Original Scientific Paper

On n-A-Con-Cos Groups and Determination of some n-A-Con-Cos Groups

Ahmad Gholami * and Fatemeh Mahmudi

Abstract

In this paper, we introduce the concept of *n*-*A*-con-cos groups, $n \geq 2$, mention some properties of them and determine all finite abelian groups with at most two direct factors. As a consequence, it is proved that dihedral groups D_{2m} in which *m* has at most two prime factors are *n*-*A*-con-cos.

Keywords: n^{th} -autocommutator subgroup, finite abelian groups, dihedral groups, n-A-con-cos groups.

2020 Mathematics Subject Classification: 20F28, 20F14, 20K01.

How to cite this article

A. Gholami and F. Mahmudi, On *n*-A-con-cos groups and determination of some *n*-A-con-cos groups, Math. Interdisc. Res. **6** (2021) 85 - 95.

1. Introduction

Let Aut(G) denote the automorphism group of a given group G. For any element $g \in G$ and $\alpha \in Aut(G)$, the autocommutator of g and α is defined to be $[g, \alpha] = g^{-1}\alpha(g)$. The absolute centre and autocommutator subgroup of a group G are defined as follows:

$$L(G) = \{g \in G \mid [g, \alpha] = 1, \forall \alpha \in Aut(G)\},\$$

$$K(G) = [G, Aut(G)] = \langle [g, \alpha] \mid g \in G, \alpha \in Aut(G) \rangle.$$

*Corresponding author (E-mail: a.gholami@qom.ac.ir) Academic Editor: Ali Reza Ashrafi Received 23 February 2018, Accepted 5 February 2019 DOI: 10.22052/mir.2019.120428.1093

©2021 University of Kashan

E This work is licensed under the Creative Commons Attribution 4.0 International License.

We define the autocommutator of higher weight inductively as follows:

 $[g,\alpha_1,\alpha_2,\ldots,\alpha_n] = [[g,\alpha_1,\ldots,\alpha_{n-1}],\alpha_n],$

for all $\alpha_1, \alpha_2, \ldots, \alpha_n \in Aut(G)$. The autocommutator subgroup of weight n+1 is defined in the following way:

$$K_n(G) = [K_{n-1}(G), Aut(G)]$$

= $\langle [g, \alpha_1, \alpha_2, \dots, \alpha_n] \mid g \in G, \ \alpha_1, \alpha_2, \dots, \alpha_n \in Aut(G) \rangle.$

Clearly, $K_n(G)$ is a characteristic subgroup of G for all $n \ge 1$. The following series of subgroups

$$G \supseteq K_1(G) = K(G) \supseteq K_2(G) \supseteq \cdots \supseteq K_n(G) \supseteq \cdots$$

is called the lower autocentral series of G (See also [3, 5, 7] and [8]).

A group G is called A-nilpotent, if the lower autocentral series of G ends in the identity subgroup after a finite number of steps. (See also [6]).

Let G be a group and $a, b \in G$. Then a and b are said to be fused, if there exists $\alpha \in Aut(G)$ such that $\alpha(a) = b$. (See [4]). Arora and Karan [1], defined a fusion relation in G as follows: Two elements a and b are related if they are fused. One can easily check that fusion relation is an equivalence relation. $\overline{cl(a)} = \{\alpha(a) \mid \alpha \in Aut(G)\}$ denotes the fusion class of a in G. They also defined Auto con-cos groups. We mention the definition of it:

Let G be a group and K be a proper characteristic subgroup of G, then we have two partitions of G, one is coset partition and another one is fusion class partition. If these two partitions coincide in G - K, that is $\overline{cl(g)} = gK$, for all $g \in G - K$, then we call the group G as Auto con-cos group.

In this paper, we introduce the new notion of *n*-*A*-con-cos groups for natural number n, where $n \geq 2$ and classify all finite abelian groups with at most two direct factors. It is also proved that dihedral groups D_{2m} , where m has at most two prime factors, are *n*-*A*-con-cos groups.

2. Main Results

We start this section by definition of n-A-con-cos groups.

Definition 2.1. A group G would be known as *n*-A-con-cos, if $K_n(G) < G$ and for all $g \in G - K_n(G)$ and $\alpha_1, \ldots, \alpha_{n-1} \in Aut(G)$, where $[g, \alpha_1, \ldots, \alpha_{n-1}] \neq 1$ we have

$$cl([g,\alpha_1,\ldots,\alpha_{n-1}]) = [g,\alpha_1,\ldots,\alpha_{n-1}]K_n(G) - 1.$$

The following theorem is useful in our investigation on con-cos-groups.

Theorem 2.2. Let G be a group and $K_n(G) = K_{n-1}(G) < G$ and $K_{n-1}(G)$ be the union of two fusion classes. Then the group G is n-A-con-cos.

