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On L(d, 1)-labelling of Trees

Irena Hrastnik Ladinek and Janez Žerovnik ⋆

Abstract

Given a graph G and a positive integer d, an L(d, 1)-labelling of G is a
function f that assigns to each vertex of G a non-negative integer such that
if two vertices u and v are adjacent, then |f(u) − f(v)| ≥ d and if u and
v are at distance two, then |f(u) − f(v)| ≥ 1. The L(d, 1)-number of G,
λd(G), is the minimum m such that there is an L(d, 1)-labelling of G with
f(V ) ⊆ {0, 1, . . . ,m}. A tree T is of type 1 if λd(T ) = ∆ + d − 1 and is
of type 2 if λd(T ) ≥ ∆ + d. This paper provides sufficient conditions for
λd(T ) = ∆ + d − 1 generalizing the results of Wang [11] and Zhai, Lu, and
Shu [12] for L(2, 1)-labelling.
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1. Introduction

For given positive integers h ≥ k, an L(h, k)-labelling of a graph G is a function
f : V (G) → {0, 1, 2, . . . } such that |f(u) − f(v)| ≥ h when dG(u, v) = 1 and
|f(u)−f(v)| ≥ k when dG(u, v) = 2. It has been shown that λh,k(G) ≥ h+(∆−1)k
for any graph G, where ∆ is the maximum degree of G. The graphs achieving
this bound are called λh,k-minimal. For convenience, we usually write λd for
λd,1. In [3], it was also proved that if T is a tree, then ∆ + d − 1 ≤ λd(T ) ≤
min{∆+ 2d− 2, 2∆ + d− 2}. The upper bound has been improved in [6]. In [9],
alternative upper and lower bounds for λh,k(T ) are provided by introducing a new
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relevant parameter, M(T ), the maximum ordering-degree. For further results and
references we refer to the survey [1] and to more recent publications, c.f. [13].

Trees with minimal λh,k are said to be of type 1, and all other trees are of
type 2. For a decade, characterization of type 1 and type 2 trees has been an
open problem [7], until a characterization for the general L(h, k)-labelling was
provided by Chang and Lu [4] who showed that any type 1 tree must be a subtree
of certain constructed (usually) infinite tree T∆ which is defined using the so
called ∆-sequences. Chang and Lu [4] also provided a polynomial algorithm for
computing λd thus deciding whether a tree is of type 1. The approach has been
further generalized in [8], resulting in a classification of c class trees, i.e. trees
with λd(T ) = ∆ + d + c − 2 (c = 1, 2, . . . ,min{d,∆}), by proving that these
trees are subtrees of certain structures. However, as observed by Jonck et al.
[8], the classifications still do not tell us nicely how these trees "look like" and
therefore, they use their techniques to find a few necessary conditions for a tree
to be λ2,1-minimal. In this paper, we provide some new sufficient conditions that
may shed some light to the structure of type 1 trees from other perspective. We
focus on L(d, 1)-labelling of trees. Our theorems are extending the known results
for L(2, 1)-labeling from [11, 12].

The rest of the paper is organized as follows. In the next section we provide
the basic definitions and some preliminary observations that are needed for the
outline of our results that follow in Section 3. The proofs of the theorems given in
Section 3 are provided in Section 4 (case d ≤ ∆ − 1, Theorem 1 ) and in Section
5 (case d ≥ ∆, Theorems 2 and 3).

2. Preliminaries

A finite, simple and undirected graph G = (V (G), E(G)) is given by a set of
vertices V (G) and a set of edges E(G). A uv-path is a path between vertices u
and v. The distance dG(u, v), or briefly d(u, v), between vertices u and v is the
length of a shortest uv-path in G. For a vertex v ∈ V (G), Nk

G(v) = {u | u ∈ V (G)
and dG(u, v) = k} denote the vertices at distance k from v. As usual, closed
neighborhoods are denoted by Nk

G[v] = {u | u ∈ V (G) and dG(u, v) ≤ k}. So, for
example N1

G[v] = N1
G(v) ∪ {v}. Furthermore, dG(v) stands for the degree of v in

G. A vertex of degree k is called a k-vertex.
Trees are connected graphs without cycles. In a tree, a leaf is a 1-vertex. For

convenience, where no confusion is possible, we will write ∆, λd, N
k(v), Nk[v], d(v)

and d(u, v) for ∆(T ), λd(T ), N
k
T (v), N

k
T [v], dT (v) and dT (u, v), respectively. A ma-

jor handle is a ∆-vertex adjacent to exactly one vertex of degree greater than
one. A weak major handle is a ∆-vertex adjacent to exactly two vertices of degree
greater than one. A subtree T1 of T is called a ∆-subtree if ∆(T1) = ∆(T ).

A star S∆, or briefly S, with center x is a tree that consists of a ∆-vertex x
and ∆ leaves. A proper double star dS∆, or briefly dS, with center {x, y} is a tree
with exactly two adjacent ∆-vertices (x and y) and all other vertices are leaves.
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Note [4] that a proper double star can be obtained by identifying a leaf of one
star with the center of another star. A double star is a tree which is either a star
or a proper double star. Let S∆ be a star with center x. Join at most ∆−2 leaves
to each u ∈ N1(x). The resulting tree we call a generalized star gS∆ (briefly gS)
with center x. Similarly, a generalized double star gdS∆ (briefly gdS) with center
{x, y} is defined as follows: join at most ∆− 2 leaves to each u ∈ N1(x) \ {y} and
at most ∆ − 2 leaves to each u ∈ N1(y) \ {x}. We will consider the generalized
stars and generalized double stars as induced subgraphs of a tree. Examples of a
generalized star and a generalized double star are shown in Figure 1(a,b). In both
examples, the number of leaves drawn is maximal.

