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Distinguishing Number and Distinguishing Index

of the Join of Two Graphs

Saeid Alikhani? and Samaneh Soltani

Abstract

The distinguishing number (index)D(G) (D′(G)) of a graphG is the least
integer d such that G has an vertex labeling (edge labeling) with d labels
that is preserved only by a trivial automorphism. In this paper we study the
distinguishing number and the distinguishing index of the join of two graphs
G andH, i.e., G+H. We prove that 0 ≤ D(G+H)−max{D(G), D(H)} ≤ z,
where z depends on the number of some induced subgraphs generated by
some suitable partitions of V (G) and V (H). Let Gk be the k-th power of G
with respect to the join product. We prove that if G is a connected graph of
order n ≥ 2, then Gk has the distinguishing index 2, exceptD′(K2+K2) = 3.
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1. Introduction

Let G = (V,E) be a graph with n vertices. We use the standard graph notation
in [6]. An automorphism of a graph is a form of symmetry in which the graph
is mapped onto itself while preserving the edge–vertex connectivity. The set of
all automorphisms of G, with the operation of composition of permutations, is a
permutation group on V and is denoted by Aut(G). A labeling of G, φ : V →
{1, 2, . . . , r}, is r-distinguishing, if no non-trivial automorphism of G preserves
all of the vertex labels. Formally, φ is r-distinguishing if for every non-trivial
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σ ∈ Aut(G), there exists x in V such that φ(x) 6= φ(σ(x)). The distinguishing
number of a graph G is the minimum number r such that G has a labeling that is
r-distinguishing. This number was defined by Albertson and Collins [2]. Similar
to this definition, Kalinowski and Pilśniak [8] have defined the distinguishing index
D′(G) of G which is the least integer d such that G has an edge colouring with d
colours that is preserved only by a trivial automorphism. Observe that D(G) = 1
for the asymmetric graphs G and D(G) = |V (G)|, if and only if G = Kn. It is
immediate that D(Pn) = 2 (n ≥ 2), where Pn is the n-vertex path. A classical
result gives that for the cycle with n vertices, Cn, D(Cn) = 3 if n = 3, 4, 5 and
D(Cn) = 2 (n ≥ 6). Also for complete bipartite graph when q > p, D(Kp,q) = q,
D(Kn,n) = n + 1 for n ≥ 3, for the n-cube Qn, D(Qn) = 2, for n ≥ 4 and
D(Qn) = 3 for n = 2, 3 ([4]). The distinguishing index of some graphs is exhibited
in [8]. The distinguishing number and index of the Cartesian product and the
Cartesian powers of graphs has been thoroughly investigated [1, 9, 5]. Pilśniak
studied the Nordhaus-Gaddum bounds for the distinguishing index in [10]. Also
the distinguishing number of the hypercube has been investigated in [4]. Recently,
we studied the distinguishing number and distinguishing index of corona product
of two graphs [3].

We say that G = (V,E) is a join graph if G is the complete union of two
graphs G1 = (V1, E1) and G2 = (V2, E2). In other words, V = V1 ∪ V2 and
E = E1 ∪E2 ∪ {uv|u ∈ V1, v ∈ V2}. If G is the join graph of G1 and G2, we write
G = G1 + G2. For simple connected graph G, and v ∈ V , the neighborhood of v
is the set NG(v) = N(v) = {u ∈ V (G) : uv ∈ E(G)}. The nonadjacent vertices to
v in G is V (G) \N(v) and denoted by N(v). A subgraph H of G is an induced, if
two vertices of V (H) are adjacent in H if and only if they are adjacent in G. We
denote the induced subgraph by a set X ⊆ V , by G[X].

In the next section, we study the distinguishing number of the join of two
graphs. In Section 3, we present two upper bounds for the distinguishing index of
the join of two graphs and show that they are sharp.

2. The Distinguishing Number of the Join of
Two Graphs

In this section, we study the distinguishing number of the join of two graphs. We
begin with the following theorem which gives a lower bound for the distinguishing
number of this kind of graphs:

Theorem 2.1. Let G1 and G2 be two connected graphs. Then

max{D(G1), D(G2)} ≤ D(G1 +G2) ≤ D(G1) +D(G2).

