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Abstract
The deleted lexicographic product G[H] − nG of graphs G and H is

a graph with vertex set V (G) × V (H) and u = (u1, v1) is adjacent with
v = (u2, v2) whenever (u1 = u2 and v1 is adjacent with v2) or (v1 6= v2
and u1 is adjacent with u2). In this paper, we compute the exact values of
the Wiener, vertex PI and Zagreb indices of deleted lexicographic product
of graphs. Applications of our results under some examples are presented.
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1. Introduction
Throughout this paper all graphs considered are finite, simple and connected. The
distance dG(u, v) between the vertices u and v of a graph G is equal to the length
of a shortest path that connects u and v and the diameter of G is the greatest
distance between two vertices in G.

The lexicographic product was studied first by Felix Hausdorff in 1914 [9]
and then studied by Harary and Sabidussi. Feigenbaum and Schäffer [5] proved
that the complexity of testing whether an arbitrary graph can be written nontriv-
ially as the composition of two smaller graphs is the same, to within polynomial
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factors, as the complexity of testing whether two graphs are isomorphic. Frelih
and Miklavič [6] proposed another lexicographic-like product that is called the
deleted lexicographic product as follow:

For two graphs G and H with |V (H)| = n, the deleted lexicographic product
G[H] − nG of graphs G and H is a graph with vertex set V (G) × V (H) and
u = (u1, v1) is adjacent with v = (u2, v2) whenever (u1 = u2 and v1 is adjacent
with v2) or (v1 6= v2 and u1 is adjacent with u2), Figure 1.

Figure 1: The deleted lexicographic product of C2n and P2.

TheGraph invariants are parameters that are preserved under graph isomor-
phisms. However, they are not usually preserved under graph homomorphisms. A
topological index is a graph invariant applicable in chemistry.

The Wiener index, W, is the first topological index to be used in chemistry
[14]. In a graph theoretical language,

W(G) =
1

2

∑
u∈V (G)

∑
v∈V (G)

d(u, v).

We encourage the readers to consult [1–4] for more information on the Wiener
index.

Suppose G is a graph with vertex and edge sets V = V (G) and E = E(G),
respectively, and e = uv ∈ E(G). The set of vertices of G whose distance to the
vertex u is smaller than the distance to the vertex v is denoted by NG

u (e). The
vertex Padmakar-Ivan index of the graph G is defined as [10,11,13]

PIv(G) =
∑

e=uv∈E(G)

(
|NG

u (e)|+ |NG
v (e)|

)
.

The Zagreb indices have been introduced by Gutman and Trinajstić as
M1(G) =

∑
u∈V (G)(degG(u))2 and M2(G) =

∑
uv∈E(G) degG(u)degG(v), where

degG(u) denotes the degree of vertex u [7, 8, 12].
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Pn, Kn and Ln denote the path with n vertices, the complete graph with n
vertices and the ladder graph with 2n vertices, respectively. Our other notations
are standard and taken mainly from the standard books of graph theory.

2. Results
In this section, our main results are presented. We start by a simple lemma that
will be used later.

Lemma 2.1. Let G and H be two graphs with at least two vertices and W =
G[H]− nG. Then,

1. degW ((g, h)) = degH(h) + (|V (H)| − 1)degG(g),
2. If H has at least three vertices, then

dW ((g, h), (g′, h′)) =


1 if (g = g′, hh′ ∈ E(H)) or (gg′ ∈ E(G), h 6= h′),

2 if (g = g′, hh′ /∈ E(H)) or (gg′ ∈ E(G), h = h′),

dG(g, g′) if (gg′ /∈ E(G) and g 6= g′).

3. If H has exactly two vertices, then

dW ((g, h), (g
′
, h
′
)) =


1 if (g = g′) or (gg′ ∈ E(G), h 6= h′),
dG(g, g′) if (g 6= g′, h = h′, 2 | dG(g, g′)) or (g 6= g′, h 6= h′, 2 - dG(g, g′)),
dG(g, g′) + 1 if (g 6= g′, h 6= h′, 2 | dG(g, g′)) or (g 6= g′, h = h′, 2 - dG(g, g′)).