Proof. Let $K_n(G) = K_{n-1}(G) = 1 \cup \overline{cl(x)}$, where $1 \neq x \in G$. Hence for every $g \in G - K_n(G)$ and $\alpha_1, \ldots, \alpha_{n-1} \in Aut(G)$, where $[g, \alpha_1, \ldots, \alpha_{n-1}] \neq 1$ we have $[g, \alpha_1, \ldots, \alpha_{n-1}] \in K_{n-1}(G) - 1 = \overline{cl(x)}$. Therefore,

$$\overline{cl([g,\alpha_1,\ldots,\alpha_{n-1}])} = \overline{cl(x)} = K_n(G) - 1,$$

and $[g, \alpha_1, \ldots, \alpha_{n-1}]K_n(G) - 1 = K_n(G) - 1$, which implies that

$$cl([g,\alpha_1,\ldots,\alpha_{n-1}]) = [g,\alpha_1,\ldots,\alpha_{n-1}]K_n(G) - 1.$$

Hence the group G is n-A-con-cos.

For instance, the group $C_3\rtimes C_4=\langle x,y\mid x^4=y^3=1, x^{-1}yx=y^2\rangle$ is 3-A-concos, since

$$K_3(C_3 \rtimes C_4) = K_2(C_3 \rtimes C_4) = \langle y \rangle = 1 \cup cl(y).$$

Theorem 2.3. Let G be an A-nilpotent group, where |G| > 2 and $K_n(G) = 1$. Then the group G is n-A-con-cos.

Proof. For every $x \in G$ and $\alpha_1, \ldots, \alpha_n \in Aut(G)$, we have $[x, \alpha_1, \ldots, \alpha_n] = 1$. Hence $[x, \alpha_1, \ldots, \alpha_{n-1}]^{-1}\alpha_n([x, \alpha_1, \ldots, \alpha_{n-1}]) = 1$, and so

$$\overline{cl([x,\alpha_1,\ldots,\alpha_{n-1}])} = \{[x,\alpha_1,\ldots,\alpha_{n-1}]\}.$$

Also, for every $g \in G - K_n(G)$ and $\alpha_1, \ldots, \alpha_{n-1} \in Aut(G), [g, \alpha_1, \ldots, \alpha_{n-1}] \neq 1$, we have

$$[g, \alpha_1, \dots, \alpha_{n-1}]K_n(G) - 1 = \{[g, \alpha_1, \dots, \alpha_{n-1}]\}.$$

This proves the result.

For instance, the cyclic group C_4 is 2-A-con-cos, since C_4 is A-nilpotent and $K_2(C_4) = 1$. Furthermore, the dihedral group D_8 is 3-A-con-cos, since by Corollary 2.4 of [6], D_8 is A-nilpotent and $K_3(D_8) = 1$.

Remark 1. Let G be a finite abelian group of odd order. Then by Corollary 2.4 of [6], $K_n(G) = G$, for any natural number n. Hence G is not n-A-con-cos.

The following theorem is one of the main results of this paper.

Theorem 2.4. Let $n \ge 2$ be a natural number. Then the finite *n*-*A*-con-cos abelian groups with at most two direct factors are:

- i) C_{2^t} for $1 \le t \le n+1$,
- ii) $C_{2^t} \times C_p$ for $1 \le t \le n-1$,
- iii) $C_{2^t} \times C_2$ for $2 \le t \le n+1$,
- vi) $C_{2^t} \times C_{2^s}$ for $t \le n+1$ and $2 \le s \le t-2$,

- v) $C_{2^t} \times C_{2^s}$ for even number n, where $t \leq n-1$, $s \leq \frac{n}{2}$ and $t = s+1 \geq 3$,
- iv) $C_{2^t} \times C_{2^s}$ for odd number n, where $t \le n-1$, $t \le \frac{n+1}{2}$ and $t = s+1 \ge 3$,

where p is an odd prime number and t, s are natural numbers.

Proof. By Remark 1, we should investigate finite abelian groups with at most two direct factors of even order.

Clearly the group C_{2^t} is *n*-A-con-cos, for $1 \leq t \leq n-1$. The group C_{2^n} is *n-A*-con-cos, since it is *A*-nilpotent and $K_n(C_{2^n}) = 1$. Let $C_{2^{n+1}} = \langle x \mid x^{2^{n+1}} = 1 \rangle$. By Lemma 2.2 of [5],

$$K_n(C_{2^{n+1}}) = C_{2^{n+1}}^{2^n} = \langle x^{2^n} \rangle, \quad K_{n-1}(C_{2^{n+1}}) = C_{2^{n+1}}^{2^{n-1}} = \langle x^{2^{n-1}} \rangle.$$

So for every $g \in C_{2^{n+1}} - K_n(C_{2^{n+1}})$ and $\alpha_1, ..., \alpha_{n-1} \in Aut(C_{2^{n+1}}), [g, \alpha_1, ..., \alpha_{n-1}] \neq 0$ 1, we have

$$[g, \alpha_1, \dots, \alpha_{n-1}] \in K_{n-1}(C_{2^{n+1}}) - 1 = \{x^{2^{n-1}}, x^{2^n}, x^{3 \cdot 2^{n-1}}\}.$$

Clearly

$$\{x^{2^{n-1}}, x^{3 \cdot 2^{n-1}}\} = \overline{cl(x^{3 \cdot 2^{n-1}})} = \overline{cl(x^{2^{n-1}})} = x^{2^{n-1}}K_n(C_{2^{n+1}}) - 1,$$

and

$$\{x^{2^n}\} = \overline{cl(x^{2^n})} = x^{2^n} K_n(C_{2^{n+1}}) - 1.$$

Hence the group $C_{2^{n+1}}$ is *n*-*A*-con-cos.