Proof. By contradiction, suppose that D(G1 +G2) < max{D(G1), D(G2)}. With-
out loss of generality, we can assume that D(G1 + G2) < D(G2). In this case,
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the vertices of the graph G2 can be labeled with less than D(G2) labels, in which
a nontrivial automorphism f2 of G2 preserves the labeling of G2. On the other
hand, there exists the following nontrivial automorphism h of G1 +G2 preserving
the labeling of G1 +G2, which is contradiction.

h(v) =

{
v If v ∈ V (G1),
f2(v) If v ∈ V (G2).

To prove D(G1 +G2) ≤ D(G1) +D(G2), we first label G1 in a distinguishing
way with D(G1) labels, next we label the vertices of G2 with the labels {D(G1) +
1, . . . , D(G1) + D(G2)} in a distinguishing way. This labeling is distinguishing
because if f is an arbitrary automorphism of G1 + G2 preserving the labeling,
then with respect to the label of vertices of G1 and G2 we get that the restriction
of automorphism f to Gi is Gi, where i = 1, 2, i.e., f |G1

= G1 and f |G2
= G2,

and so f |Gi
is an automorphism of Gi for i = 1, 2. Since both G1 and G2 have

been labeled in a distinguishing way, so we have f |G1 = idG1 and f |G2 = idG2 .
Therefore, f is the identity automorphism of G1 +G2.

To obtain a better upper bound for the distinguishing number of the join of
two arbitrary graphs G1 and G2, we partition the vertices of G1 + G2 such that
every automorphism of G1 +G2 maps the classes to each other. This partition is
as follows:

Let G1 and G2 be two graphs and G = G1 + G2. Let v1 be an arbitrary
vertex of G1. First put A1 = NG(v1) (note that NG(v1) ⊆ V (G1)). We add
all nonadjacent sets of the vertices of G (say v) such that their nonadjacent sets
satisfy NG(v) ∩ A1 6= ∅, to A1 and denote again the new set by A1 (if v ∈ G and
NG(v)∩A1 6= ∅ then v ∈ G1). We continue this process until there is no vertex in
G with this property.

Let v2 be a vertex of G1 such that v2 /∈ A1. Put A2 = NG(v2) and similar to
construction of A1, add suitable nonadjacent sets of a vertex to A2 and repeat this
action. It is clear that after a finite number of steps, the vertices of G1 partition
to Ai’s. With a similar argument we suppose that the vertices of G2 partition to
some sets, say, Bj ’s. Without loss of generality, we assume that the vertices of G
are partitioned into k+k′ equivalence classes as follows (the notation v is used for
the vertices of G1 and the notation w is used for the vertices of G2):

A1 = NG(v1) ∪ · · · ∪NG(vt1),

A2 = NG(vt1+1) ∪ · · · ∪NG(vt1+t2),

...

Ak = NG(vt1+...+tk−1+1) ∪ · · · ∪NG(vt1+...+tk),
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B1 = NG(w1) ∪ · · · ∪NG(wt′1
),

B2 = NG(wt′1+1) ∪ · · · ∪NG(wt′1+t′2
), (1)

...

Bk′ = NG(wt′1+...+t′
k′−1

+1) ∪ . . . ∪NG(wt′1+...+t′
k′

).

Lemma 2.2. Let G1 and G2 be two graphs and G = G1 + G2. Suppose that
A = {A1, . . . , Ak} and B = {B1, . . . , Bk′} are two partitions of the vertices G1

and G2 as stated in (1), respectively. If f is an automorphism of G, then f is a
permutation on the set A ∪ B.

Proof. Let u1, u
′
1 ∈ V (G) and f(u1) = u′1. Since an automorphism preserves

adjacency relation, f(NG(u1)) = NG(u′1).

Now let u1, u2, u
′
1, u
′
2 ∈ V (G), f(NG(u1)) = NG(u′1) and f(NG(u2)) = NG(u′2).