Figure 1: (a) A generalized star. (b) A generalized double star. (c) A tree with
the path between ∆-vertices of length 2.

In particular, we will be interested in distances among the ∆-vertices and will
denote D∆(T ) = {dT (u, v) | u, v are two distinct ∆-vertices}, briefly D∆.

Let T be a tree with ∆ ≥ 4 and 2 ̸∈ D∆. Let x and y be adjacent ∆-vertices.
The subtree of T induced on vertices N2[x]∪N2(y) is isomorphic to the gdS with
{x, y} as its center. If x is not adjacent to any ∆-vertex, then the subtree of T
induced on vertices N2[x] is isomorphic to the gS with center x.

Furthermore, we will need the notion of distance between generalized double
stars which is defined as the distance between their closest centers, i.e. the dis-
tance between the nearest ∆-vertices, each of them belonging to one of the two
generalized double stars. If the path between such ∆-vertices does not contain a
∆-vertex, then the generalized double stars are adjacent. (Recall that in a tree,
any path between a pair of vertices is also the unique shortest path between them.)

We conclude the section with several easily proven facts. For completeness, we
provide brief arguments. First note that it is easy to construct a L(1, 1)-labelling
of a tree with ∆+1 labels {0, 1, . . . ,∆}. Choose any vertex as a root and proceed
in, say, the breadth first search order. At each vertex v, there is only one label
used for its father u, and one label for the grandfather of v. There are at most
∆− 2 other neighbors of u, and hence all sons of u can be properly labelled (with
distinct labels). Thus we have
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Fact 2.1. Let T be a tree with ∆ ≥ 2. There is a L(1, 1)-labelling of T with ∆+1
labels, so T is of type 1.

Similarly, it is also easy to construct a L(0, 1)-labelling of a tree with ∆ labels
{0, 1, . . . ,∆ − 1}, just using the fact that, when needed, one of the sons may use
the label of the father.

Fact 2.2. Let T be a tree with ∆ ≥ 2. There is a L(0, 1)-labelling of T with ∆
labels, so T is of type 1.

Therefore, the case d ∈ {0, 1} is trivial in our context, and we may restrict our
attention only to labelling trees with d > 1.

We conclude the section with two examples, showing that in a type 1 tree (1)
there may be some restrictions of degrees for vertices that are not of maximum
degree, and also (2) the vertices of maximum degree cannot be at certain distances.

Before writing these two examples, let us recall the following lemma which
appeared in [3].

Lemma 2.3. [3] If G is a graph of maximum degree ∆ ≥ 1, then λd(G) ≥ ∆+d−1.
Moreover, if λd(G) = ∆+ d− 1 and d ≥ 2, then f(x) = 0 or f(x) = ∆+ d− 1 for
any λd-labelling of G and any ∆-vertex x; consequently, it is impossible to have
a set of three ∆-vertices such that any two of them are of distance at most two
apart.

For convenience, we denote B = {0, 1, 2, . . . ,∆+d−1} and use this set of labels
in (∆ + d− 1)-labellings unless stated explicitly otherwise.

Example 2.4. Consider the generalized star of degree 5 from Figure 1a) and let
d = 3. By Lemma 2.3, in a type 1 tree, in any L(d, 1)-labelling with λd(T ) + 1
labels, the ∆-vertices must be assigned either label 0 or d + ∆ − 1. If we assign
the label 0 to the center, then the neighbors will be assigned labels 3, 4, 5, 6, 7.
However, there are not enough labels for labelling all the leaves. In particular,
consider the leaves adjacent to the vertex just labelled with 3, and observe that
we can use only 6 and 7, thus we can not label all its three leaves. Analogous
reasoning applies when using d+∆− 1 at the central vertex. We conclude that a
generalized star is of type 1 only subject to some conditions on the number (and
distribution) of leaves.

Example 2.5. Consider the graph on Figure 1c). Maximum degree is ∆ = 4 and
there are two ∆-vertices, at distance two. Let d = 4. Clearly, the two ∆-vertices
may not receive the same label as they are at distance two, and, on the other hand
they can not get 0 and 7, because then their common neighbor can not be properly
labelled. Thus, the tree is not of type 1 in this case.

Consideration of similar examples in which the path between the ∆-vertices
is longer shows that the labelings can be constructed when the distance between
the ∆-vertices is at least five. We conclude that certain conditions may apply on
allowed distances among the ∆ vertices in type 1 trees.
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3. Our Results

Before stating the main results of the paper, let us recall briefly the previously
known results for L(2, 1)-labelling. Wang [11] has shown that λ2(T ) = ∆ + 1 for
a tree T with ∆ ≥ 3 and 1, 2, 4 /∈ D∆. An improved condition was provided in
[12]. Zhai, Lu, and Shu have shown that λ2(T ) = ∆ + 1 for (1) trees with ∆ ≥ 5
and 2, 4 /∈ D∆ and (2) trees with ∆ = 3, 4 and 2, 4 /∈ D∆ with some additional
conditions. They also construct trees with ∆ = 3, 4 and 2, 4 /∈ D∆ that are not of
type 1.

It appears that a generalization of these results to L(d, 1)-labelling is far from
trivial. In this communication, we give sufficient conditions for a tree T to be of
type 1. We prove the next theorems:

Theorem 3.1. Let T be a tree for which 2, 4 /∈ D∆ and d(x) ≤ ∆− d+ 1 if x is
not a ∆-vertex of T .