Proof. The first statement is easily obtained by the definition of deleted lexico-
graphic product. We prove the statements 2 and 3.
Let H be a graph with more than 2 vertices, and (g, h), (g′, h′) ∈ V (W ). The
first case of relation 2 is clear. Then we suppose g = g′ and hh′ /∈ E(H). In
this case, (g, h)(g′′, h′′)(g′, h′) is a ((g, h), (g′, h′))-path of length 2 in W where
gg′′ ∈ E(G) and h′′ /∈ {h, h′}. Thus, assume that gg′ ∈ E(G) and h = h′.
Therefore, (g, h)(g′, h′′)(g′, h′) is a ((g, h), (g′, h′))-path of length 2 in W where
hh′′ ∈ E(H).

Now we investigate the third case of relation 2. Suppose gg′ /∈ E(G) and
g 6= g′. Since G is a connected graph, then there is a (g, g′)-path gg1 . . . gkg′ in G.
If h = h′ and k is an even number, then (g, h)a1a2 . . . ak(g′, h′) is a ((g, h), (g′, h′))-
path of length dG(g, g′) in W where h′′, h′′′ ∈ V (H) \ {h}, h′′ 6= h′′′, and

ai =

{
(gi, h

′′) 2 - i
(gi, h

′′′) 2 | i

for 1 ≤ i ≤ k. Similarly, if h = h′ and k is an odd number, then (g, h)a1a2 . . . ak
(g′, h′) is a ((g, h), (g′, h′))-path of length dG(g, g′) in W where h′′ 6= h and

ai =

{
(gi, h

′′) 2 - i
(gi, h) 2 | i
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for 1 ≤ i ≤ k. By a similar argument, in the case that h 6= h′ and k is an even
number, (g, h)a1a2 . . . ak(g′, h′) is a ((g, h), (g′, h′))-path of length dG(g, g′) in W

where h′′ 6= h and ai =

{
(gi, h

′) 2 - i
(gi, h) 2 | i

for 1 ≤ i ≤ k. Similarly, if h 6= h′ and k

is an odd number, then (g, h)a1a2 . . . ak(g′, h′) is a ((g, h), (g′, h′))-path of length

dG(g, g′) in W where h′′ /∈ {h, h′} and ai =

{
(gi, h

′′) 2 - i
(gi, h) 2 | i

for 1 ≤ i ≤ k. This

completes the proof of the statement 2.

Now suppose that V (H) = {h, h′}. Consider two vertices (g, h) and (g′, h)
of W . Let gg1 . . . gkg′ be the shortest (g, g′)-path in G. If dG(g, g′) is an even
number (in other words, k is an odd number), then we have ((g, h), (g′, h))-path

(g, h)a1a2 . . . ak(g′, h) of length dG(g, g′) in W where ai =

{
(gi, h

′) 2 - i
(gi, h) 2 | i

for 1 ≤

i ≤ k. Note that if dG(g, g′) is an odd number, then (g, h)a1a2 . . . ak(g′, h′)(g′, h)

is a ((g, h), (g′, h))-path of length dG(g, g′) + 1 in W where ai =

{
(gi, h

′) 2 - i
(gi, h) 2 | i

for 1 ≤ i ≤ k. By a similar technique, we can prove the cases in which h 6= h′,
which completes the proof of the statement 3.

The next theorem gives a formula for the first Zagreb index of the deleted
lexicographic product of G and H in terms of their parameters.

Theorem 2.2. Let G and H be two graphs, then

M1(G[H]−nG) = M1(H)|V (G)|+M1(G)|V (H)|(|V (H)|−1)2+8|E(H)||E(G)|(|V (H)|−1).