Then, we have

NG(u1) ∩NG(u2) 6= ∅ ⇔ NG(u′1) ∩NG(u′2) 6= ∅.

By induction, if u1, . . . , us, u
′
1, . . . , u

′
s ∈ V (G) and f(NG(ui)) = NG(u′i), where

1 ≤ i ≤ s, then we have(
NG(u1) ∪ · · · ∪NG(us)

)
∩NG(us) 6= ∅ ⇔

(
NG(u′1) ∪ · · · ∪NG(u′s)

)
∩NG(u′s) 6= ∅.

By the above illustrations and definitions of Ai and Bj with 1 ≤ i ≤ k and
1 ≤ j ≤ k′, we can conclude that f is a permutation on A ∪ B.

Corollary 2.3. Let G1 and G2 be two graphs and G = G1 + G2. Suppose that
A = {A1, . . . , Ak} and B = {B1, . . . , Bk′} are two partitions of the vertices G1

and G2 as stated in (1), respectively and put A ∪ B = C = {C1, . . . , Ck+k′}. If f
is an automorphism of G and f(Ci) = Cj , for some i, j ∈ {1, . . . , k+ k′}, then the
induced subgraphs G[Ci] and G[Cj ] are isomorphic.

Before stating and proving the main theorems, we need some additional infor-
mation about G1 and G2. Let G1 and G2 be two graphs and G = G1 + G2 such
that A = {A1, . . . , Ak} and B = {B1, . . . , Bk′} are two partitions of the vertices
G1 and G2 as stated in (1), respectively. Now we put H =

{
G[A1], . . . , G[Ak]

}
and H ′ =

{
G[B1], . . . , G[Bk′ ]

}
. Some of the induced subgraphs in each H and H ′

are isomorphic. We put all isomorphic induced subgraphs in H and also H ′, in a
set and denote them by Ai and Bj , respectively. In fact, we partitioned the two
sets H,H ′ into t, t′ disjoint sets A1, . . . ,At and B1, . . . ,Bt′ such that |Ai| = ni and
|Bj | = mj with ni,mj ≥ 1, 1 ≤ i ≤ t and 1 ≤ j ≤ t′ as follows:
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A1 =
{
G[A1], . . . , G[An1

]
}
,

A2 =
{
G[An1+1], . . . , G[An1+n2

]
}
,

...

At =
{
G[An1+···+nt−1+1], . . . , G[An1+···+nt

]
}
, (2)

B1 =
{
G[B1], . . . , G[Bm1

]
}
,

B2 =
{
G[Bm1+1], . . . , G[Bm1+m2

]
}
,

...

Bt′ =
{
G[Bm1+···+mt′−1+1], . . . , G[Bm1+···+mt′ ]

}
.

It is possible that some of the elements in Ai are isomorphic to some elements
in a Bj , where 1 ≤ i ≤ t and 1 ≤ j ≤ t′ (note that if an element of Ai is
isomorphic to an element of Bj then all elements of Ai have this property). Let
q be the number of Ai for which there exist some Bj that the elements of Ai are
isomorphic to elements of Bj . Then we can partition the set H ∪H ′ into disjoint
sets Γ1, . . . ,Γt+t′−q as follows (we use new notation for vertices of G, if necessary): Γi = Ai ∪ Bi 1 ≤ i ≤ q,

Γq+i = Aq+i 1 ≤ i ≤ t− q,
Γt+i = Bt+i 1 ≤ i ≤ t′ − q,

(3)

where 0 ≤ q ≤ min{t, t′} (see Figure 1).

Figure 1: The partition of G1 +G2.
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Remark 1. Using the partition of H ∪H ′ in (3), Lemma 2.2 and Corollary 2.3, we
can conclude that if f ∈ Aut(G1 + G2) then f |Γi

∈ Aut(Γi) for 1 ≤ i ≤ q, where
0 ≤ q ≤ min{t, t′}.

Now we are ready to state and prove the main result on the distinguishing
number of the join of two graphs.