1. If ∆ ≥ 5 and d ≤ ∆− 2, then λd = ∆+ d− 1.

2. If ∆ ≥ 4 and d = ∆− 1, then λd = ∆+ d− 1.

Theorem 3.2. Let T be a tree with ∆ ≥ 4 and d ≥ ∆. Let each induced ∆-
subtree of T that is isomorphic to gdS, be of type 1 and let each pair of such
subtrees be at distance more than 7. Let d(x) ≤ 2 when x is not a vertex of gdS.
Then λd = ∆+ d− 1.

Theorem 3.3. Let T be a tree with ∆ ≥ 5 and d ≥ ∆. If 2, 3 /∈ D∆, d(x) ≤ 2 when
x is not a ∆-vertex and each ∆-vertex has at least one leaf, then λd = ∆+ d− 1.

4. Trees with d ≤ ∆− 1

Zhai, Lu, and Shu [12] improved the result of Wang [11] about the L(2, 1)-labelling
of trees. As a partial result in their work the next Lemma was given which will
also be used in the study of L(d, 1)-labelling.

Lemma 4.1. [12] Let T be a tree with ∆ ≥ 4 and 2, 4 /∈ D∆. If T is not a double
star, then T contains one of the following configurations:
(C1) A leaf v adjacent to a vertex u with d(u) < ∆.
(C2) A path x1x2x3x4 such that d(x2) = d(x3) = 2 and x1 is a major handle.
(C3) A path x1x2x3x4x5 such that d(x2) = d(x4) = 2, d(x3) = 3, x1 and another
neighbor y of x3 are major handles.
(C4) A path x1x2x3x4x5 such that d(x3) = d(x4) = 2, x1 is a major handle and
x2 is a weak major handle.

Proof of the next Lemma is analogous to the proof of Lemma 10 from [12].
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Figure 2: Configurations (C1) - (C7’).

Lemma 4.2. Let T be a tree with ∆ ≥ 3, 2, 4 /∈ D∆ and d(x) ≤ 2 if x is not a
∆-vertex. If T is not a double star and does not contain (C1), then T contains
one of the following configurations:
(C5) A path x1x2x3x4 such that d(x2) = d(x3) = 2, d(x4) = ∆ and x1 is a major
handle.
(C6) A path x1x2 . . . x6 such that d(xi) = 2 for i = 2, 3, 4, 5 and x1 is a major
handle.
(C7) A path x1x2 . . . x7 such that d(xi) = 2 for i = 3, 4, 5, 6, x1 is a major handle
and x2 is a weak major handle.

Proof. Suppose that T does not contain (C1), (C5) and (C6). We will prove that
T contains (C7). Let x0x1 . . . xn be a longest path in T . Because T does not
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contain (C1), x1 and xn−1 are both major handles. Since T is not a double star
and 2, 4 /∈ D∆, then either n = 5 or n ≥ 7.
If n = 5, then d(x4) = ∆ and thus d(x2) = d(x3) = 2. However, now T contains
(C5). If n = 7, then d(x6) = ∆ and thus d(xi) = 2 for i = 2, 3, 4, 5. Hence, T
contains (C6), a contradiction. Thus n ≥ 8. Since 2, 4 /∈ D∆ and d(x1) = ∆, then
d(x3) = d(x5) = 2. If d(x2) = 2, then T contains (C5) or (C6). Thus d(x2) = ∆.
Since 2, 4 /∈ D∆ and d(x2) = ∆, then d(x4) = d(x6) = 2.

Lemma 4.3. Let T be a tree with ∆ ≥ 3 that is not a double star. Let v be
a vertex of T with d(v) > 1 and let v be adjacent to exactly one vertex u of
degree greater than one. If the tree T \ (N(v) \ {u}) has an L(d, 1)-labelling f
using the label set B with f(v) ∈ {0,∆ + d − 1}, then f can be extended to an
L(d, 1)-labelling of T .

Proof. Let f(v) = 0 and B′ = B\{0, 1, 2, . . . , d−1, f(u)}. Then |B′| = ∆+d−(d+
1) = ∆− 1 (for f(v) = ∆+ d− 1, let B′ = B \{∆+ d− 1,∆+ d− 2, . . . ,∆, f(u)}).
Since |N(v)\{u}| = d(v)−1 ≤ ∆−1, the vertices from N(v)\{u} can be labelled
with mutually different labels from B′ and f is extended to an L(d, 1)-labelling of
T accordingly.

Lemma 4.4. Let T be a tree that is not a double star and d(x) ≤ ∆− d+ 1 if x
is not a ∆-vertex.

1. Let ∆ ≥ 3. Assume T contains configuration (C1). If T \{v} has a (∆+d−1)-
labelling, so does T .

2. Let ∆ ≥ 4, d ≤ ∆ − 2. Assume T contains configuration (C2) or (C3). If
T \N [x1] has a (∆ + d− 1)-labelling, so does T .

3. Let ∆ ≥ 5, d ≤ ∆−2. Assume T contains configuration (C4). If T \(N(x1)∪
N(x2)) has a (∆ + d− 1)-labelling, so does T .

Proof. 1. Assume that T contains (C1), hence there ia s leaf v adjacent to
vertex u with d(u) < ∆. Let V (T ) \ {v} have an L(d, 1)-labelling f using
the label set B. Since d(u) ≤ ∆ − d + 1, at most ∆ − d different labels are
needed for labelling the neighbors of u in T \ {v}. Observe that the labels
in {f(u) ± k | k = 0, 1, 2, . . . , d − 1} ∩ B are forbidden labels for v. This is
altogether at most (∆−d)+1+2(d−1) = ∆+d−1 labels. As |B| = ∆+d,
we can label v with some label from B.