Proof. By the definition of Zagreb index, and part (1) of Lemma 2.1,

M1(G[H]− nG) =
∑

(g,h)∈V (G[H]−nG)

(
degH(h) + (|V (H)| − 1)degG(g)

)2
=

∑
(g,h)∈V (G[H]−nG)

(
degH(h)

)2
+ (|V (H)| − 1)2

∑
(g,h)∈V (G[H]−nG)

(
degG(g)

)2
+ 2(|V (H)| − 1)

∑
(g,h)∈V (G[H]−nG)

degG(g)degH(h)

= M1(H)|V (G)|+M1(G)|V (H)|(|V (H)| − 1)2 + 8|E(H)||E(G)|(|V (H)| − 1).

This completes the proof.

The next theorem presents a formula for the second Zagreb index of the deleted
lexicographic product of G[H]− nG based on the parameters of G and H.
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Theorem 2.3. Let G and H be two graphs. Then

M2(G[H]− nG) = 2|E(G)|(|V (H)| − 1)M1(H) + |V (G)|M2(H) + |E(G)|(4|E(H)|2 −M1(H))

+ 3|E(H)|(|V (H)| − 1)2M1(G) + |V (H)|(|V (H)| − 1)3M2(G).

Proof. Let G and H be two graphs. For our convenience, we partition the edge
set of G[H]− nG into two subsets as follows:

E1 = {(g, h)(g′, h′) | g = g′ and hh′ ∈ E(H)},
E2 = {(g, h)(g′, h′) | h 6= h′ and gg′ ∈ E(G)}.

By the definition of M2,

M2(G[H]− nG) =
∑
E1

degG[H]−nG((g, h))degG[H]−nG((g′, h′))

+
∑
E2

degG[H]−nG((g, h))degG[H]−nG((g′, h′)).

On the other hand, by this fact that
∑

hh′∈E(H)

(
degH(h) + degH(h′)

)
= M1(H)

and Lemma 2.1,
∑

(g,h)(g,h′)∈E1

degG[H]−nG((g, h))degG[H]−nG((g, h
′
))

=
∑

(g,h)(g,h′)∈E1

(
degH(h) + (|V (H)| − 1)degG(g)

)(
degH(h

′
) + (|V (H)| − 1)degG(g)

)
=

∑
(g,h)(g,h′)∈E1

degH(h)degH(h
′
) + (|V (H)| − 1)

∑
(g,h)(g,h′)∈E1

degH(h)degG(g)

+ (|V (H)| − 1)
∑

(g,h)(g,h′)∈E1

degH(h
′
)degG(g) + (|V (H)| − 1)

2
∑

(g,h)(g,h′)∈E1

(
degG(g)

)2
=

∑
g∈V (G)

∑
hh′∈E(H)

degH(h)degH(h
′
) + (|V (H)| − 1)

∑
g∈V (G)

degG(g)
∑

hh′∈E(H)

degH(h)

+ (|V (H)| − 1)
∑

g∈V (G)

degG(g)
∑

hh′∈E(H)

degH(h
′
)

+ (|V (H)| − 1)
2
∑

g∈V (G)

∑
hh′∈E(H)

(
degG(g)

)2
= |V (G)|M2(H) + 2|E(G)|(|V (H)| − 1)M1(H) + |E(H)|(|V (H)| − 1)

2
M1(G).

Similarly,
∑
E2

degG[H]−nG((g, h))degG[H]−nG((g
′
, h
′
)) = |E(G)|(4|E(H)|2 −M1(H)) + 2|E(H)|(|V (H)| − 1)

2

×M1(G) + |V (H)|(|V (H)| − 1)
3
M2(G).

This completes the proof.
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Theorem 2.4. Let G and H be two graphs and |V (H)| ≥ 3. Then

W(G[H]− nG) = |V (H)|2(W(G)− |E(G)|) + |V (H)|(|V (H)| − 1)

× (|V (G)|+ |E(G)|) + 2|V (H)||E(G)| − |V (G)||E(H)|.

Proof. Let G and H be two graphs and |V (H)| ≥ 3. We define V1, V2 and V3 as
follows:

V1 = {{(g, h), (g′, h′)} ⊆ V (G[H]− nG) | g = g′},
V2 = {{(g, h), (g′, h′)} ⊆ V (G[H]− nG) | gg′ ∈ E(G)},
V3 = {{(g, h), (g′, h′)} ⊆ V (G[H]− nG) | gg′ /∈ E(G), g 6= g′}.

