Remarks on the Paper “Coupled Fixed Point Theorems for Single-Valued Operators in \(b\)-Metric Spaces”

Zoran Kadelburg*, Stojan Radenović and Muhammad Sarwar

Abstract

In this paper, we improve some recent coupled fixed point results for single-valued operators in the framework of ordered \(b\)-metric spaces established by Bota et al. [M-F. Bota, A. Petrusel, G. Petrusel and B. Samet, Coupled fixed point theorems for single-valued operators in \(b\)-metric spaces, Fixed Point Theory Appl. (2015) 2015:231]. Also, we prove that Perov-type fixed point theorem in ordered generalized \(b\)-metric spaces is equivalent with Ran-Reurings-type theorem in ordered \(b\)-metric spaces.

Keywords: Vector-valued metric, ordered \(b\)-metric space, coupled fixed point, integral equation, well-posed fixed point problem.

2010 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction

In 1966, Perov [11] formulated a fixed point theorem which extends the well-known contraction mapping principle to the case when the metric \(d\) takes values in \(R^n_+\), that is, to the case of a generalized (cone) metric space. In 1989, Bakhtin [2] introduced the concept of a \(b\)-metric space which is another generalization of the ordinary metric space. After that, several papers have appeared dealing with results in \(b\)-metric spaces (see, e.g., [5, 7, 9] as well as the references therein). For the concepts of \(b\)-convergence, \(b\)-Cauchy sequence, \(b\)-continuity and \(b\)-completeness in \(b\)-metric spaces, see for instance [5, 7]. Furthermore, several new kinds of spaces have appeared, as generalized \(b\)-metric spaces, ordered generalized \(b\)-metric spaces, etc.
In this paper, we will first show that most of the results of paper [5] on coupled fixed points in ordered (generalized) b-metric spaces can be obtained in a much easier way. Further, in Section 3, we will improve these results and show that Perov-type fixed point theorem in ordered generalized b-metric spaces is equivalent to Ran-Reurings-type theorem in ordered b-metric spaces. We finish by proving a result on well-posedness of the given fixed point problem.

Very recently, in [5], M-F. Bota et al. proved some coupled fixed point results for mixed monotone mappings in ordered generalized b-metric spaces. In this section, we will show that most of these results are basically not new.

Remark 2.1. (concerning [5, Theorem 2.2]). It is well known that from the condition (ii) of [5, Theorem 2.2], the mixed monotone property of T and by induction it easily follows that the sequence $x_{n+1} = T^n(x_0, y_0) = T(x_n, y_n)$ is nondecreasing, while the sequence $y_{n+1} = T^n(y_0, x_0) = T(y_n, x_n)$ is nonincreasing. The rest of the proof of this theorem in [5] is also not new. That is, all is the same as in [4, Theorem 2.1] for ordinary metric spaces. Moreover, the proof that the sequences $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences, is again well known (see, e.g., [9, Lemma 3.1]).

Further, it is not hard to see that the estimates of $d(T^n(x_0, y_0), x)$ and $d(T^n(y_0, x_0), y)$ presented in the mentioned theorem hold without assumption that the b-metric d is continuous. Indeed, our claim follows immediately from the following two inequalities:

$$\frac{1}{s} d(T^n(x_0, y_0), x^*) \leq d(T^n(x_0, y_0), T^{n+p}(x_0, y_0)) + d(T^{n+p}(x_0, y_0), x^*),$$

$$\frac{1}{s} d(T^n(y_0, x_0), y^*) \leq d(T^n(y_0, x_0), T^{n+p}(y_0, x_0)) + d(T^{n+p}(y_0, x_0), y^*),$$

as well as from the proof of [9, Lemma 3.1].

Finally, it is worth noticing that [5, Theorem 2.2] holds if the condition $k \in [0, \frac{1}{2})$ is relaxed to $k \in [0, 1)$ (see [6, Theorem 1], [7, Theorem 1.8], and Theorem 3.1 below).

In the sequel of [5], the well known Perov’s Theorem is proved for the case of so-called generalized b-metric spaces (see also [10]).