Suppose that $t \ge n+2$ and $C_{2^t} = \langle x \mid x^{2^t} = 1 \rangle$. Then $K_n(C_{2^t}) = \langle x^{2^n} \rangle$, and hence $x \in C_{2^t} - K_n(C_{2^t})$. Consider $\alpha, \beta \in Aut(C_{2^t})$ with $\alpha(x) = x^{2^{t-n+1}+1}$ and $\beta(x) = x^3$. It is easy to check that $[x, \alpha, \beta, \dots, \beta] = x^{2^{t-1}}$. By Theorem 2.2 of [7], $x^{2^{t-1}} \in L(C_{2^t})$. Hence, $\overline{cl(x^{2^{t-1}})} = \{x^{2^{t-1}}\}$ but $x^{2^{t-1}}K_n(C_{2^t}) - 1 = K_n(C_{2^t}) - 1$ has $2^{t-n} - 1$ elements, and so

$$\overline{cl([x,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}])} \neq [x,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}]K_n(C_{2^t}) - 1.$$

Thus the group C_{2^t} is not *n*-*A*-con-cos, for $t \ge n+2$.

In what follows, we investigate the group $C_{2^t} \times C_{p^s}$ for natural numbers t, swith the presentation

$$\langle x, y \mid x^{2^{\iota}} = y^{p^s} = [x, y] = 1 \rangle.$$

There are five cases:

Case 1: $1 \le t \le n-1$ and s = 1. By Lemma 2.1 and Lemma 2.2 of [5],

$$K_n(C_{2^t} \times C_p) = K_n(C_{2^t}) \times K_n(C_p) = 1 \times C_p = C_p$$

and $K_{n-1}(C_{2^t} \times C_p) = C_p$. Clearly $C_p = \langle y \rangle = 1 \cup \overline{cl(y)}$. So by Theorem 2.2, the group $C_{2^t} \times C_p$ is *n*-*A*-con-cos, for $1 \leq t \leq n-1$.

Case 2: t = n and s = 1. We know that $K_n(C_{2^n} \times C_p) = \langle y \rangle$. Thus $x \in (C_{2^n} \times C_p) - K_n(C_{2^n} \times C_p)$. Consider the automorphism α of $C_{2^n} \times C_p$ with $\alpha(x) = x^3$ and $\alpha(y) = y$. Then

$$[x, \underbrace{\alpha, \dots, \alpha}_{n-1-times}] = x^{2^{n-1}}$$

and $\overline{cl(x^{2^{n-1}})} = \{x^{2^{n-1}}\}$, but $x^{2^{n-1}}K_n(C_{2^n} \times C_p) - 1$ has p elements. Hence the group $C_{2^n} \times C_p$ is not n-A-con-cos.

Case 3: $t \ge n+1$ and s = 1. In this case $K_n(C_{2^t} \times C_p) = \langle x^{2^n} \rangle \times \langle y \rangle$. So, $x \in (C_{2^t} \times C_p) - K_n(C_{2^t} \times C_p)$. Consider $\alpha, \beta \in Aut(C_{2^t} \times C_p)$ with $\alpha(x) = x^{2^{t-n+1}+1}$, $\alpha(y) = y$, $\beta(x) = x^3$ and $\beta(y) = y$. Then

$$[x, \alpha, \underbrace{\beta, \dots, \beta}_{n-2-times}] = x^{2^{t-1}}$$

and $\overline{cl(x^{2^{t-1}})} = \{x^{2^{t-1}}\}$ but $x^{2^{t-1}}K_n(C_{2^t} \times C_p) - 1$ has $2^{t-n}p - 1$ elements. Hence the group $C_{2^t} \times C_p$ is not *n*-*A*-con-cos, for $t \ge n+1$.

Case 4: t = 1 and $s \ge 2$. Note that $K_n(C_2 \times C_{p^s}) = \langle y \rangle$. So, $xy \in (C_2 \times C_{p^s}) - K_n(C_2 \times C_{p^s})$. Consider $\alpha \in Aut(C_2 \times C_{p^s})$ with $\alpha(x) = x, \alpha(y) = y^2$. Therefore,

$$[xy, \underbrace{\alpha, \dots, \alpha}_{n-1-times}] = y$$

Clearly $\overline{cl(y)}$ has $\phi(p^s)$ elements, where ϕ is the Euler's phi function, but $yK_n(C_2 \times C_{p^s}) - 1$ has $p^s - 1$ elements. Since $s \ge 2$ we conclude that the group $C_2 \times C_{p^s}$ is not *n*-*A*-con-cos, for $s \ge 2$.