Theorem 2.4. Let G1 and G2 be two non-isomorphic graphs and G = G1 +G2.

(i) If q = 0, then D(G1 +G2) = max{D(G1), D(G2)}.

(ii) If q 6= 0 and z = min
{

max{n1, . . . , nq},max{m1, . . . ,mq}
}
, then

D(G1 +G2) ≤ max{D(G1), D(G2)}+ z.

Proof. (i) If q = 0, then there is no element ofH isomorphic to an element ofH ′.
By Corollary 2.3, if f ∈ Aut(G), then f |G1

∈ Aut(G1) and f |G2
∈ Aut(G2),

and so D(G1 + G2) ≤ max{D(G1), D(G2)}. Therefore, by Theorem 2.1 we
have the result.

(ii) Let d = max{D(G1), D(G2)}. We shall present a distinguishing labeling
with d + z labels. Without loss of generality, we can assume that z = m1,
and so B1 = {G[B1], . . . , G[Bm1 ]}.
First, we label both G1 and G2 with D(G1) and D(G2) labels in a dis-
tinguishing way, respectively. Now to obtain a distinguishing labeling of
G1 +G2, we change the labels of the vertices G2 as follows:

• We change the label of an arbitrary vertex of G[Bi] to d + i, for every
1 ≤ i ≤ m1.

We do similar above process on B2, . . . ,Bt′ (note that if z = nik for some k ∈
{1, . . . , q} then we should do the similar work on G1). By Lemma 2.2, Corol-
lary 2.3 and the distinguishing labeling in both G1 and G2, we can conclude
that presented labeling is distinguishing. Since we used max{D(G1), D(G2)}+
z labels, the inequality follows.

Remark 2. The value of z in Theorem 2.4 (ii) can be zero or sufficiently large,
depending on the structure of graphs G1 and G2. As an example, consider the
complete k-partite graphKd,...,d asG1 andG2 andG = Kd,...,d+Kd,...,d, then using
notations in (2), Ai = Bi = ∅ for 2 ≤ i ≤ t, and A1 = B1 = {G[A1], . . . , G[Ak]},
where Ai is the i-th part of Kd,...,d. Therefore z = k and so, z can be sufficiently
large.

Now we shall show that the inequality in Theorem 2.4 (ii) is sharp.
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Corollary 2.5. Let n > m,n > m′ and m 6= m′. The distinguishing number of
Kn,m +Kn,m′ is n+ 1.

Proof. Let X = {v1, . . . , vn} and Y = {w1, . . . , wm} be two parts of Kn,m, and
X ′ = {v′1, . . . , v′n} and Y ′ = {w′1, . . . , w′m′} be two parts of Kn,m′ . Suppose that
G = Kn,m +Kn,m′ . Using the partition in (1) we can write:

A1 = NG(v1) = {v1, . . . , vn}, A2 = NG(w1) = {w1, . . . , wm}.

Since the number of elements in A1 and A2 are distinct, G[A1] � G[A2]. Then by
the partition in (2) we have A1 = {G[A1]} and A2 = {G[A2]}, and so n1 = n2 = 1.
Now by similar argument we can write:

B1 = NG(v′1) = {v′1, . . . , v′n}, B2 = NG(w′1) = {w′1, . . . , w′m′}.

Then B1 = {G[B1]} and B2 = {G[B2]}, and so m1 = m2 = 1. Since the induced
subgraphs have no edges, G[A1] ∼= G[B1]. With respect to the partition in (3) we
have

Γ1 = A1 ∪ B1 = {G[A1], G[B1]}, Γ2 = A2 = {G[A2]}, Γ3 = B2 = {G[B2]}.

It is clear that for every labeling by n labels we can find a labeling preserving
automorphism of Γ1. So we can find an automorphism of G with this property.
Consider the following labeling by n+ 1 labels:

We assign to the vertices in A1 the labels 1, . . . , n and to the vertices in B1

the labels 1, . . . , n− 1, n+ 1. We label the vertices in A2 with the labels 1, . . . ,m
and the vertices in B2 with the labels 1, . . . ,m′. By Remark 1, this labeling is
distinguishing, and so D(Kn,m +Kn,m′) = n+ 1.

