DE Sinc-Collocation Method for Solving a Class of Second-Order Nonlinear BVPs

Document Type: Original Scientific Paper

Authors

1 Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Kashan Kashan, Iran

2 Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran

10.22052/mir.2020.220050.1195

Abstract

In this work, we develop the Sinc-collocation method coupled with a
Double exponential transformation for solving a special class of nonlinear
second order multi-point boundary value problems (MBVP). This method
attains a convergence rate of exponential order. Four numerical examples are
also examined to demonstrate the efficiency and functionality of the newly
proposed approach.

Keywords


[1] E. Babolian, A. Eftekhari and A. Saadatmandi, A Sinc-Galerkin technique for the numerical solution of a class of singular boundary value problems, Comput. Appl. Math. 34 (1) (2015) 45 − 63.
[2] F. A. Costabile and A. Napoli, A class of Birkhoff-Lagrange-collocation meth-ods for high order boundary value problems, Appl. Numer. Math. 116 (2017) 129 − 140.
[3] F. A. Costabile and A. Napoli, A method for high-order multipoint boundary value problems with Birkhoff-type conditions, Int. J. Comput. Math. 92(1) (2015) 192 − 200.
[4] A. Eftekhari, Double exponential Euler-Sinc collocation method for a time-fractional convection-diffusion equation, Facta Univ. Ser. Math. Inform. 34
(4) (2019) 745 − 753.
[5] M. El-Gamel and A. Abdrabou, Sinc-Galerkin solution to eighth-order boundary value problems, SeMA 76 (2019) 249 − 270.
[6] F. Geng and M. Cui: Multi-point boundary value problem for optimal bridgedesign, Int. J. Comput. Math. 87 (5) (2010) 1051 − 1056.
[7] M. Mori, Discovery of the Double Exponential Transformation and Its Developments, Publ. RIMS Kyoto Univ. 41 (2005) 897 − 935.
[8] T. Okayama, Theoretical analysis of a Sinc-Nyström method for Volterra integro-differential equations and its improvement, Appl. Math. Comput. 324 (2018) 1 − 15.
[9] A. Saadatmandi and M. Dehghan, The use of sinc-collocation method for solving multi-point boundary value problems, Commun. Nonlinear Sci. Numer. Simul. 17 (2) (2012) 593 − 601.
[10] A. Saadatmandi, A Ghasemi-Nasrabady and A Eftekhari, Numerical study of singular fractional Lane Emden type equations arising in astrophysics, J. Astrophys. Astron. 40 (2019) 27. DOI: 10.1007/s12036-019-9587-0.
[11] F. Stenger, Handbook of sinc Numerical Methods, CRC Press, Boca Raton, 2011.

[12] M. Sugihara and T. Matsuo, Recent developments of the sinc numerical methods, J. Comput. Appl. Math. 164 (2004) 673 − 689.
[13] K. Tanaka, M. Sugihara and K. Murota, Function classes for successful DE Sinc approximations, Math. Comput. 78(267) (2009) 1553 − 1571.
[14] Y. M. Wang, On 2nth-order nonlinear multi-point boundary value problems, Math. Comput. Modelling 51 (2010) 1251 − 1259.
[15] Y. M. Wang, W. J. Wu and M. Scalia Numerov’s method for a class of non-linear multipoint boundary value problems, Math. Probl. Eng. (2012) 316852, 29 pp.
[16] Y. K. Zou, Q. W. Hu and R. Zhang, On the numerical studies of multi-point boundary value problem and its fold bifurcation, Appl. Math. Comput. 185 (1) (2007) 527 − 537.