Case 5: $t \geq 2$ and $s \geq 2$. In this case we have $K_n(C_{2^t} \times C_{p^s}) = \langle y \rangle$ for $t \leq n$ and $K_n(C_{2^t} \times C_{p^s}) = \langle x^{2^n} \rangle \times \langle y \rangle$ for $t \geq n+1$. Hence $xy \in (C_{2^t} \times C_{p^s}) - K_n(C_{2^t} \times C_{p^s})$. Consider $\alpha \in Aut(C_{2^t} \times C_{p^s})$ with $\alpha(x) = x$ and $\alpha(y) = y^2$. This shows that

$$[xy, \underbrace{\alpha, \dots, \alpha}_{n-1-times}] = y.$$

Clearly $\overline{cl(y)}$ has $\phi(p^s)$ elements but $yK_n(C_{2^t} \times C_{p^s}) - 1$ has $p^s - 1$ elements for $t \leq n$ and $2^{t-n}p^s - 1$ elements for $t \geq n+1$, which implies that the group $C_{2^t} \times C_{p^s}$ is not *n*-*A*-con-cos, for $t, s \geq 2$.

Next we investigate finite abelian 2-groups with two direct factors. Let

 $C_{2^t} \times C_{2^s} = \langle x, y \mid x^{2^t} = y^{2^s} = [x, y] = 1 \rangle,$

for natural numbers t, s. There are six cases:

Case 1: $t \ge 2$ and s = 1. It is easy to check that the group $C_4 \times C_2$ is 2-A-con-cos. Also $K_n(C_4 \times C_2) = 1$, for $n \ge 3$. So the group $C_4 \times C_2$ is *n*-A-con-cos. The group $C_{2^t} \times C_2$ is *n*-A-con-cos, for $3 \le t \le n$, since $K_n(C_{2^t} \times C_2) = 1$. If t = n + 1, then $K_n(C_{2^{n+1}} \times C_2) = \langle x^{2^n} \rangle$. Clearly $C_8 \times C_2$ is 2-A-con-cos. For $n \ge 3$, $K_{n-1}(C_{2^{n+1}} \times C_2) = \langle x^{2^{n-1}} \rangle = \{1, x^{2^{n-1}}, x^{2^n}, x^{3\cdot 2^{n-1}}\}$. It is easy to check that $\{x^{2^{n-1}}, x^{3\cdot 2^{n-1}}\} = \overline{cl(x^{3\cdot 2^{n-1}})} = \overline{cl(x^{2^{n-1}})} = x^{2^{n-1}}K_n(C_{2^{n+1}} \times C_2) - 1$, and $\{x^{2^n}\} = \overline{cl(x^{2^n})} = x^{2^n}K_n(C_{2^{n+1}} \times C_2) - 1$. Thus the group $C_{2^{n+1}} \times C_2$ is *n*-A-con-cos.

If $t \ge n+2$, then $K_n(C_{2^t} \times C_2) = \langle x^{2^n} \rangle$. So $x \in (C_{2^t} \times C_2) - K_n(C_{2^t} \times C_2)$. Consider $\alpha, \beta \in Aut(C_{2^t} \times C_2)$ with $\alpha(x) = x^{2^{t-n+1}+1}$, $\alpha(y) = y$, $\beta(x) = x^3$ and $\beta(y) = y$. Thus

$$[x, \alpha, \underbrace{\beta, \dots, \beta}_{n-2-times}] = x^{2^{t-1}}$$

and $\overline{cl(x^{2^{t-1}})} = \{x^{2^{t-1}}\}$, but $x^{2^{t-1}}K_n(C_{2^t} \times C_2) - 1$ has $2^{t-n} - 1$ elements. Hence the group $C_{2^t} \times C_2$ is not *n*-*A*-con-cos, for $t \ge n+2$.

Case 2: t = s. By Theorem 3.1 (ii) of [2], $K_n(C_{2^t} \times C_{2^t}) = C_{2^t} \times C_{2^t}$. Hence the group $C_{2^t} \times C_{2^t}$ is not *n*-*A*-con-cos.

 $\begin{aligned} & \text{Case 3: } t > s \geq 2 \text{ and } t \leq n-1. \text{ If } t \geq s+2, \text{ then the group } C_{2^t} \times C_{2^s} \text{ is } n\text{-}A\text{-}\\ & \text{con-cos, since } K_n(C_{2^t} \times C_{2^s}) = 1. \text{ If } t = s+1 \text{ and } n \text{ is even, then by Corollary 3.2 of} \\ & [2], K_n(C_{2^t} \times C_{2^{t-1}}) = < x^{2^{\frac{n}{2}}} > \times < y^{2^{\frac{n}{2}}} > . \text{ If } \frac{n}{2} \geq t, \text{ then the group } C_{2^t} \times C_{2^{t-1}} \text{ is} \\ & n\text{-}A\text{-con-cos, since } K_n(C_{2^t} \times C_{2^{t-1}}) = 1. \text{ For } \frac{n}{2} = t-1, K_n(C_{2^t} \times C_{2^{t-1}}) = < x^{2^{t-1}} > \\ & \text{and } K_{n-1}(C_{2^t} \times C_{2^{t-1}}) = < x^{2^{t-1}} > \times < y^{2^{t-2}} > = \{1, x^{2^{t-1}}, y^{2^{t-2}}, x^{2^{t-1}}y^{2^{t-2}}\}. \\ & \text{Clearly } \{x^{2^{t-1}}\} = \overline{cl(x^{2^{t-1}})} = x^{2^{t-1}}K_n(C_{2^t} \times C_{2^{t-1}}) - 1, \text{ and } \{x^{2^{t-1}}y^{2^{t-2}}, y^{2^{t-2}}\} \\ & = \overline{cl(x^{2^{t-1}}y^{2^{t-2}})} = \overline{cl(y^{2^{t-2}})} = y^{2^{t-2}}K_n(C_{2^t} \times C_{2^{t-1}}) - 1, \text{ which implies that if } n \\ & \text{is even and } \frac{n}{2} = t-1 = s \geq 2, \text{ then the group } C_{2^t} \times C_{2^s} \text{ is } n\text{-}A\text{-con-cos.} \end{aligned}$