2. Assume that T contains (C2) and xi are defined as in Lemma 4.1. Let
T \N [x1] has a (∆+d−1)-labelling f using the label set B. Denote ci = f(xi).
We consider the next cases according to the label of c3:

(i) Assume c3 = 0, we can define c1 = ∆+d−1 or vice versa if c3 = ∆+d−1,
then c1 = 0. In both cases, we can label x2 with some label from
nonempty set {d, d+ 1, . . . ,∆− 1} \ {c4}, since ∆ > d+ 1.
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(ii) Assume 0 < c3 ≤
⌊
∆+d−1

2

⌋
.Then we can define c1 = 0 and c2 ∈ {c3 +

d, c3 + d+ 1} \ {c4}.
As d ≤ ∆ − 2, ∆+d−1

2 + d + 1 = ∆+3d+1
2 ≤ 2∆+2d−1

2 = ∆ + d − 1
2 ,

therefore, c3 + d + 1 ≤
⌊
∆+d−1

2

⌋
+ d + 1 ≤

⌊
∆+ d− 1

2

⌋
= ∆ + d − 1.

Hence x2 can be labelled properly.

(iii) Assume
⌊
∆+d−1

2

⌋
< c3 < ∆ + d − 1, we define c1 = ∆ + d − 1, c2 ∈

{c3 − d, c3 − d− 1} \ {c4}.
As d ≤ ∆ − 2, c3 − d − 1 ≥

⌊
∆+d−1

2

⌋
− d ≥ ∆+d−2

2 − d = ∆−d−2
2 ≥ 0.

Hence x2 can be labelled properly.

By Lemma 4.3, the vertices in N(x1) \ {x2} can be labelled properly.

3. Let T contains (C3) and let T \N [x1] has a (∆+d−1)-labelling f using the
label set B. Since y is major handle in T \N [x1], without loss of generality,
say f(y) = 0 and hence c3 ∈ {d, d+ 1, . . . ,∆+ d− 1}.
We distinguish several cases according to c3. Note that as d ≤ ∆ − 2, we
have 2d+ 1 ≤ ∆+ d− 1.

(i) Let c3 = d, we define c1 = 0 and c2 ∈ {2d, 2d+ 1} \ {c4}.
(ii) Let c3 = d + 1, then we set c2 ∈ {1, 2d + 1} \ {c4}. If c2 = 1 then

c1 = 2d+ 1, if c2 = 2d+ 1 then c1 = 0.

(iii) Let c3 ∈ {d + 2, d + 3, . . . ,∆+ d − 2}. We define c1 = ∆+ d − 1, c2 ∈
{1, 2} \ {c4}.

(iv) Let c3 = ∆+ d− 1. We define c1 = 0, c2 ∈ {d, d+ 1} \ {c4}.

By Lemma 4.3, we can provide a proper labelling for the vertices in
N(x1) \ {x2}.

4. Let T be a tree that contains (C4) and assume T \ (N(x1) ∪ N(x2)) has a
(∆+ d− 1)-labelling f . We consider the next cases according to the label of
x4.

(i) If c4 = 0, we define c2 = ∆ + d − 1, c1 = 0 or if c4 = ∆ + d − 1, we
define c2 = 0, c1 = ∆+ d − 1. Since |{d, . . . ,∆ − 1}| ≥ 2 (d ≤ ∆ − 2),
we can label x3 with some label from {d, . . . ,∆− 1} \ {c5}.

(ii) If c4 ∈ {1, . . . , d−1}, we define c2 = 0, c1 = ∆+d−1, c3 ∈ {∆+d−3,∆+
d−2}\{c5}. (Since (∆+d−3)−c4 ≥ (∆+d−3)−(d−1) = ∆−2 ≥ d,
x3 can be labelled properly.)

(iii) If c4 ∈ {∆, . . . ,∆+ d− 2}, then we define c2 = ∆+ d− 1, c1 = 0, c3 ∈
{1, 2} \ {c5}. (Since c4 − 2 ≥ ∆− 2 ≥ d, x3 can be labelled properly.)
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(iv) Finally c4 ∈ {d, . . . ,∆ − 1}. We consider two cases d < ∆ − 2 and
d = ∆− 2.

a) Let d < ∆− 2.
• If c4 = d, then we define c1 = ∆+ d− 1, c2 = 0, c3 ∈ {2d, 2d+
1} \ {c5}.

• If c4 = d+1, then we can label x3 with some label from {1, 2d+
1} \ {c5}. Let c1 = 0, c2 = ∆ + d − 1 when c3 = 1, and let
c1 = ∆+ d− 1, c2 = 0 when c3 = 2d+ 1.

• If c4 ∈ {d+2, . . . ,∆−1}, then we can label x3 with some label
from {1, 2} \ {c5}, and let c1 = 0, c2 = ∆+ d− 1.

b) Let d = ∆− 2, then c4 ∈ {d, d+ 1}.
• If c4 = d, then we know that x5 is labelled with some label

from {0, 2d, 2d + 1}. If c5 = 0 or c5 = 2d + 1, then we define
c3 = 2d, c2 = 0, c1 = 2d+ 1. The argument in the case c5 = 2d
is somewhat more tricky. Vertices in N(x5) can be labelled
with labels from {0, 1, . . . , d}. Since d ≥ 3 (if d = 2 then
∆ = 4), these are at least 4 labels. But d(x5) ≤ 3, so there
is at least one unused label in {0, 1, . . . , d− 1}, say a. Replace
the label of x4 with a and further deal with two cases a = 0
and a ∈ {1, . . . , d − 1}. In the first case we can label vertices
x3, x2, x1 with d, 2d+1, 0 and in the second with 2d−1, 0, 2d+1,
respectively.

