = σα (G) ≥ 2α + (n− 2)

(
mt∏n
i=1 di

)α/(n−2)

+ ε. (24)

(ii) If G is non-bipartite, then there exists a real number ε ≥ 0 such that

σα (G) ≥ 2α + (n− 1)

(
t1

2
∏n
i=1 di

)α/(n−1)

+ ε. (25)

Proof. The lower bound (24) has been obtained in [24]. So, we omit its proof. We
now only prove the lower bound (25).

Let p = n− 1 , a1 =
(
γ+2
)α, a2 = (γ+n )

α and ai =
(
γ+i
)α for i = 3, ..., n− 1 in

Equation (6). Then, from Lemma 2.9, we have

(n− 1)

((∑n
i=2

(
γ+i
)α)

n− 1
−
(∏n

i=2

(
γ+i
)α)1/(n−1)

)
≥ · · · ≥

((
γ+2
)α/2 − (γ+n )α/2)2

i.e.,

σα (G) ≥
(
γ+1
)α

+ (n− 1)
(∏n

i=2
γ+i

)α/(n−1)

+
((
γ+2
)α/2 − (γ+n )α/2)2 . (26)

Let say ε =
((
γ+2
)α/2 − (γ+n )

α/2
)2

. Considering Equation (26) with γ+1 = 2 [15]
and Lemma 2.5, we obtain

σα (G) ≥ 2α + (n− 1)

(
t1

2
∏n
i=1 di

)α/(n−1)

+ ε.

Hence the result holds.

Taking α = 1/2 in Theorem 3.8, we have:

Corollary 3.9. Let G be a connected graph with n ≥ 3 vertices, m edges and t
spanning trees and let t1 be given by (4).

(i) If G is bipartite, then there exists a real number ε ≥ 0 such that [24]

LIE (G) = IRE (G) ≥
√
2 + (n− 2)

(
mt∏n
i=1 di

)1/2(n−2)

+ ε.

(ii) If G is non-bipartite, then there exists a real number ε ≥ 0 such that

IRE (G) ≥
√
2 + (n− 1)

(
t1

2
∏n
i=1 di

)1/2(n−1)

+ ε.
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