Next we investigate the group $C_{2^t} \times C_{2^s}$ for $\frac{n}{2} < t-1$ and t = n-1. Note that $x \in (C_{2^{n-1}} \times C_{2^{n-2}}) - K_n(C_{2^{n-1}} \times C_{2^{n-2}})$. Consider the automorphisms α , β , γ of $C_{2^{n-1}} \times C_{2^{n-2}}$ with $\alpha(x) = x^3$, $\alpha(y) = y$, $\beta(x) = xy$, $\beta(y) = y$, $\gamma(x) = x$ and $\gamma(y) = x^2y$. Thus

$$[x, \underbrace{\alpha, \dots, \alpha}_{n-3-times}, \beta, \gamma] = x^{2^{n-2}}$$

It is obvious that $\overline{cl(x^{2^{n-2}})} = \{x^{2^{n-2}}\}$ but $x^{2^{n-2}}K_n(C_{2^{n-1}}\times C_{2^{n-2}})-1 = K_n(C_{2^{n-1}}\times C_{2^{n-2}})-1$ has $2^{n-3}-1$ elements. Hence this group is not n-A-con-cos. Similarity, we can show that the group $C_{2^t}\times C_{2^s}$ is not n-A-con-cos, for $\frac{n}{2} < t-1$ and t < n-1. If t = s + 1 and n is odd, then $K_n(C_{2^t} \times C_{2^{t-1}}) = \langle x^{2^{\frac{n+1}{2}}} \rangle \times \langle y^{2^{\frac{n-1}{2}}} \rangle$. For $\frac{n+1}{2} \ge t$, we have $\frac{n-1}{2} \ge t-1$ and so the group $C_{2^t} \times C_{2^{t-1}}$ is n-A-con-cos, since $K_n(C_{2^t} \times C_{2^{t-1}}) = 1$. If $\frac{n+1}{2} < t$ and t = n - 1, then we have $x \in (C_{2^{n-1}} \times C_{2^{n-2}}) - K_n(C_{2^{n-1}} \times C_{2^{n-2}})$. Consider the automorphisms α, β, γ of $C_{2^{n-1}} \times C_{2^{n-2}}$ with

$$\alpha(x) = x^3, \ \ \alpha(y) = y, \ \ \beta(x) = xy, \ \ \beta(y) = y, \ \ \gamma(x) = x, \ \ \gamma(y) = x^2y.$$

It is easy to check that

$$\overline{cl([x, \alpha, \dots, \alpha], \beta, \gamma])} \neq [x, \alpha, \dots, \alpha] \xrightarrow{\alpha, \dots, \alpha} \beta, \gamma] K_n(C_{2^{n-1}} \times C_{2^{n-2}}) - 1.$$

Therefore this group is not *n*-*A*-con-cos. By a similar argument it can be shown that the group $C_{2^t} \times C_{2^{t-1}}$ is not *n*-*A*-con-cos, for $\frac{n+1}{2} < t$ and t < n-1.

Case 4: $t > s \ge 2$ and t = n. If $t \ge s + 2$, then the group $C_{2^n} \times C_{2^s}$ is *n*-*A*-con-cos, since $K_n(C_{2^n} \times C_{2^s}) = 1$. If t = s + 1 and *n* is even, then $C_{2^n} \times C_{2^{n-1}}$ is not *n*-*A*-con-cos, since $K_n(C_{2^n} \times C_{2^{n-1}}) = \langle x^{2^{\frac{n}{2}}} \rangle \times \langle y^{2^{\frac{n}{2}}} \rangle$. Thus $x \in (C_{2^n} \times C_{2^{n-1}}) - K_n(C_{2^n} \times C_{2^{n-1}})$ and for the automorphism α of $C_{2^n} \times C_{2^{n-1}}$ with $\alpha(x) = x^3$ and $\alpha(y) = y$,

$$[x, \underbrace{\alpha, \dots, \alpha}_{n-1-times}] = x^{2^{n-1}}$$

and $\overline{cl(x^{2^{n-1}})} = \{x^{2^{n-1}}\}$ but $x^{2^{n-1}}K_n(C_{2^n} \times C_{2^{n-1}}) - 1$ has $2^{n-1} - 1$ elements. If t = s + 1 and n is odd, then $C_{2^n} \times C_{2^{n-1}}$ is not n-A-con-cos, since $K_n(C_{2^n} \times C_{2^{n-1}}) = \langle x^{2^{\frac{n+1}{2}}} \rangle \times \langle y^{2^{\frac{n-1}{2}}} \rangle$ and $x \in (C_{2^n} \times C_{2^{n-1}}) - K_n(C_{2^n} \times C_{2^{n-1}})$. Consider $\alpha \in Aut(C_{2^n} \times C_{2^{n-1}})$ with $\alpha(x) = x^3$, $\alpha(y) = y$. Clearly

$$\overline{cl([x, \alpha, \dots, \alpha])} \neq [x, \alpha, \dots, \alpha] = [K_n(C_{2^n} \times C_{2^{n-1}}) - 1.$$