• For c4 = d + 1 the proof is similar as the above. In this case,
x5 is labelled with some label in {0, 1, 2d + 1}. Let c5 = 0 or
c5 = 2d + 1. Thus we can define c3 = 1, c2 = 2d + 1, c1 = 0.
If c5 = 1 then replace the label of x4 with an unused label
a ∈ {d+ 2, d+ 3, . . . , 2d+ 1} as above. We consider two cases
according to the label of a:
a ∈ {d+2, d+3, . . . , 2d}, we label vertices x3, x2, x1 with 2, 2d+
1, 0, respectively. If a = 2d + 1, then we can label vertices
x3, x2, x1 with d, 0, 2d+ 1, respectively.

In all cases, vertices in (N(x1) ∪N(x2)) \ {x1, x2, x3} are leaves, so we
can label them easily.

Proof of Theorem 3.1. The proof is proceeded by induction on the number of ver-
tices of T . It is easy to construct an L(d, 1)-labelling of T using the label set B, if
T is a double star (note that ∆+ 1 ≤ |V (T )| ≤ 2∆). Two adjacent vertices x and
y must be labelled with 0 and ∆ + d − 1, respectively, vertices from N(x) \ {y}
with mutually different labels from {d, d + 1, . . . ,∆ + d − 2} and vertices from
N(y) \ {x} with mutually different labels from {1, 2, . . . ,∆ − 1}. Assume that T
is not a double star.
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1. Let T be a tree with ∆ ≥ 5, d ≤ ∆−2 and 2, 4 /∈ D∆. Let d(x) ≤ ∆−d+1 if
x is not a ∆-vertex. If T contains (C1), then T \ {v} has an L(d, 1)-labelling
f using the label set B by the induction hypothesis. Hence λd(T ) = ∆+d−1
by Lemma 4.4.

Thus we may suppose, that T contains no (C1). Suppose that T contains
one of the configurations (C2) or (C3). If T \ N [x1] is a ∆-subtree of T ,
by the induction hypothesis, T \ N [x1] has a (∆ + d − 1)-labeling. Hence
λd(T ) = ∆ + d − 1 by Lemma 4.4. Let ∆(T \ N [x1]) be strictly less than
∆(T ). Then ∆(T \ N [x1]) ≤ ∆ − d + 1. Since ∆ + d − 1 ≤ λd(T ) ≤
min{∆+ 2d − 2, 2∆ + d − 2} for any tree T of maximum degree ∆ [3] and
since min{∆+2d−2, 2∆+d−2} = ∆+2d−2 for d < ∆, we get λd(T \N [x1]) ≤
∆(T \N [x1]) + 2d− 2 ≤ ∆− d+1+ 2d− 2 = ∆+ d− 1. By Lemma 4.4, we
also have λd(T ) = ∆+ d− 1.

We only need to consider the case when T contains (C4). Zhai, Lu, and Shu
[12] have shown that T \ (N(x1)∪N(x2)) is a ∆-subtree of T . Therefore, by
the induction hypothesis, T \ (N(x1) ∪ N(x2)) has a (∆ + d − 1)-labelling.
Hence λd(T ) = ∆+ d− 1 by Lemma 4.4.

2. Let T be a tree with ∆ ≥ 4, d = ∆ − 1 and 2, 4 /∈ D∆. Let d(x) ≤ 2 if x is
not a ∆-vertex.

If T contains (C1), then λd(T ) = ∆ + d− 1 = 2d by Lemma 4.4.

By Lemma 4.2, T contains one of the configurations (C5), (C6) and (C7).

Let T contains (C5). By the induction hypothesis, T \N [x1] has a L(d, 1)-
labelling f using the label set {0, 1, . . . , 2d}. Denote ci = f(xi). Since
d(x4) = ∆, without loss of generality, we may suppose c4 = 0. Then clearly
c3 ∈ {d, d+ 1, . . . , 2d}. Check all possibilities for labelling x3:

• Let c3 = d, we define c2 = 2d, c1 = 0.
• Let c3 = 2d, we define c2 = d, c1 = 0.
• Let c3 ∈ {d+ 1, . . . , 2d− 1}, we define c2 = 1, c1 = 2d.

By Lemma 4.3, we can label all vertices from N(x1) \ {x2}.
Let T contains (C6) and again, by the induction hypothesis T \ (N [x1] ∪
{x3, x4}) has a 2d-labelling f . In view of simmetry of the labels, we can
assuming c6 ∈ {0, 1, . . . , d} to extend f into a 2d-labelling of T :

(i) Assume c6 = 0 ⇒ c5 ∈ {d, . . . , 2d}. Consider the following three sub-
cases:
• Let c5 = d, we can label x4, x3, x2, x1 by 2d, 1, 2d− 1, 0.

• Let c5 = 2d, we can label x4, x3, x2, x1 by 1, d+ 1, 0, 2d.

• Let c5 ∈ {d + 1, d + 2, . . . , 2d − 1}, we can label x4, x3, x2, x1 by
1, 2d, d, 0.
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(ii) Assume c6 ∈ {1, . . . , d}, then c5 ∈ {c6 + d, c6 + d + 1, . . . , 2d}, we can
label x4, x3, x2, x1 by 0, d, 2d, 0.

