Gyrovector Spaces on the Open Convex Cone of Positive Definite Matrices

Document Type: Special Issue: International Conference on Architecture and Mathematics

Author

Chungbuk National University

Abstract

‎In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces‎, ‎which are the Einstein and M\"{o}bius gyrovector spaces‎. ‎We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its interesting applications on the set of invertible density matrices‎. ‎Finally we give an example of the gyrovector space on the unit ball of Hermitian matrices‎. 

Keywords

Main Subjects


1. R. Bhatia, Positive Definite Matrices, Princeton Series in Applied Mathematics, 2007.

2. H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30(5) (1977) 509–541.


3. S. Kim, Distances of qubit density matrices on Bloch sphere,
J. Math. Phys. 52 (2011) 102303.


4. S. Kim, Distributivity on the gyrovector spaces,
Kyungpook Math. J. 55 (2015) 13–20.


5. S. Kim, Factorizations of invertible density matrices,
Linear Algebra Appl. 463 (2014) 190–204.


6.
‎S‎. ‎Kim‎, ‎J‎. ‎Lawson‎, ‎Smooth Bruck loops‎, ‎symmetric spaces‎,‎‎
and nonassociative vector spaces‎, Demonstratio Mathematica‎‎ 44(4) (2011) 755-779‎.


7. S. Kim, J. Lawson, Unit balls, Lorentz boosts, and hyperbolic geometry,
Results Math. 63 (2013)1225-1242.


8. J. Lawson, Y. Lim, Monotonic properties of the least squares mean,
Math. Ann. 351 (2011) 267–279.


9. J. Lawson, Y. Lim, Karcher means and Karcher equations of positive definite operators,
Trans. Amer. Math. Soc. Series B 1 (2014) 1-22.


10. Y. Lim, M. Pálfia, Matrix power mean and the Karcher mean,
J. Funct. Anal. 262(4) (2012) 1498–1514.


11.
‎‎M‎. ‎Moakher‎, ‎A differential geometric‎
approach to the geometric mean of symmetric positive-definite‎ matrices‎, ‎SIAM J‎. ‎Matrix Anal‎. ‎Appl. ‎ 26(3) (2005) 735-747‎.


12. J. Park, S. Kim, Hilbert projective metric on a gyrogroup of qubit density matrices,
Rep. Math. Phys. 76(3) (2015) 389-400.


13. J. Ratcliffe,
Foundations of Hyperbolic Manifolds, 2nd Ed., Springer, Berlin, 2005.


14. L. V. Sabinin, L. L. Sabinina, L. V. Sbitneva, On the notion of a gyrogroup,
Aeq. Math. 56 (1998) 11–17.


15. T. Suksumran, K. Wiboonton, Einstein gyrogroup as a B-loop,
Rep. Math. Phys. 76(1) (2015) 63–74.


16.
‎A‎. ‎A‎. ‎Ungar‎, Analytic Hyperbolic geometry‎
and Albert Einstein's Special Theory of Relativity, ‎World Scientific Press‎, ‎2008‎.