Best Proximity Point Theorems for Ciric Type G-Contractions in Metric Spaces with a Graph

Document Type: Original Scientific Paper

Authors

Department of Mathematics, Payam Noor University, Tehran, Iran

10.22052/mir.2019.187067.1135

Abstract

In this paper, we aim to introduce Ciric type G-contractions using directed graphs in metric spaces and then to investigate the existence and uniqueness of best proximity points for them. We also discuss the main theorem and list some consequences of it.

Keywords


[1] S. M. A. Aleomraninejad, Sh. Rezapour and N. Shahzad, Some fixed point
results on a metric space with a graph, Topology Appl. 159 (2012) 659-663.
[2] M. I. Ayari, Best proximity point theorems for generalized - -proximal quasicontractive
mappings, Fixed Point Theory Appl. 2017 (2017) 13 pp.
[3] M. I. Ayari, M. Berzig and I. Kédim, Coincidence and common fixed point
results for -quasi contractive mappings on metric spaces endowed with binary
relation, Math. Sci. 10 (2016) 105 - 114.
[4] S. S. Basha, Discrete optimization in partially ordered sets, J. Global Optim.
54 (2012) 511 - 517.
[5] S. Basha, Best proximity point theorems in the frameworks of fairly and
proximally complete spaces, J. Fixed Point Theory Appl. 19 (2017) 1939 -
1951.
[6] S. S. Basha, N. Shahzad and C. Vetro, Best proximity point theorems for
proximal cyclic contractions, J. Fixed Point Theory Appl. 19 (2017) 2647 -
2661.
[7] F. Bojor, Fixed points of Kannan mappings in metric spaces endowed with a
graph, An. Stiinµ. Univ. “Ovidius" Constanµa Ser. Mat. 20 (2012) 31 - 40.
[8] F. Bojor, Fixed point theorems for Reich type contractions on a metric spaces
with a graph, Nonlinear Anal. 75 (2012) 3895 - 3901.

[9] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
[10] C. Chifu and G. Petrusel, Generalized contractions in metric spaces endowed
with a graph, J. Fixed Point Theory Appl. 2012 (2012) 9 pp.

[11] Lj. B. Ciric, On contraction type mappings, Math. Balkanica. 1 (1971) 52-57.
[12] Lj. B. Ciric, A generalization of Banach’s contraction principle, Proc. Amer.
Math. Soc. 45 (1974) 267 - 273.
[13] M. Gabeleh and N. Shahzad, Best proximity points, cyclic Kannan maps and
geodesic metric spaces, J. Fixed Point Theory Appl. 18 (2016) 167 - 188.
[14] J. Jachymski, The contraction principle for mappings on a metric space with
a graph, Proc. Amer. Math. Soc. 136 (2008) 1359 - 1373.
[15] V. S. Raj, A best proximity point theorem for weakly contractive non-selfmappings,
Nonlinear Anal. 74 (2011) 4804 - 4808.
[16] V. S. Raj, Best proximity point theorems for non-self mappings, J. Fixed
Point Theory Appl. 14 (2013) 447 - 454.
[17] A. Sultana and V. Vetrivel, Best proximity points of contractive mappings on
a metric space with a graph and applications, Appl. Gen. Topol. 18 (2017)
13 - 21.


Volume 4, Issue 2
Special Issue: Spectral Graph Theory and Mathematical Chemistry with Connection to Computer Science
Autumn 2019
Pages 293-304