By Lemma 4.3 we can give a proper labelling for the vertices from
N(x1) \ {x2}.

Finally, we assume that T contains (C7). We know that T \(N(x1)∪N(x2)∪
{x4, x5, x6}) is a ∆-subtree of T . By the induction hypothesis, T \ (N(x1)∪
N(x2)∪{x4, x5, x6}) has a 2d-labeling f . Again, for x8 it is enough to check
labels from the set {0, 1, . . . , d}. See Table 1.

By Lemma 4.3, the vertices from (N(x1)∪N(x2))\{x1, x2, x3} can be labelled
properly.

Table 1: T contains (C7).
c8 0 k, 1 ≤ k ≤ d− 1 d
c7 d d+ 1, . . . , 2d− 1 2d k + d, . . . , 2d− 1 2d 0 2d
c6 2d 1 d 0 d 2d− 1 0
c5 0 2d 0 2d 0 1 2d− 1
c4 2d− 1 0 2d 1 2d 2d 1
c3 1 d d d+ 1 d d d+ 1
c2 2d 2d 0 0 0 0 0
c1 0 0 2d 2d 2d 2d 2d

This completes the proof of the theorem.

In [12], two trees of maximum degree 3 and 4 with 2, 4 /∈ D∆ were constructed,
such that for d = 2 these trees are not of type 1. It was also shown, that if
∆(T ) = 4, then λd = ∆ + d − 1 if any ∆-subtree of T contains no (C4’) and if
∆(T ) = 3, then λd = ∆+d−1 if any ∆-subtree of T contains no (C7’) (see Figure
2).

5. Trees with d ≥ ∆

First, we observe that when d > ∆ some labels in the set {0, 1, 2, . . . ,∆,∆ +
1, . . . , d, d+ 1, . . . ,∆+ d− 1} can only be used for labeling isolated vertices, and
are thus useless.

Lemma 5.1. Let d ≥ ∆. Only 2∆ labels are useful in the label set B =
{0, 1, 2, . . . ,∆,∆+ 1, . . . , d, d+ 1, . . . ,∆+ d− 1}. These are labels {0, 1, . . . ,∆−
1, d, d+ 1, . . . ,∆+ d− 1}.
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Proof. For label c ∈ {∆,∆+1, . . . , d−1}, we find c+d > ∆+d−1 and c−d < 0.
Hence if a vertex is labelled with such c there is no available label for any of its
neighbors.

Lemma 5.2. Let ∆ ≥ 3 and d ≥ ∆. Let gdS be a generalized double star with
{x, y} as its center and the other neighbors of x and y be x∆−1, x∆−2, . . . , x2, x1 ∈
N1(x) \ {y}, and y∆−1, y∆−2, . . . , y2, y1 ∈ N1(y) \ {x} where d(xi) ≥ d(xj) and
d(yi) ≥ d(yj) for any i ≥ j. Then gdS is of type 1 if and only if d(xi) ≤ i and
d(yi) ≤ i for any 1 ≤ i ≤ ∆− 1.

Proof. By Lemma 2.3, ∆ vertices must get labels 0 and ∆+ d− 1. Without loss
of generality, label x with 0 and y with ∆ + d − 1. Then we can label xk ∈
N1(x) \ {y} with d+ k − 1, yk ∈ N1(y) \ {x} with ∆− k, vertices in N1(xk) \ {x}
with labels from {1, 2, . . . , k − 1} and vertices in N1(yk) \ {y} with labels from
{∆+ d− k,∆+ d− k + 1, . . . ,∆+ d− 2}, where 1 ≤ k ≤ ∆− 1.

On the other hand, assume that gdS is of type 1. Therefore, there exists a
labeling in which, say x has label 0 and y has label ∆ + d − 1. Consider the
neighbor of y that is labelled by k, 1 ≤ k ≤ ∆ − 1, and denote it by yk. Clearly,
yk has at most k neighbors including y, otherwise the labeling is not well defined.
Similar argument implies the conditions on degrees of xk.

The generalized double star with ∆ = 5 and d = 6 is shown in Figure 3.

Figure 3: Generalized double star of type 1 with ∆ = 5 in d = 6.

Similarly, we can label a generalized star of type 1.

Lemma 5.3. Let ∆ ≥ 3 and d ≥ ∆. Let gS be a generalized star with x as its
center. Let the neighbours of x be x∆−1, x∆−1, x∆−2, . . . , x2, x1 ∈ N1(x) where
d(xi) ≥ d(xj) for any i ≥ j. Then gS is of type 1 if and only if d(xi) ≤ i for any
1 ≤ i ≤ ∆− 1.

Proof. Analogous to the proof of Lemma 5.2.
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Lemma 5.4. Let T be a tree with ∆ ≥ 3 and d ≥ ∆. Let T contain at most two
∆-vertices x and y and assume they are adjacent. If the subtree T ′ of T induced
on vertices N2[x] ∪ N2(y) is isomorphic to the gdS of type 1 and if d(x) ≤ 2 for
x /∈ V (T ′), then T is of type 1.

