In this short article, we observe that the path of particle of mass $m$ moving along $\mathbf{r}= \mathbf{r}(t)$ under pseudo-force $\mathbf{A}(t)$, $t$ denotes the time, is given by $\mathbf{r}_d= \int(\frac{d\mathbf{r}}{dt} \mathbf{A}(t)) dt +\mathbf{c}$. We also observe that the effective force $\mathbf{F}_e$ on that particle due to pseudo-force $\mathbf{A}(t)$, is given by $ \mathbf{F}_e= \mathbf{F} \mathbf{A}(t)+ \mathbf{L} d\mathbf{A}(t)/dt$, where $\mathbf{F}= m\ d^2\mathbf{r}/dt^2 $ and $\mathbf{L}= m\ d\mathbf{r}/dt$. We have discussed stream lines under pseudo-force.
Yadav, A. (2016). Motion of Particles under Pseudo-Deformation. Mathematics Interdisciplinary Research, 1(2), 273-277. doi: 10.22052/mir.2016.34108
MLA
Akhilesh Chandra Yadav. "Motion of Particles under Pseudo-Deformation". Mathematics Interdisciplinary Research, 1, 2, 2016, 273-277. doi: 10.22052/mir.2016.34108
HARVARD
Yadav, A. (2016). 'Motion of Particles under Pseudo-Deformation', Mathematics Interdisciplinary Research, 1(2), pp. 273-277. doi: 10.22052/mir.2016.34108
VANCOUVER
Yadav, A. Motion of Particles under Pseudo-Deformation. Mathematics Interdisciplinary Research, 2016; 1(2): 273-277. doi: 10.22052/mir.2016.34108