Remark 2.2. (concerning [5, Theorem 3.2]). Instead of the condition that f has a closed graph (condition (3) in [5, Theorem 3.2]), one can suppose that f is continuous or that (X, d, \preceq) is regular (recall that an ordered (generalized) metric space is said to be regular if for each nondecreasing sequence $\{x_n\}$ in X, $x_n \to x$ as $n \to \infty$ implies that $x_n \preceq x$ for $n \in \mathbb{N}$). Otherwise, [5, Theorem 3.2] is simply classical Ran-Reuring’s result in the framework of ordered generalized b-metric spaces.
Remark 2.3. (concerning [5, Theorem 3.7]). It is not hard to see that the condition
\[d(T(x,y), T(u,v)) \leq k_1 d(x,u) + k_2 d(y,v), \]
which is assumed in this theorem, implies the following:
\[d_+(F_T(Y), F_T(V)) \leq k d_+(Y,V), \] for all \(Y \subseteq V \) or \(Y \supseteq V \),
where \(k = k_1 + k_2 \), \(Y = (x,y), V = (u,v) \), \(d_+(Y,V) = d(x,u) + d(y,v) \), \(F_T(Y) = (T(x,y), T(y,x)) \) and \(Y \subseteq V \iff x \leq u \) and \(y \geq v \). Further, (1) implies that
\[D_+(F_T(Y), F_T(V)) \leq kD_+(Y,V), \] for all \(Y \subseteq V \) or \(Y \supseteq V \),
where \(D_+(Y,V) = \|d_+(Y,V)\| \). Since \((X \times X, D_+, \subseteq)\) is an ordered generalized \(b \)-metric space, then the proof of [5, Theorem 3.7] follows according to [6, Theorem 1]. Hence, in fact, [5, Theorem 3.7] is not new, that is, all ideas and methods in it are well known (for more details of respective results in the framework of metric spaces see [1, 3, 14, 12, 15]).

The authors of [5] discussed also the following system of integral equations:
\[
\begin{cases}
 x(t) = g(t) + \int_0^T G(s,t) f(s, x(s), y(s)) \, ds,
 \\
y(t) = g(t) + \int_0^T G(s,t) f(s, y(s), x(s)) \, ds,
\end{cases}
\]
where \(t \in [0,T] \). Using certain \(b \)-metric, they proved an existence result for solutions of the system (2).

Remark 2.4. (concerning [5, Theorem 4.1]). First of all, it follows from the condition (iii) of [5, Theorem 4.1], that
\[
|f(s, u_1(s), v_2(s)) - f(s, v_1(s), v_2(s))| \leq (\alpha(s) + \beta(s)) \max_{s \in [0,T]} \{|u_1(s) - v_1(s)|, |u_2(s) - v_2(s)|\},
\]
while the condition (iv) implies
\[
k := \max_{t \in [0,T]} \int_0^T G(s,t) (\alpha(s) + \beta(s)) \, ds < 1.
\]
Then, if \(S : X \times X \to X \) is defined as in [5], for all \((x \geq u \) and \(y \leq v \) or \((u \geq x \) and \(v \leq y \)), we have
\[
|S(x,y)(t) - S(u,v)(t)| = \left| \int_0^T G(s,t) [f(s, x(s), y(s)) - f(s, u(s), v(s))] \, ds \right|
\leq \int_0^T G(s,t) |f(s, x(s), y(s)) - f(s, u(s), v(s))| \, ds
\leq \int_0^T G(s,t) (\alpha(s) + \beta(s)) \max_{s \in [0,T]} \{|x(s) - u(s)|, |y(s) - v(s)|\} \, ds
= k\delta(Y,V),
\]
where \(\delta (Y, V) = \delta (x, y) = \max \{ D(x, u), D(y, v) \} \) is a metric on \(X^2 \) if \(D \) is a metric on \(X \). In this case \(D(x, y) = \max_{s \in [0, T]} |x(s) - y(s)| \) is a known metric on the space \(C[0, T] \).

Further, in the same manner, we have

\[
|S(x, y)(t) - S(v, u)(t)| = \left| \int_0^T G(s, t) [f(s, y(s), x(s)) - f(s, v(s), u(s))] \, ds \right|
\leq \int_0^T G(s, t) |f(s, y(s), x(s)) - f(s, v(s), u(s))| \, ds
\leq \int_0^T G(s, t) (\alpha(s) + \beta(s)) \max_{s \in [0, T]} \{|y(s) - v(s)|, |x(s) - u(s)|\} \, ds
= k\delta(Y, V).
\]

Hence, we obtain:

\[
\max_{t \in [0, T]} \{|S(x, y)(t) - S(u, v)(t)|, |S(y, x)(t) - S(v, u)(t)|\} \leq k\delta(Y, V),
\]

that is,

\[
\delta(F_S(Y), F_S(V)) \leq k\delta(Y, V),
\]

where \(F_S(Y) = F_S((x, y)) = (S(x, y), S(y, x)) \). Instead of the method used in the framework of \(b \)-metric spaces as in [5], we can use now simply Banach Contraction Principle for the proof that the system of integral equations (2) has a unique solution in the complete metric space \(C[0, T] \). It is clear that our approach is brief and natural. Hence, we may conclude that [5, Theorem 4.1] may be proved without using any technique involving \(b \)-metric spaces.