Proof. Assume that there are two adjacent ∆-vertices in T . We first label gdS
as in the proof of Lemma 5.2. Observe that the unlabelled vertices induce a
forest in which the connected components are paths and isolated vertices. Hence
any of the components gives rise to a path x0x1 · · ·xn, where x0 is the center of
gdS, d(x1) < ∆ and x0, x1, x2 are already labelled. Since x2 is not a leaf, the
method used in the proof of Lemma 5.2 assures that it is labeled with a label from
{0, 1, 2, . . . ,∆ − 2, d + 1, d + 2, . . . ,∆ + d − 1}. Hence, we can label x3, x4, x5 . . .
with labels from {0, 1,∆+ d− 2,∆+ d− 1}, in all these cases.

The proof is similar when there is only one ∆-vertex in T .

A special case of Lemma 5.4 may be worth stating explicitly.

Lemma 5.5. Let T be a tree with ∆ ≥ 3 and a unique ∆-vertex x. Let d ≥ ∆. If
the subtree of T induced on vertices N2[x] is isomorphic to the gS of type 1 and
if d(x) ≤ 2 for x /∈ gS, then T is of type 1.

Proof of Theorem 3.2. First, observe that we can define the labelling of the sub-
graph induced on ∆-vertices and the paths among them, and then it is easy to
complete the labeling for the remaining vertices of degree one and two, in the same
way as in the proof of Lemma 5.4.

Therefore, it is enough to consider the subgraph of T induced on ∆-vertices, and
the paths among them. Start with arbitrary ∆-vertex, say x. It is by assumption
either a center of a gS or a gdS. Label the vertices of N2[x] (or, the vertices of
N2[x] ∪N2(y)), as in the proof of Lemma 5.5 (respectively, Lemma 5.4).

Now we proceed by induction. If all ∆-vertices has been labelled already, we
stop. Otherwise, choose a ∆-vertex z that has not been labelled such that the
associated gS or gdS is adjacent to one of the gS or gdS that have already been
labelled. Without loss of generality assume that the shortest path between centers
of these two generalized double stars is the path x0x1 · · ·xn, where xn = z and x0

is the nearest already labelled ∆-vertex. The labelling of the path to z and the
generalized star (or, double star) centered at z is defined as follows, depending on
the parity of the path.

If its length is even, then we label xn with the same label as labelled x0, without
loss of generality, we say with 0. If the length is odd, without loss of generality, we
label x0 with 0 and xn with ∆+ d− 1. The other vertices of the generalized star
or generalized double star centered by z is labelled as in Lemma 5.4. The vertices
x3, x4, . . . , xn−3 are labelled as follows. Denote the labels shortly by ci = f(xi),
i = 3, 4, . . . , n− 3.

1. Suppose that n = 8 + 2k, k = 0, 1, 2, . . ..
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Vertices x3, x5 . . . xn−3 we can label from left to right: c3 ∈ {∆+ d− 1,∆+
d− 2} \ {c1}, c5 ∈ {∆+ d− 1,∆+ d− 2} \ {c3}, . . . , cn−5 ∈ {∆+ d− 1,∆+
d− 2} \ {cn−7}, cn−3 ∈ {∆+ d− 1,∆+ d− 2,∆+ d− 3} \ {cn−5, cn−1} and
vertices xn−4, xn−6 . . . x4 from right to left: cn−4 = 0, cn−6 = 1, . . . , c6 ∈
{0, 1} \ {c8}, c4 ∈ {0, 1, 2} \ {c2, c6}.
If cn−2 = ∆ − 2 and if cn−3 = ∆ + d − 3 is obtained in this way, we must
to redefine the label of xn−2. We know that cn−1 ≥ ∆ + d − 2. If label 1
has not been used for labelling vertices from N(xn−1) \ {xn−2, xn}, then we
label xn−2 with it. If it is select for a vertex y ∈ N(xn−1) \ {xn−2, xn}, then
we can replace label of xn−2 with label of y, since d(y) ≤ 2. We redefine
f(xn−2) = 1 and f(y) = ∆− 2.

2. Suppose that n = 9 + 2k, k = 0, 1, 2, . . ..

We may label as follows: c3 ∈ {∆+ d− 1,∆+ d− 2} \ {c1}, c5 ∈ {∆+ d−
1,∆+d−2}\{c3}, . . . , cn−4 ∈ {∆+d−1,∆+d−2,∆+d−3}\{cn−6, cn−2}
and cn−3 ∈ {0, 1} \ {cn−1}, cn−5 ∈ {0, 1} \ {cn−3}, . . . , c6 ∈ {0, 1} \ {c8} and
c4 ∈ {0, 1, 2} \ {c2, c6}.
If ∆ = 4 and n = 9, it can be obtained in this way that c4 = 2 and c5 = d+1.
This is possible if c2 = c8 = 1 and c1 = c7 ∈ {d+ 2, d+ 3}. In this case, we
redefine c3 = d+ 1, c4 = 0, c5 ∈ {d+ 2, d+ 3} \ {c7} and c6 = 2.

Proof of Theorem 3.3. The proof is similar to the proof of Theorem 3.2. Start with
an arbitrary ∆-vertex x. Choose the labelling of the corresponding generalized star
or double star centered at x as in the proofs of Lemma 5.1 or Lemma 5.2. We
proceed by induction. Repeat, while there are unlabelled ∆-vertices, by choosing
a double star (or star) with unlabelled center that is adjacent to one of the double
stars (or stars) that have already been labelled. Let z be the ∆-vertex of the
chosen star such that the shortest path between the centers of these two double
stars is the path x0x1 · · ·xn, where xn = z and x0 is the nearest already labelled
∆-vertex.