Theorem 2.6. Let n1, ..., nt be the number of elements of classes stated in (2).
We have

D(G) ≤ D(G+G) ≤ D(G) + max{n1, . . . , nt}.

Proof. Let G1 and G2 be two isomorphic graphs and denote both of them by G,
then the left side inequality is identified by Theorem 2.1. To prove the right side
of inequality, we present a distinguishing labeling as follows:

Without loss of generality we can assume that n1 = max{n1, . . . , nt}. First,
we label G and its copy with D(G) labels in a distinguishing way. To obtain a
distinguishing labeling for G + G we change the labels of the vertices of G as
follows:

• We change the label of an arbitrary vertex of (G + G)[Ai] to D(G) + i, for
every 1 ≤ i ≤ n1.
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So the labels of vertices of A1 were changed. We do similar process on A2, . . . ,At.
By Lemma 2.2, Corollary 2.3 and the distinguishing labeling in both G and its
copy, we can conclude that presented labeling is distinguishing. Since we used
D(G) + max{n1, . . . , nt} labels, the right side inequality follows.

Remark 3. With similar argument as in the proof of Corollary 2.5, we can show
that the inequality in Theorem 2.6 is sharp for the star graphs K1,n. In fact
D(K1,n +K1,n) = n+ 1 where D(K1,n) = n and max{n1, . . . , nt} = 1.

3. The Distinguishing Index of the Join of
Two Graphs

In this section we study the distinguishing index for the join of two graphs. We
say that a graph G is almost spanned by a subgraph H if G− v is spanned by H
for some v ∈ V (G). We need the following lemmas in this section.

Lemma 3.1. [10] If a graph G is spanned or almost spanned by a subgraph H,
then D′(G) ≤ D′(H) + 1.

Lemma 3.2. [10] Let G be a graph of order n ≥ 7 with a Hamiltonian path, then
D′(G) ≤ 2.

By these two lemmas, we can obtain the following upper bounds for the dis-
tinguishing index of the join of two graphs.

Theorem 3.3. Let G and H be two graphs of orders n and m, respectively. Then
D′(G+H) ≤ D′(Kn,m) + 1.

Proof. Since the complete bipartite graph Kn,m, is a spanning subgraph G + H,
we can conclude the result by Lemma 3.1.

Theorem 3.4. If G has n vertices and H has m vertices, such that 4 ≤ n ≤ m ≤
2n, then D′(G+H) ≤ 2.

Proof. We use the complete bipartite Kn,m subgraph to find an asymmetric span-
ning subgraph of G+H. Now we have the result by Lemma 3.1.

Theorem 3.5. Let G and H be two graphs of orders n and m, respectively, such
that δ(G) ≤ δ(H). If min{δ(G) + m, δ(H) + n} ≥ n+m−1

2 and m + n ≥ 7, then
D′(G+H) ≤ 2.

Proof. It is known that if the minimum degree of a graph of order n is at least
n−1

2 , then graph has a Hamiltonian path. Since the minimum degree of G+H is
min{δ(G) +m, δ(H) + n}, so the result follows by Theorem 3.2.
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Corollary 3.6. If G is a graph of order n ≥ 2, then D′(Gk) = 2 for any k ≥ 2,
except D′(K2 +K2) = 3.

Proof. For k = 2, we have δ(G + G) = δ(G) + n ≥ 2n−1
2 = |G+G|−1

2 , and hence
G+G has a Hamiltonian path. If n ≥ 4, then 2n = |G+G| ≥ 7, and so we have
D′(G+G) ≤ 2, by Lemma 3.2. On the other hand, since the automorphism group
of graph G + G is non-trivial, so D′(G + G) ≥ 2. Therefore D′(G + G) = 2. If
n = 3, then it is easy to see that D′(G+G) = 2. Now a simple induction argument
together with Theorem 3.5 yield that D′(Gk) = 2, for any k ≥ 2.