3. Improvements

Now, we announce our first result which generalizes [5, Theorem 2.2].

Theorem 3.1. Let \((X, d, \preceq)\) be a \(b \)-complete, partially ordered \(b \)-metric space with parameter \(s \geq 1 \). Let \(f : X \times X \rightarrow X \) be a mixed monotone mapping for which there exists a constant \(k \in [0, 1) \) such that for all \((x, y) \in X \times X\) such that for all \((x \preceq u \preceq y)\) or \((x \succeq u \preceq y)\),

\[
d(f(x, y), f(u, v)) + d(f(y, x), f(v, u)) \leq k[d(x, u) + d(y, v)].
\]

Suppose that

(a) \(f \) is continuous, or
(b) \((X, d, \preceq)\) is regular.

If there exist \(x_0, y_0 \in X \) such that \((x_0 \preceq f(x_0, y_0))\) and \((y_0 \preceq f(y_0, x_0))\) or \((x_0 \succeq f(x_0, y_0))\) and \((y_0 \succeq f(y_0, x_0))\), then there exist \(x^*, y^* \in X \) such that \(x^* = f(x^*, y^*)\) and \(y^* = f(y^*, x^*)\).
Proof. Consider the mapping $d_+: X^2 \times X^2 \to \mathbb{R}_+$ defined by $d_+(Y, V) = d(x, u) + d(y, v)$, for all $Y = (x, y)$, $V = (u, v) \in X^2$ and the relation \sqsubseteq on X^2 defined by $Y \sqsubseteq V \iff x \preceq u$ and $y \succeq v$. It is a simple task to check that (X^2, d_+, \sqsubseteq) is an ordered b-metric space. Also, (X^2, d_+, \sqsubseteq) is b-complete and regular if (X, d, \preceq) is such. Further, consider the mapping $F: X^2 \to X^2$ defined by $F(Y) = (f(x, y), f(y, x))$ for all $Y = (x, y) \in X^2$. It is clear that for $Y = (x, y)$, $V = (u, v) \in X^2$, in view of the definition of d_+, we have

$$d_+(F(Y), F(V)) = d(F(x, y), F(u, v)) + d(F(y, x), F(v, u))$$

and

$$d_+(Y, V) = d(x, u) + d(y, v).$$

Hence, by the condition (3) we obtain a Banach type contraction (in a b-metric space):

$$d_+(F(Y), F(V)) \leq kd_+(Y, V),$$

for all $Y, V \in X^2$ with $Y \sqsubseteq V$ or $Y \sqsupseteq V$. The rest of proof follows by [6, 7, 9] or [13].

Remark 3.2. Theorem 3.1 is a proper generalization of [5, Theorem 2.2] in two ways. First of all, the condition $k \in [0, \frac{1}{s})$ is relaxed to $k \in [0, 1)$. Secondly, the contractive condition used in [5, Theorem 2.2] is strictly stronger than the condition (3). Appropriate examples can be easily constructed similarly as in [3, 12] and several other papers.

Also, Theorem 3.1 generalizes [3, Theorem 3].

Now, we shall prove the main result of this section.

Theorem 3.3. Theorem 3.2 from [5] is equivalent with the following result:

Let (X, d, \preceq) be a b-complete ordered b-metric space with parameter $s \geq 1$ and let $f: X \to X$ be an operator. Suppose that:

1. For each $(x, y) \notin X_\preceq$ there exists $z \in X$ such that $(x, z), (y, z) \in X_\preceq$;
2. $X_\preceq \in I(f \times f)$;
3. $f: X \to X$ has a closed graph;
4. There exists $x_0 \in X$ such that $(x_0, f(x_0)) \in X_\preceq$;
5. There exists a constant $k \in [0, 1)$, such that

$$d(f(x), f(y)) \leq kd(x, y) \text{ for each } (x, y) \in X_\preceq.$$

Then f is a Picard operator, i.e., $\text{Fix}(f) = \{x^\ast\}$ and $f^n(x) \to x^\ast$, as $n \to \infty$, for every $x \in X$.