By Lemma 2.1,

W1 =
∑
V1

dG[H]−nG((g, h), (g′, h′)) = |V (G)||V (H)|(|V (H)| − 1)− |V (G)||E(H)|,

W2 =
∑
V2

dG[H]−nG((g, h), (g′, h′)) = |E(G)||V (H)|(|V (H)|+ 1),

W3 =
∑
V3

dG[H]−nG((g, h), (g′, h′)) = |V (H)|2W(G)− |V (H)|2|E(G)|.

By summation of W1,W2 and W3, the result can be proved.

By part 3 of Lemma 2.1, it is far from easy to obtain the exact value of
W(G[H] − nG) where |V (H)| = 2. However, in the next proposition we com-
pute this invariant only for the case G ∼= Ck which is an immediate corollary of
Lemma 2.1.

Proposition 2.5. For a cycle Ck, we have

W(Ck[P2]− 2Ck) =

{
4n2(n+ 1) if k = 2n,

4n3 + 10n2 + 2n− 1 if k = 2n+ 1.

It is not difficult to check that, if |V (H)| = 2, then W(G[H]−nG) = 4W(G) +
|V (G)|2.

Theorem 2.6. Let G and H be two graphs and |V (H)| ≥ 3. Then

PIv(G[H]− nG) = |V (G)|(M1(H)− 6tH) + 8|E(G)||E(H)|
+ |V (H)|(|V (H)| − 1)(2|E(G)| −M1(G) + 12tG)

− 4|E(G)||E(H)|(|V (H)| − 1) + |V (H)|2(|V (H)| − 1)PIv(G),

where tG and tH denote the number of triangles of G and H, respectively.
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Proof. For a graph G, let tG(gg′) denote the number of triangles containing edge
gg′ of G. So, by definition of deleted lexicographic product,

|N(gi,hl)((gi, hl)(gj , hk))| =



degH(hl) + degG(gi)− tH(hlhk) if i = j, hlhk ∈ E(H),

|V (H)||Ngi(gigj)| − degG(gi)

−degH(hk) + 2tG(gigj) + 2 if i 6= j, hlhk ∈ E(H),

|V (H)||Ngi(gigj)| − degG(gi)

−degH(hk) + 2tG(gigj) if i 6= j, hlhk /∈ E(H).

Therefore, PIv(G[H]− nG) = PI1 + PI2, where

PI1 =

|V (G)|∑
i=1

∑
hh′∈E(H)

(|N(gi,hl)((gi, hl)(gi, hk))|+ |N(gi,hk)((gi, hl)(gi, hk))|),

PI2 =
∑

gigj∈E(G)

∑
hl,hk∈V (H),l 6=k

(|N(gi,hl)((gi, hl)(gj , hk))|+ |N(gj ,hk)((gi, hl)(gj , hk))|).

We know that
∑
hlhk ∈ E(H)tH(hlhk) = 3tH because each triangle has three

edges, and so it is counted three times in computing tH . Also,
∑

hlhk

(
degH(hl) +

degH(hk)
)

= M1(H). Thus

PI1 =

|V (G)|∑
i=1

∑
hh′∈E(H)

((
degH(hl) + degG(gi)− tH(hlhk)

)
+
(
degH(hk) + degG(gi)− tH(hlhk)

))
=

|V (G)|∑
i=1

∑
hh′∈E(H)

(
degH(hl) + degH(hk)

)
+ 2

|V (G)|∑
i=1

∑
hh′∈E(H)

degG(gi)

− 2

|V (G)|∑
i=1

∑
hh′∈E(H)

tH(hlhk) = |(V (G)|(M1(H)− 6tH) + 4|E(H)||E(G)|.