Suppose that n ≥ 8. In view of symmetry of the labels, we only need to consider
the case when x0 is labelled with 0. As before, let ci be the label of xi. We can
assume that c0 = 0 and c2 = 1, because clearly c2 ̸= 0 and if c2 > 1, then we can
relabel x2 and set c2 = 1. The labeling of the path can be extended as follows (as
in the proof of Theorem 3.2): when n is even, we set cn = 0, cn−1 = ∆+d−2 and
cn−2 = 1. When n is odd, then cn = ∆+ d− 1, cn−1 = 1 and cn−2 = ∆+ d− 2.

The remaining cases, 4 ≤ n < 8, are considered below. Again, w.l.o.g assume
that c0 = 0, and observe that x2 can be relabelled if needed. It is straightforward
to see that the following are partial labellings of the path x0x1 . . . xn.

(i) n = 4 : c2 = 1, c3 ∈ {∆+ d− 2,∆+ d− 3} \ {c1}, c4 = 0.

(ii) n = 5 : c2 = 1, c3 ∈ {∆+ d− 2,∆+ d− 3} \ {c1}, c4 = 2 and c5 = ∆+ d− 1.
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(iii) n = 6 : c6 = 0

• c1 ̸= d + 1 ⇒ c2 = 2, c3 ∈ {∆ + d − 1,∆ + d − 2} \ {c1}, c4 = 1, c5 =
∆+ d− 3.

• c1 = d+ 1 ⇒ c2 = 1, c3 = ∆+ d− 1, c4 = 2, c5 = ∆+ d− 2.

(iv) n = 7 : c2 = 1, c3 ∈ {∆+d−1,∆+d−2}\{c1}, c4 = 0, c5 = ∆+d−3, c6 = 1
and c7 = ∆+ d− 1.

After all ∆-vertices are labelled, the unlabelled vertices form a set of paths
and isolated vertices. The labelling is thus easily completed (as in the proofs
before).

In the case ∆ = 4, n = 5 and c1 = ∆+ d− 2 = d+ 2, similarly as in the proof
above gives c2 = 1, c3 = d + 1 and thus necessarily c4 = 0. But then x5 can not
be adjacent to any ∆-vertex. This shows the following consequence.

Corollary 5.6. Let T be a tree with ∆ = 4 and d ≥ 4. Then λd = d+ 3 if each
4-vertex has at least one leaf, d(x) ≤ 2 if x is not a 4-vertex and 1, 2, 3 /∈ D4 or
2, 3, 5 /∈ D4.

Let now T be a tree with ∆ = 3 and let x0x1x2x3x4 be a path between two
3-vertices. Let x0 and x4 get label 0 and vertices from N1(x0) labels d+ 1, d+ 2.
Define c2 = 1, c3 ∈ {d+ 2, d+ 1} \ {c1}. Consequently, we have:

Corollary 5.7. Let T be a tree with ∆ = 3 and d ≥ 3. Then λd = d+ 2 if each
3-vertex has at least one leaf, d(x) ≤ 2 if x is not a 3-vertex and D3 = {4k | k ∈ IN}.

Confilcts of Interest. The authors declare that they have no conflicts of interest.

References
[1] T. Calamoneri, The L(h,k)-labeling problem: An updated survey and anno-

tated bibliography, Comput. J. 54 (8) (2011) 1344− 1371.

[2] G. J. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J.
Discrete Math. 9 (2) (1996) 309− 316.

[3] G. J. Chang, W. -T. Ke, D. Kuo, D. D. -F. Liu and R. K. Yeh, On L(d, 1)-
labeling of graphs, Discrete Math. 220 (2000) 57− 66.

[4] G. J. Chang and C. Lu, Distance-two labelings of graphs, European J. Com-
bin. 24 (2003) 53− 58.

[5] J. Georges, D. Mauro and M. Whittlesey, Relating path covering to vertex
labelings with a condition at distance two, Discrete Math. 135 (1994) 103−
111.



102 I. H. Ladinek and J. Žerovnik

[6] D. Gonçalves, On the L(p, 1)-labelling of graphs, Discrete Math. 308 (2008)
1405− 1414.

[7] J. R. Grigs and R. K. Yeh, Labeling graphs with a condition at distance 2,
SIAM J. Discrete Math. 5 (1992) 586− 595.

[8] E. Jonck, J. H. Hattingh and C. J. Ras, A characterization of λd,1-minimal
trees and other attainable classes, Discrete Math. 309 (2009) 2340− 2348.

[9] J. S. -T. Juan, D. D. -F. Liu and L. -Y. Chen, L(j, k)-labelling and maximum
ordering-degrees for trees, Discrete Appl. Math. 158 (2010) 692− 698.

[10] D. Liu and R. K. Yeh, On distance two labelings of graphs, Ars. Combin. 47
(1997) 13− 22.

[11] W. Wang, The L(2, 1)-labeling of trees, Discrete Appl. Math. 154 (2006)
598− 603.

[12] M. Zhai, C. Lu and J. Shu, A note on L(2, 1)-labeling of Trees, Acta. Math.
Appl. Sin. 28 (2012) 395− 400.

[13] J. Zhu, Z. Bu, M. P. Pardalos, H. Du, H. Wang and B. Liu, Optimal channel
assignment and L(p, 1)-labeling, J. Global Optim. 72 (2018) 539− 552.

Irena Hrastnik Ladinek
Faculty of Mechanical Engineering,
University of Maribor,
Maribor, Slovenia
E-mail: irena.hrastnik@um.si

Janez Žerovnik
Faculty of Mechanical Engineering,
University of Ljubljana,
Ljubljana, Slovenia
E-mail: janez.zerovnik@fs.uni-lj.si