To obtain an upper bound for D′(G1 +G2) we consider (3) which is a partition
of H ∪ H ′, i.e., Γ1, . . . ,Γt+t′−q. Note that the elements of Ai are isomorphic to
elements of Bi for 1 ≤ i ≤ q, where 0 ≤ q ≤ min{t, t′}. If G1

∼= G2 then t = t′ and
the elements of Ai are isomorphic to elements of Bi for 1 ≤ i ≤ t.

Let Ei be the set of edges of G1 + G2 such that the end points of its edges
are in Γi for 1 ≤ i ≤ t + t′ − q. We add the set Ei to the set of edges Γi and
denote the obtained new graph by Γ′i. The following result gives an upper bound
for D′(G1 +G2) based on the distinguishing index of Γ′i.

Theorem 3.7. Let G1 and G2 be two graphs such that G1 +G2 has been parti-
tioned to the set of induced subgraphs Γ1, . . . ,Γt+t′−q as (3). Then

D′(G1 +G2) ≤ max{D′(Γ′1), . . . , D′(Γ′t+t′−q)}.

Proof. We label the edges of the graph Γ′i (1 ≤ i ≤ t+ t′ − q) by D′(Γ′i) labels in
a distinguishing way. We assign the remaining edges the label 1. By Remark 1,
this labeling is distinguishing. The number of labels that have been used here is

max{D′(Γ′1), . . . , D′(Γ′t+t′−q)}.

So, we have the result.

Now, we like to present another upper bound forD′(G1+G2). For this purpose,
we state some preliminaries.

Let Xi, i ∈ I (I is the index set) be the set of complete bipartite graphs
K|V (Γs)|,|V (Γs′ )| satisfying the following two conditions:

• The two parts of each element of Xi should be distinct.

• The set of all parts that have been used as parts of elements of Xi should
be {V (Γ1), . . . , V (Γt+t′−q)}.

Let εi = max{D′(K|V (Γs)|,|V (Γs′ )|) : K|V (Γs)|,|V (Γs′ )| ∈ Xi}. Then we have the
following theorem:
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Theorem 3.8. Let G1 and G2 be two graphs such that G1 + G2 has been
partitioned to induced subgraphs Γ1, . . . ,Γt+t′−q as (3). Then D′(G1 + G2) ≤
min{εi}i∈I .

Proof. We label the edges of each complete bipartite graph in Xi in distinguishing
way (by D′(K|V (Γs)|,|V (Γs′ )|) labels) and assign to the remaining edges the label
1. Since all parts Γ1, . . . ,Γt+t′−q have been used in building of the complete
bipartite graphs in Xi and by Remark 1, this labeling is distinguishing. Therefore
D′(G1 +G2) ≤ min{εi}i∈I .

Remark 4. By setting λ1 = max{D′(Γ′1), . . . , D′(Γ′t+t′−q)} and λ2 = min{εi}i∈I
and by Theorem 3.7 and 3.8 we have D′(G1 + G2) ≤ min{λ1, λ2}. This raises
the question “which upper bound is better, λ1 or λ2?". We show that for some
graphs, the upper bound λ1 is better than λ2 and for some graphs, the situation is
different. We present two examples and these examples show also that the upper
bounds of the Theorem 3.7 and 3.8 are sharp.

Since the line graph of Kk,n is isomorphic to Cartesian product Kk�Kn, so
Aut(Kk,n) coincides with Aut(Kk�Kn). Therefore the distinguishing index of the
complete bipartite graphs which is needed in the solution of Example 3.10 can be
translated to distinguishing number of Cartesian product of complete graphs.

Theorem 3.9. [7] Let k, n, d be integers so that d ≥ 2 and (d − 1)k < n ≤ dk.
Then

D(Kk�Kn) =

{
d If n ≤ dk − dlogdke − 1,
d+ 1 If n ≥ dk − dlogdke+ 1.

If n = dk − dlogdke then D(Kk�Kn) is either d or d + 1 and can be computed
recursively in O(log∗(n)) time.