Similarly,

PI2 = (2|E(G)| −M1(G) + 12tG)|V (H)|(|V (H)| − 1)

− 2|E(G)|(2|V (H)| − 2)|E(H)|
+ PIv(G)|V (H)|2(|V (H)| − 1) + 4|E(H)||E(G)|.

This completes the proof.

3. Applications
In this section, we apply our results presented in Section 2 for computing the
Wiener index, vertex Padmakar-Ivan index, and Zagreb indices of some well-known
graphs.
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Figure 2: The deleted lexicographic product of C4 and P2.

Example 3.1. By using M1(Cn) = M2(Cn) = 4n, M1(Pn) = 4n− 6, M2(P2) = 1
and M2(Pn) = 4(n − 2) for n > 2 [12] and applying Theorems 2.2 and 2.3, we
obtain the following formulas:

M1(Cm[Pn]− nCm) = mM1(Pn) + n(n− 1)2M1(Cm) + 8m(n− 1)2

= 4mn3 − 8mn+ 2m,

M2(Cm[Pn]− nCm) = 2m(n− 1)M1(Pn) +mM2(Pn) +m(4(n− 1)2 −M1(Pn))

+ 3(n− 1)3M1(Cm) + n(n− 1)3M2(Cm)

=

{
4m(n4 − 3n2 + n+ 1/2) if n > 2,

27m if n = 2.

On the other hand, by [15], we know W(Cm) =

{
m3

8 if 2 | m
m3−m

8 if 2 - m
. Then, by

Theorem 2.4, for n > 2 we have

W(Cm[Pn]− nCm)) =

{
n2m3

8 +mn2 −mn+m if 2 | m,
n2m3

8 + 7mn2

8 −mn+m if 2 - m.

Moreover, by [11], we have PIv(Pn) = n(n−1), PIv(Cm) =

{
m2 if 2 | m
m(m− 1) if 2 - m

.

Then, by Theorem 2.6, for n ≥ 3 we have

PIv(Cm[Pn]− nCm) =

{
n3m2 − n2m2 − 6n2m+ 22nm− 18m if 2 | m,
n3m2 − n2m2 −mn3 − 5mn2 + 22mn− 18m if 2 - m.

Example 3.2. The n-cube Qn, n ≥ 1, is the graph whose vertex set is the set of
all n-tuples of 0s and 1s, where two n-tuples are adjacent if they differ in precisely
one coordinate. Consider Q3 shown in Figure 2. This graph is isomorphic to
C4[P2]− 2C4. By the previous results, we have

M1(Q3) = 72, M2(Q3) = 108,W(Q3) = 48.
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Figure 3: Ln = Pn[P2]− 2Pn.

Example 3.3. Consider the ladder graph Ln shown in Figure 3. It is not difficult
to check that Ln is isomorphic to Pn[P2]− 2Pn. So, by Theorem 2.2,

M1(Pn[P2]− 2Pn) = 2n+ 2(4n− 6) + 8(n− 1) = 18n− 20.

Morover, by the previous results and this fact that M2(P2) = 1 and M2(Pn) =
4n − 8, we have M2(Pn[P2] − 2Pn) = 4(n − 1) + n + 4n − 6 + 2(n − 1) + 2(4n −
6) + 2(4n− 8) = 27n− 40.

Figure 4: Octahedron graph Γ.

Example 3.4. Consider the octahedron graph Γ shown in Figure 4. This graph
is isomorphic to P2[C3]− 3P2. So, by Theorem 2.4,

W(P2[C3]− 3P2) = 18.

Also, by Theorem 2.6 we have

PIv(Γ) = PIv(P2[C3]− 3P2) = |V (P2)|(M1(C3)− 6tC3) + 8|E(P2)||E(C3)|
+ |V (C3)|(|V (C3)| − 1)(2|E(P2)| −M1(P2) + 12tP2) (1)
− 4|E(P2)||E(C3)|(|V (C3)| − 1)

+ |V (C3)|2(|V (C3)| − 1)PIv(P2).

Then, by replacing M1(C3) = 12, M1(P2) = 2, tC3
= 1 and tP2

= 0 in relation
(1), PIv(Γ) = 48.
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