Special Subgroups of Gyrogroups: Commutators, Nuclei and Radical

Document Type: Special Issue: International Conference on Architecture and Mathematics

Author

Department of Mathematics, North Dakota State University

Abstract

‎A gyrogroup is a nonassociative group-like structure modelled on the ‎space of relativistically admissible velocities with a binary ‎operation given by Einstein's velocity addition law‎. ‎In this ‎article‎, ‎we present a few of groups sitting inside a gyrogroup G‎, ‎including the commutator subgyrogroup‎, ‎the left nucleus‎, ‎and the ‎radical of G‎. ‎The normal closure of the commutator subgyrogroup‎, ‎the left nucleus‎, ‎and the radical of G are in particular normal ‎subgroups of G‎. ‎We then give a criterion to determine when a ‎subgyrogroup H of a finite gyrogroup G‎, ‎where the index ‎$[G\colon H]$ is the smallest prime dividing |G|‎, ‎is normal in G‎.

Keywords

Main Subjects


1. ‎T. Abe and O. Hatori‎, Generalized gyrovector spaces and a Mazur-Ulam‎ theorem‎, Publ‎. ‎Math‎. Debrecen 87 (2015) 393-413‎.


2.
‎M. Ferreira‎, Spherical continuous wavelet transforms arising from sections of the‎ Lorentz group‎, Appl‎. Comput‎. Harmon‎. ‎Anal.  26 (2009) 212-229‎.


3. ‎M. Ferreira‎,
Harmonic analysis on the Einstein gyrogroup‎, J‎. ‎Geom‎. ‎Symmetry Phys. 35 (2014) 21-60‎.


4.
‎M. Ferreira‎, Harmonic analysis on the Möbius gyrogroup‎,J‎. ‎Fourier Anal‎. ‎Appl. 21(2) (2015) 281-317‎.


5.
‎T.Foguel‎, ‎M. K‎. ‎Kinyon‎, ‎J‎. ‎D. Phillips‎, On twisted subgroups and Bol loops of odd order‎, Rocky Mountain J‎. Math. 36 (2006) 183-212‎.


6.
‎T. Foguel‎, ‎A. A‎. ‎Ungar‎, Involutory decomposition of groups into twisted subgroups and‎ subgroups‎, J‎. ‎Group Theory 3 (2000) 27-46‎.


7.
‎T. Foguel‎, ‎A. A‎. ‎Ungar‎, Gyrogroups and the decomposition of groups into twisted subgroups and‎ subgroups‎, Pacific J‎. ‎Math. 197 (2001) 1-11‎.


8.
‎W. Krammer‎, ‎H. K‎. ‎Urbantke‎, K-loops‎, gyrogroups and symmetric spaces‎, Results Math. 33 (1998) 310-327‎.


9.
‎T. Y‎. ‎Lam‎, On subgroups of prime index‎, Amer‎. ‎Math‎. ‎Monthly 111(3) (2004) 256-258‎.


10.
‎J. Park‎, ‎S. Kim‎,Hilbert projective metric on a gyrogroup of qubit density‎ matrices‎, Rep‎. ‎Math‎. ‎Phys. 76(3) (2015) 389-400‎.


11.
‎T‎. ‎Suksumran‎, ‎The Algebra of Gyrogroups‎:‎Cayley’s Theorem‎, ‎Lagrange’s Theorem‎, ‎ and Isomorphism Theorems‎, ‎In‎: ‎ Essays in Mathematics and its Applications‎, ‎T‎. ‎Rassias‎, ‎P‎. ‎Pardalos (Eds)‎, ‎Springer‎, ‎Cham (2016)‎.


12.
‎‎T. Suksumran‎, Gyrogroup actions‎: a generalization of‎ group actions‎,‎ ‎ J‎. ‎Algebra 454 (2016) 70-91‎.


13.
‎‎T. Suksumran‎, ‎K. Wiboonton‎,Lagrange's theorem for gyrogroups and the ‎Cauchy‎ ‎property‎, Quasigroups Related Systems  22(2) (2014) 283-294‎.

 


14. ‎‎T. Suksumran‎, ‎K. Wiboonton‎,
Einstein gyrogroup as a B-loop‎, Rep‎. ‎Math‎. ‎Phys. 76 (2015) 63-74‎.


15.
‎‎T. Suksumran‎, ‎K. Wiboonton‎, Isomorphism theorems for gyrogroups and ‎ L-subgyrogroups‎,‎J‎. ‎Geom‎. Symmetry Phys. 37 (2015) 67-83‎.

 

16. ‎A. A‎. ‎Ungar‎, Thomas precession‎: ‎ its underlying‎ gyrogroup axioms and their use in‎ hyperbolic geometry and relativistic physics‎, Found‎. ‎Phys. 27(6) (1997) 881-951‎.


17.
‎A. A‎. ‎Ungar‎,
The hyperbolic geometric structure of‎ the density matrix for mixed‎ state qubits‎, Found‎. ‎Phys. 32(11)(2002) 1671-1699‎.


18.
‎A. A‎. ‎Ungar‎,
Einstein's velocity addition law and its hyperbolic‎ geometry‎, Comput‎. ‎Math‎. ‎Appl. bf 53 (2007) 1228-1250‎.


19.
‎A. A‎. ‎Ungar‎,
Analytic Hyperbolic Geometry and Albert Einstein's Special‎ Theory of Relativity, World Scientific Publishing Co‎. ‎Pte‎. ‎Ltd.‎, ‎Hackensack‎, ‎NJ‎, ‎2008‎.


20.
‎A. A‎. ‎Ungar‎,
Barycentric Calculus in Euclidean‎ and Hyperbolic Geometry‎: ‎A‎ Comparative Introduction‎, World Scientific Publishing Co‎. ‎Pte‎. ‎Ltd.‎, Hackensack‎, ‎NJ‎, ‎2010‎.