Example 3.10. The upper bound in Theorem 3.7 is better than the upper bound
in Theorem 3.8 for the D′(Pn + Pm) with n,m ≥ 2 and n 6= m.

Solution. Set G = Pn + Pm. Suppose that V (Pn) = {v1, . . . , vn} and V (Pm) =
{w1, . . . , wm}. With these notations we have A1 = NG(v1) = {v1, . . . , vn} and
B1 = NG(w1) = {w1, . . . , wm}. Thus A1 = {G[A1]} and B1 = {G[B1]}. Since
n 6= m, so Γ1 = A1 = {G[A1]}, Γ2 = B1 = {G[B1]} and q = 0. Also, Γ′1 = Pn

and Γ′2 = Pm. If we label both Γ′1 and Γ′2 by two labels in a distinguishing way
(note that D′(Pn) = D′(Pm) = 2) then we have a distinguishing labeling with two
labels by Remark 1.

It is easy to see that D′(Pn +Pm) = λ1 = 2, and so the inequality of Theorem
3.7 is sharp. On the other hand, using the notation of Theorem 3.8 we have
I = {1}, and so X1 = {K|V (Γ1)|,|V (Γ2)|}. By Theorem 3.9 it is clear that ε1 =
D′(KV (Γ1),V (Γ2)) is not equal with 2 for all m,n ≥ 2. Therefore the upper bound
λ1 is better than λ2 for D′(Pn + Pm).
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Here we shall present two graphs for which the upper bound in Theorem 3.8 is
better than the upper bound in Theorem 3.7. We recall that the friendship graph
Fn is the join of K1 with nK2. In other words, Fn can be constructed by joining n
copies of the cycle graph C3 with a common vertex (see Figure 2). The following
theorem gives the distinguishing index of the friendship graph Fn.

Figure 2: The graph F8.

Theorem 3.11. [3] Let an = 1 + 27n + 3
√

81n2 + 6n. The distinguishing index
of the friendship graph Fn (n ≥ 2) is

D′(Fn) = d1
3

(an)
1
3 +

1

3(an)
1
3

+
1

3
e.

Example 3.12. The upper bound in Theorem 3.8 is better than the upper bound
in Theorem 3.7 for D′(Fn + Fm), where 2 ≤ n < m.

Solution. Suppose that G = Fn +Fm. The central vertices of Fn and Fm are
denoted by x0 and y0, respectively. Any two adjacent vertices of Fn (except central
vertex x0) are denoted by x2i−1 and x2i where i = 1, . . . , n. The corresponding
vertices of Fm are denoted by y2j−1 and y2j where j = 1, . . . ,m.

By the partition in (1) we can write A1 = NG(x0) = {x0} and A2 = NG(x1)∪
NG(x2) = {x1, . . . , x2n}. Also B1 = NG(y0) = {y0} and B2 = NG(y1)∪NG(y2) =
{y1, . . . , y2m}. By the partition in (2), A1 = {G[A1]} and A2 = {G[A2]}, also
B1 = {G[B1]} and B2 = {G[B2]}. Let m 6= n. By (3) and the hypothesis
m 6= n, we have Γ1 = A1 ∪ B1 = {G[A1], G[B1]}, Γ2 = A2 = {G[A2]} and
Γ3 = B2 = {G[B2]}, and so q = 1. By notation of Theorem 3.8, one of the sets Xi
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is X1 = {K|V (Γ1)|,|V (Γ2)|,K|V (Γ2)|,|V (Γ3)|}. By Theorem 3.9, we have

ε1 = max{D′(K|V (Γ1)|,|V (Γ2)|), D
′(K|V (Γ2)|,|V (Γ3)|)}

= max{D′(K2,2n), D′(K2n,2m)}.

Thus λ2 ≤ ε1. On the other hand, Γ′i, i ∈ {2, 3} is the union of graphs P2, and
so the distinguishing index of graphs Γ′2 and Γ′3 has not been defined. Therefore
the upper bound λ2 is better than λ1.
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