A Multiplicative Version of Forgotten Topological Index

Document Type: Original Scientific Paper

Authors

1 ‎Department of Mathematics‎, ‎Science and Research Branch, ‎Islamic Azad University, ‎Tehran‎, ‎Iran

2 ‎Department of Mathematics‎, Tarbiat Modares University, ‎Tehran‎, ‎Iran

3 ‎Sobolev Institute of Mathematics, ‎Siberian Branch of the Russian Academy of Sciences, ‎Novosibirsk‎, ‎Russia

4 ‎Department of Mathematics‎, ‎Science and Research Branch, ‎Islamic Azad University, ‎Tehran‎, ‎Iran

Abstract

In this paper, we present upper bounds for the multiplicative forgotten topological index of several graph operations such as sum, Cartesian product, corona product, composition, strong product, disjunction and symmetric difference in terms of the F–index and the first Zagreb index of their components. Also, we give explicit formulas for this new graph invariant under two graph operations such as union and Tensor product. Moreover, we obtain the expressions for this new graph invariant of subdivision graphs and vertex – semitotal graphs. Finally, we compare the discriminating ability of indices.

Keywords


[1] A. R. Ashrafi, T. Doslic and A. Hamzeh, The Zagreb coindices of graph
operations, Discrete Appl. Math. 158 (2010) 1571–1578.
[2] M. Azari and A. Iranmanesh, Chemical graphs constructed from rooted product
and their Zagreb indices, MATCH Commun. Math. Comput. Chem. 70
(2013) 901–919.
[3] M. Azari and A. Iranmanesh, Computation of the edge Wiener indices of the
sum of graphs, Ars Combin. 100 (2011) 113–128.
[4] M. Azari and A. Iranmanesh, Computing the eccentric– distance sum for
graph operations, Discrete Appl. Math. 161 (2013) 2827–2840.
[5] M. Azari and A. Iranmanesh, Some inequalities for the multiplicative sum
Zagreb index of graph operations, J. Math. Inequal. 9 (2015) 727–738.
[6] M. Azari, A. Iranmanesh and I. Gutman, Zagreb indices of bridge and chain
graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 921–938.
[7] M. Azari, A. Iranmanesh and A. Tehranian, A method for calculating an edge
version of the Wiener number of a graph operation, Util. Math. 87 (2012)
151–164.
[8] B. Basavanagoud and V. R. Desai, Forgotten topological index and hyper –
Zagreb index of generalized transformation graphs, Bulletin of Mathematical
Sciences and Applications 14 (2016) 1–6.

[9] B. Basavanagoud, I. Gutman and C. S. Gali, On second Zagreb index and
coindex of some derived graphs, Kragujevac J. Sci. 37 (2015) 113–121.
[10] N. De, S. M. A. Nayeem and A. Pal, F􀀀index of some graph operations,
Discrete Math. Algorithms Appl. 8 (2016) 1650025, 17 pp.
[11] N. De, S. M. A. Nayeem and A. Pal, Reformulated first Zagreb index of some
graph operations, Mathematics, 3 (2015) 945-960.
[12] J. Devillers and A. T. Balaban (Eds.), Topological Indices and Related Descriptors
in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.
[13] M. V. Diudea, QSPR/ QSAR Studies by Molecular Descriptors, Nova Sci.
Publ., Huntington, NY, 2000.
[14] T. Doslic, B. Furtula, A. Graovac, I. Gutman, S. Moradi and Z. Yarahmadi,
On vertex – degree – based molecular structure descriptors, MATCH Commun.
Math. Comput. Chem. 66 (2011) 613–626.

[15] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53
(2015) 1184–1190.
[16] B. Furtula, I. Gutman, Z. Kovijanic Vukicevic; G. Lekishvili and G. Popivoda,
On an old/new degree – based topological index, Bulletin T.CXLVIII de
l0Academie serbe des sciences et des arts (2015) 19–31.
[17] W. Gao, M. R. Farahani and L. Shi, The forgotten topological index of some
drug structures, Acta Medica Mediterranea 32 (2016) 579–585.
[18] S. Ghobadi and M. Ghorbaninejad, The forgotten topological index of four
operations on some special graphs, Bulletin of Mathematical Sciences and
Applications 16 (2016) 89–95.
[19] I. Gutman, B. Furtula,  Z. Kovijanic Vukicevic and G. Popivoda, On Zagreb
indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015)
5–16.
[20] I. Gutman, B. Ruscic, N. Trinajstic and C. F. Wilcox, Graph theory and
molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 33–99.
[21] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total
–electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972)
535–538.

[22] Y. Hu, X. Li, Y. Shi, T. Xu and I. Gutman, On molecular graphs with
smallest and greatest zeroth–order general Randic index, MATCH Commun.
Math. Comput. Chem. 54 (2005) 425–434.
[23] M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley–Interscience,
New York, 2000.
[24] M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The first and second
Zagreb indices of some graph operations, Discrete Appl. Math. 157 (2009)
804–811.
[25] X. Li and H. Zhao, Trees with the first three smallest and largest generalized
topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57–
62.
[26] X. Li and J. Zheng, A unified approach to the extremal trees for different
indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195–208.
[27] S. Nikolic, G. Kovacevic, A. Milicevic, and N. Trinajstic, The Zagreb indices
30 years after, Croat. Chem. Acta 76 (2003) 113–124.
[28] K. Pattabiraman and P. Kandan, Weighted PI index of corona product of
graphs, Discret. Math. Algorithms Appl. 6 (2014) 1450055, 9 pp.

[29] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley –
VCH, Weinheim, 2000.
[30] M. Wang and H. Hua, More on Zagreb coindices of composite graphs, Int.
Math. Forum 7 (2012) 669–673.
[31] Z. Yarahmadi and A. R. Ashrafi, The Szeged, vertex PI, first and second
Zagreb indices of corona product of graphs, Filomat 26 (2012) 467–472.
[32] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004)
113–118.


Volume 4, Issue 2
Special Issue: Spectral Graph Theory and Mathematical Chemistry with Connection to Computer Science
Autumn 2019
Pages 193-211