Case 5: $t > s \ge 2$ and t = n+1. If $t \ge s+2$, then $K_n(C_{2^{n+1}} \times C_{2^s}) = \langle x^{2^n} \rangle$. By assumption $n-2 \ge s-1$. If n-2 = s-1, then

$$K_{n-1}(C_{2^{n+1}} \times C_{2^s}) = \langle x^{2^{n-1}} \rangle \times \langle y^{2^{n-2}} \rangle,$$

and if $n-2 \ge s$, then $K_{n-1}(C_{2^{n+1}} \times C_{2^s}) = \langle x^{2^{n-1}} \rangle$. In two cases for every $a \in K_{n-1}(C_{2^{n+1}} \times C_{2^s}) - 1$ we have $\overline{cl(a)} = aK_n(C_{2^{n+1}} \times C_{2^s}) - 1$, and it shows that the group $C_{2^t} \times C_{2^s}$ is *n*-*A*-con-cos, for t = n+1 and $t \ge s+2 \ge 4$.

Next we investigate the group $C_{2^{n+1}} \times C_{2^n}$, for t = s + 1. We have

$$K_n(C_{2^{n+1}} \times C_{2^n}) = \langle x^{2^{\lfloor \frac{n+1}{2} \rfloor}} \rangle \times \langle y^{2^{\lfloor \frac{n}{2} \rfloor}} \rangle.$$

Thus $x \in (C_{2^{n+1}} \times C_{2^n}) - K_n(C_{2^{n+1}} \times C_{2^n})$. Consider $\alpha, \beta \in Aut(C_{2^{n+1}} \times C_{2^n})$ with $\alpha(x) = x^5$, $\alpha(y) = y$, $\beta(x) = x^3$ and $\beta(y) = y$. We have

$$\overline{cl([x,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}])} \neq [x,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}]K_n(C_{2^{n+1}} \times C_{2^n}) - 1,$$

which implies that this group is not n-A-con-cos.

Case 6: $t > s \ge 2$ and $t \ge n+2$. If $t \ge s+2$, then $K_n(C_{2^t} \times C_{2^s}) = \langle x^{2^n} \rangle$ $\times \langle y^{2^{n-1}} \rangle$. So $x \in (C_{2^t} \times C_{2^s}) - K_n(C_{2^t} \times C_{2^s})$. Consider $\alpha, \beta \in Aut(C_{2^t} \times C_{2^s})$ with $\alpha(x) = x^{2^{t-n+1}+1}$, $\alpha(y) = y$, $\beta(x) = x^3$ and $\beta(y) = y$. Then

$$[x, \alpha, \underbrace{\beta, \dots, \beta}_{n-2-times}] = x^{2^{t-1}}$$

and $\overline{cl(x^{2^{t-1}})} = \{x^{2^{t-1}}\}$. On the other hand, $x^{2^{t-1}}K_n(C_{2^t} \times C_{2^s}) - 1$ bas $2^{t+s-2n+1} - 1$ elements if s > n-1 and has $2^{t-n} - 1$ elements if $s \le n-1$, which implies that

$$\overline{cl([x,\alpha, \underbrace{\beta,\ldots,\beta}_{n-2-times}])} \neq [x,\alpha, \underbrace{\beta,\ldots,\beta}_{n-2-times}]K_n(C_{2^t} \times C_{2^s}) - 1.$$

Hence the group $C_{2^t} \times C_{2^s}$ is not *n*-*A*-con-cos, for $t \ge s + 2 \ge 4$ and $t \ge n + 2$. If t = s + 1, then a similar argument as above shows that the group $C_{2^t} \times C_{2^s}$ is not *n*-*A*-con-cos. This completes the proof.

In following theorem, we investigate some dihedral groups.

Theorem 2.5. Let m, n be natural numbers, where m has at most two prime factors and $n \ge 2$. Then the dihedral group D_{2m} is n-A-con-cos if $m = 2^{t-1}$, for natural number $t, 3 \le t \le n+1$, or m = p or $m = 2^t p$, for odd prime number p and natural number t, where $1 \le t \le n-2$.