Proof. Putting \(m = 1 \), we obviously have that \([5, \text{Theorem } 3.2]\) implies the formulated result. Conversely, let the given result hold true. We shall show that in this case \([5, \text{Theorem } 3.2]\) also holds. It is known that each generalized \(b \)-metric space is also a cone \(b \)-metric space over normal solid cone with the normal constant \(K = 1 \) (for the details see \([8]\)). Therefore, the conditions (2), (5), as well as the normality of the cone imply that

\[
\|d(f^n(x), f^n(y))\|_R \leq \|A^n\| \|d(x, y)\|_R \quad \text{for each } (x, y) \in X. \tag{4}
\]

Further, from the condition (5) of \([5, \text{Theorem } 3.2]\) (that \(sA \) converges to zero), it follows that there exists \(n_0 \in \mathbb{N} \) such that \(\|A^{n_0}\| < 1 \). Hence, (4) becomes

\[
D(f^{n_0}(x), f^{n_0}(y)) \leq kD(x, y) \quad \text{for each } (x, y) \in X,
\]

where \(D(a, b) = \|d(a, b)\|, k = \|A^n\| < 1 \). Since \((X, D)\) is a \(b \)-metric space with the same parameter \(s \geq 1 \) and \(f^{n_0} : X \to X \), then by \([6, \text{Theorem } 1]\) \(f^{n_0} \) has a unique fixed point in \(X \). Hence, \(f \) has a unique fixed point. Moreover, \(f \) is a Picard operator in generalized metric space \((X, d)\). Indeed, by the assumption, \((f^{n_0})^n(x) \to x^* \) in the \(b \)-metric space \((X, D)\) from which we obtain that \(f^n(x) \to x^* \), also in \((X, D)\). Since the spaces \((X, d)\) and \((X, D)\) have the same convergent sequences, the result follows.

Remark 3.4. Theorem 3.3 and \([5, \text{Theorem } 3.2]\) show that the celebrated theorem of Ran-Reurings holds in both frameworks: ordered generalized \(b \)-metric spaces and ordered \(b \)-metric spaces.

We finish considering well-posedness of the problem treated in \([5, \text{Theorem } 3.2]\), i.e. of a Perov type operator in the framework of an ordered generalized (in the sense of Perov) \(b \)-metric space. Recall that the problem for an operator \(f \) with a unique fixed point \(x^* \in X \) is said to be well-posed if for each sequence \(\{y_n\} \) in \(X \), \(d(y_n, f y_n) \to \theta \) as \(n \to \infty \) implies that \(y_n \to x^* \) as \(n \to \infty \).

Theorem 3.5. Under the assumptions of \([5, \text{Theorem } 3.2]\), the fixed point problem for \(f \) is well-posed.

Proof. According to Theorem \([5, \text{Theorem } 3.2]\), the operator \(f \) has a unique fixed point \(x^* \). Suppose that \(\{y_n\} \) is a sequence in \(X \) such that \(d(y_n, f y_n) \to \theta \) as \(n \to \infty \) in the given generalized ordered \(b \)-complete \(b \)-metric space \((X, d, \preceq)\). Then we have that

\[
\frac{1}{s}d(y_n, x^*) \leq d(y_n, f y_n) + d(f y_n, x^*) = d(y_n, f y_n) + d(f y_n, f x^*) \\
\leq d(y_n, f x_n) + Ad(y_n, x^*),
\]

wherefrom \((I - sA)d(y_n, x^*) \leq sd(y_n f y_n)\) and

\[
d(y_n, x^*) \leq (I - sA)^{-1}sd(y_n, f y_n) \to \theta
\]

in \(\mathbb{R}^n \) since \((I - sA)^{-1}s \in M_{m \times m}(\mathbb{R}_+). \) Hence, \(d(y_n, x^*) \to \theta \) in the Banach space \(\mathbb{R}^m \), i.e., the given fixed point problem for \(f \) is well-posed.
Remark 3.6. Note that the condition (5) of [5, Theorem 3.2] (that sA converges to zero, in other words, that $\rho(A) < \frac{1}{s}$ for the spectral radius of the matrix A) is crucial in the previous proof. In fact, the similar is true for a Banach-type contraction f (satisfying $d(fx, fy) \leq kd(x, y)$) in an arbitrary b-metric space (X, d) with parameter $s > 1$—it has a unique fixed point whenever $k \in [0, 1)$, however, it is well-posed only if $k \in [0, \frac{1}{s})$.

Acknowledgement. The first author is thankful to the Ministry of Education, Science and Technological Development of Serbia, Grant No. 174002.

References

Zoran Kadelburg
University of Belgrade,
Faculty of Mathematics,
Studentski trg 16, 11000 Beograd,
Serbia
E-mail: kadelbur@matf.bg.ac.rs

Stojan Radenović
University of Belgrade,
Faculty of Mechanical Engineering,
Kraljice Marije 16, 11000 Beograd,
Serbia
E-mail: radens@beotel.rs

Muhammad Sarwar
Department of Mathematics,
University of Malakand, Chakdara,
Dir (Lower), Khyber Pakhtunkhwa,
Pakistan, 18800
E-mail: sarwarswati@gmail.com