Wiener Polarity Index of Tensor Product of Graphs

Document Type: Original Scientific Paper

Authors

1 Persian Gulf University

2 Mathematics House of Bushehr

Abstract

Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. In theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. The Wiener Polarity index of a graph G is denoted by W_P (G) is the number of unordered pairs of vertices of distance 3. The Wiener polarity index is used to demonstrate quantitative structure-property relationships in a series of acyclic and cycle-containing hydrocarbons. Let G,H be two simple connected graphs. Then the tensor product of them is denoted by G⨂H whose vertex set is V(G⨂H)=V(G)×V(H) and edge set is E(G⨂H)={(a,b)(c,d)| ac∈E(G) ,bd∈E(H) }. In this paper, we aim to compute the Wiener polarity index of G⨂H which was computed wrongly in [J. Ma, Y. Shi and J. Yue, The Wiener Polarity Index of Graph Products, Ars Combin., 116 (2014) 235-244].

Keywords

Main Subjects


1. A. R. Ashrafi, T. Dehghanzade, R. Sharafdini, The maximum Wiener polarity index in the class of bicyclic graphs, unpublished paper.

2. A. Behmaram, H. Yousefi-azari, Further results on Wiener polarity index of graphs, Iranian J. Math. Chem. 2(1) (2011) 67–70.

3. A. Behmaram, H. Yousefi-Azari, A. R. Ashrafi, Wiener polarity index of fullerenes and hexagonal systems, Appl. Math. Lett. 25(10) (2012) 1510–1513.

4. A. Bottreau, Y. Métivier, Some remarks on the Kronecker product of graphs, Inform. Process. Lett. 68(2) (1998) 55–61.

5. N. Chen, W. Du, Y. Fan, On Wiener polarity index of cactus graphs, Math. Appl. 26(4) (2013) 798–802.

6. H. Deng, H. Xiao, The Wiener polarity index of molecular graphs of alkanes with a given number of methyl group, J. Serb. Chem. Soc. 75(10) (2010) 1405–1412.

7. H. Deng, H. Xiao, F. Tang, On the extremal Wiener polarity index of trees with a given diameter, MATCH Commun. Math. Comput. Chem. 63(1) (2010) 257–264.

8. H. Deng, On the extremal Wiener polarity index of chemical trees, MATCH Commun. Math. Comput. Chem. 66(1) (2011) 305–314.

9. H‎. ‎Deng‎, ‎H‎. ‎Xiao‎, ‎The maximum Wiener ‎polarity index of trees with k pendants‎,‎ Appl‎. ‎Math‎. ‎Lett. 23(6) (2010) 710-715‎.

10. W. Du, X. Li, Y. Shi, Algorithms and extremal problem on Wiener polarity index, MATCH Commun. Math. Comput. Chem. 62(1) (2009) 235–244.

11. I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. 36A (1997) 128–132.

12. I. Gutman, A. A. Dobrynin, S. Klavžar, L. Pavlović, Wiener-type invariants of trees and their relation, Bull. Inst. Combin. Appl. 40 (2004) 23–30.

13. R. Hammack, W. Imrich, S. Klavžar, Handbook of product graphs, Second edition. With a foreword by Peter Winkler. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, 2011.

14. H. Hosoya, Mathematical and chemical analysis of Wiener’s polarity number, in: D. H. Rouvray and R. B. King (Eds.), Topology in Chemistry–Discrete Mathematics of Molecules, Horwood, Chichester, 2002.

15. H. Hou, B. Liu, Y. Huang, The maximum Wiener polarity index of unicyclic graphs, Appl. Math. Comput. 218(20) (2012) 10149–10157.

16. A. Ilić, M. Ilić, Generalizations of Wiener polarity index and terminal Wiener index, Graphs Combin. 29(5) (2013) 1403–1416.

17. W. Imrich, S. Klavžar, Product graphs. Structure and recognition. With a foreword by Peter Winkler, Wiley Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.

18. B‎. ‎Liu‎, ‎H‎. ‎Hou‎, ‎Y‎. ‎Huang‎,‎ On the Wiener polarity index of trees with ‎ maximum degree or given numbers of leaves‎, ‎ Comput‎. ‎Math‎. ‎Appl. 60(7) (2010) 2053-2057‎.

19. M. Liu, B. Liu, On the Wiener polarity index, MATCH Commun. Math. Comput. Chem. 66(1) (2011) 293-304.

20. I. Lukovits, W. Linert, Polarity-numbers of cycle-containing structures, J. Chem. Inf. Comput. Sci. 38(4) (1998) 715-719.

21. J. Ma, Y. Shi, J. Yue, The Wiener polarity index of graph products, Ars Combin. 116 (2014) 235–244.

22. S. Moradi, A note on tensor product of graphs, Iran. J. Math. Sci. Inform. 7(1) (2012) 73–81.

23. J. Ou, X. Feng, S. Liu, On minimum Wiener polarity index of unicyclic graphs with prescribed maximum degree, J. Appl. Math. 2014 (2014) Art. ID 316108, 9 pp.

24. E. Sampathkumar, On tensor product graphs, J. Austral. Math. Soc. 20(3) (1975) 268–273.

25. P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47–52.

26. A. N. Whitehead, B. Russell, Principia Mathematica, Cambridge University Press, (1927).

27. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69(1) (1947) 17-20.