Proof. Let $D_{2m} = \langle x, y \mid x^m = y^2 = (xy)^2 = 1 \rangle$ be the dihedral group of order 2m. At first we assume that $m = 2^{t-1}$, where t is a natural number and $t \geq 2$. Clearly the group $D_4 = C_2 \times C_2$ is not n-A-con-cos. If $3 \leq t \leq n-1$, then the group D_{2^t} is n-A-con-cos, since by Theorem 1.1 of [2], $K_t(D_{2^t}) = \langle x^{2^{t-1}} \rangle = 1$ and $K_n(D_{2^t}) \subseteq K_t(D_{2^t})$. If t = n and $n \geq 3$, then D_{2^n} is A-nilpotent and $K_n(D_{2^n}) = 1$. Hence by Theorem 2.3, the group D_{2^n} is n-A-con-cos, for $n \geq 3$. If t = n + 1, then $K_n(D_{2^{n+1}}) = \langle x^{2^{n-1}} \rangle = \{1, x^{2^{n-1}}\}$ and $K_{n-1}(D_{2^{n+1}}) = \langle x^{2^{n-2}} \rangle = \{1, x^{2^{n-2}}, x^{2^{n-1}}, x^{3 \cdot 2^{n-2}}\}$. This implies that for every $g \in D_{2^{n+1}} - 2^{n-1}$.

 $K_n(D_{2^{n+1}})$ and $\alpha_1, \ldots, \alpha_{n-1} \in Aut(D_{2^{n+1}})$, where $[g, \alpha_1, \ldots, \alpha_{n-1}] \neq 1$ we have $[g, \alpha_1, \ldots, \alpha_{n-1}] \in \{x^{2^{n-2}}, x^{2^{n-1}}, x^{3 \cdot 2^{n-2}}\}$. Clearly

$$\{x^{2^{n-2}}, x^{3 \cdot 2^{n-2}}\} = \overline{cl(x^{2^{n-2}})} = \overline{cl(x^{3 \cdot 2^{n-2}})} = x^{2^{n-2}} K_n(D_{2^{n+1}}) - 1, \{x^{2^{n-1}}\} = \overline{cl(x^{2^{n-1}})} = x^{2^{n-1}} K_n(D_{2^{n+1}}) - 1,$$

which implies that the group $D_{2^{n+1}}$ is *n*-*A*-con-cos. If $t \ge n+2$, then $K_n(D_{2^t}) = \langle x^{2^{n-1}} \rangle$, and so $x \in D_{2^t} - K_n(D_{2^t})$. Consider $\alpha, \beta \in Aut(D_{2^t})$ with $\alpha(x) = x^{2^{t-n}+1}, \alpha(y) = y, \beta(x) = x^3$ and $\beta(y) = y$. Then

$$[x, \alpha, \underbrace{\beta, \dots, \beta}_{n-2-times}] = x^{2^{t-2}}$$

Clearly $\overline{cl(x^{2^{t-2}})} = \{x^{2^{t-2}}\}$. On the other hand, $x^{2^{t-2}}K_n(D_{2^t}) - 1 = \langle x^{2^{n-1}} \rangle - 1$ has $2^{t-n} - 1$ elements. Therefore,

$$\overline{cl([x,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}])} \neq [x,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}]K_n(D_{2^t}) - 1,$$

which implies that the group D_{2^t} is not *n*-*A*-con-cos, for $t \ge n+2$.

Next we investigate the case that $m = p^t$, for odd prime number p and natural number t. The group D_{2p} is n-A-con-cos, since by Theorem 1.1 of [2], $K_{n-1}(D_{2p}) =$ $K_n(D_{2p})$. Also $\langle x \rangle = 1 \cup cl(x)$, and hence the claim follows from Theorem 2.2. If $t \geq 2$, then $K_n(D_{2p^t}) = \langle x \rangle$, and therefore $y \in D_{2p^t} - K_n(D_{2p^t})$. Consider $\alpha, \beta \in Aut(D_{2p^t})$ with $\alpha(x) = x, \ \alpha(y) = x^{p^t - 1}y, \ \beta(x) = x^2$ and $\beta(y) = y$. Then

$$[y, \alpha, \underbrace{\beta, \dots, \beta}_{n-2-times}] = x$$

and cl(x) has $\phi(p^t)$ elements. On the other hand, $xK_n(D_{2p^t}) - 1 = \langle x \rangle - 1$ has $p^t - 1$ elements, since $t \ge 2$ and we have

$$\overline{cl([y,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}])} \neq [y,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}]K_n(D_{2p^t}) - 1.$$

Thus the group D_{2p^t} is not *n*-*A*-con-cos, for $t \ge 2$.

We now assume that m has two distinct prime factors. Let $m = p^t q^s$, where p, q are distinct odd prime numbers and t, s are natural numbers. Since $K_n(D_{2p^tq^s}) = <$ x >, $x^{p^tq^s-1}y \in D_{2p^tq^s} - K_n(D_{2p^tq^s})$. Consider the automorphisms α and β of $D_{2p^tq^s}$ with $\alpha(x) = x$, $\alpha(y) = x^{p^tq^s-1}y$, $\beta(x) = x^2$ and $\beta(y) = y$. It is easy to check that

$$\overline{cl([x^{p^tq^s-1}y,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}])} \neq [x^{p^tq^s-1}y,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}]K_n(D_{2p^tq^s}) - 1.$$

Hence the group $D_{2p^tq^s}$ is not *n*-*A*-con-cos.

Finally we investigate the group $D_{2^{t+1}p^s}$, where p is an odd prime number and t, s are natural numbers. We have the following three cases:

Case 1: $2 \le t+1 \le n-1$ and s = 1. In this case $K_{n-1}(D_{2^{t+1}p}) = K_n(D_{2^{t+1}p}) = \langle x^{2^{n-1}} \rangle = 1 \cup \overline{cl(x^{2^{n-1}})}$. So, by Theorem 2.2, the group $D_{2^{t+1}p}$ is *n*-*A*-con-cos, for $2 \le t+1 \le n-1$.

Case 2: $2 \le t + 1 \le n - 1$ and $s \ge 2$. Since $K_n(D_{2^{t+1}p^s}) = \langle x^{2^{n-1}} \rangle, y \in D_{2^{t+1}p^s} - K_n(D_{2^{t+1}p^s})$. Consider $\alpha, \beta \in Aut(D_{2^{t+1}p^s})$ with $\alpha(x) = x, \alpha(y) = xy$, $\beta(x) = x^{2^tp^s - 1}$ and $\beta(y) = y$. Thus

$$[y, \alpha, \underbrace{\beta, \dots, \beta}_{n-2-times}] = x^{(-1)^{n-1}2^{n-2}}.$$

If n is odd, then

$$[y, \alpha, \underbrace{\beta, \dots, \beta}_{n-2-times}] = x^{2^{n-2}}$$

and $\overline{cl(x^{2^{n-2}})}$ has $p^s - p^{s-1}$ elements but $x^{2^{n-2}}K_n(D_{2^{t+1}p^s}) - 1 = \langle x^{2^{n-1}} \rangle - 1$ has $p^s - 1$ elements. If n is even, then

$$[y, \alpha, \underbrace{\beta, \dots, \beta}_{n-2-times}] = x^{-2^{n-2}}$$

and $\overline{cl(x^{2^{n-2}})} = \overline{cl(x^{2^{n-2}})}$ has $p^s - p^{s-1}$ elements but $x^{-2^{n-2}}K_n(D_{2^{t+1}p^s}) - 1$ has $p^s - 1$ elements. Thus the group $D_{2^{t+1}p^s}$ is not *n*-*A*-con-cos, for $2 \le t+1 \le n-1$ and $s \ge 2$.

Case 3: $t+1 \ge n$ and $s \ge 1$. Since $K_n(D_{2^{t+1}p^s}) = \langle x^{2^{n-1}} \rangle$, $y \in D_{2^{t+1}p^s} - K_n(D_{2^{t+1}p^s})$. Consider the automorphisms α and β of $D_{2^{t+1}p^s}$ with $\alpha(x) = x$, $\alpha(y) = xy$, $\beta(x) = x^{2^tp^s-1}$ and $\beta(y) = y$. It is easy to check that

$$\overline{cl([y,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}])}$$

has $2^{t-n+1}p^{s-1}(p-1)$ elements but

$$[y, \alpha, \underbrace{\beta, \dots, \beta}_{n-2-times}]K_n(D_{2^{t+1}p^s}) - 1$$

has $2^{t-n+1}p^s$ elements. Therefore,

$$\overline{cl([y,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}])} \neq [y,\alpha,\underbrace{\beta,\ldots,\beta}_{n-2-times}]K_n(D_{2^{t+1}p^s}) - 1.$$

Hence the group $D_{2^{t+1}p^s}$ is not *n*-*A*-con-cos, for $t+1 \ge n$ and $s \ge 1$. This completes the proof.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication of this article.

References

- H. Arora and R. Karan, A note on autocamina groups, Note Math. 35 (2) (2015) 39 - 50.
- [2] A. Gholamian and M. M. Nasrabadi, On mth-autocommutator subgroup of finite abelian groups, J. Linear Topol. Algebra 5 (2) (2016) 135 – 144.
- [3] P. Hegarty, The absolute centre of a group, J. Algebra 169 (3) (1994) 929 935.
- [4] C. H. Li and C. E. Praeger, Finite groups in which any two elements of the same order are either fused or inverse-fused, *Comm. Algebra* 25 (10) (1997) 3081 - 3118.
- [5] M. R. R. Moghaddam, F. Parvaneh and M. Naghshineh, The lower autocentral series of abelian groups, Bull. Korean Math. Soc. 48 (1) (2011) 79 – 83.
- [6] M. M. Nasrabadi and A. Gholamian, On A-nilpotent abelian groups, Proc. Indian Acad. Sci. Math. Sci. 124 (4) (2014) 517 – 525.
- [7] F. Parvaneh, Some properties of autonilpotent groups, Ital. J. Pure Appl. Math. (35) (2015) 1 - 8.
- [8] F. Parvaneh and M. R. R. Moghaddam, Some properties of autosoluble groups, J. Math. Ext. 5 (1) (2010) 13 – 19.

Ahmad Gholami Department of Mathematics, Faculty of Science, University of Qom, Qom, I. R. Iran e-mail: a.gholami@qom.ac.ir

Fatemeh Mahmudi Department of Mathematics, Faculty of Science, University of Qom, Qom, I. R. Iran e-mail: mahmodi.fateme64@gmail.com