Ordered S-Metric Spaces and Coupled Common Fixed Point Theorems of Integral Type Contraction

Abdolsattar Gholidahneh, Shaban Sedghi, Tatjana Došenović and Stojan Radenović

Abstract

In the present paper, we introduce the notion of integral type contractive mapping with respect to ordered S-metric space and prove some coupled common fixed point results of integral type contractive mapping in ordered S-metric space. Moreover, we give an example to support our main result.

Keywords: S-metric, ordered S-metric space, common fixed point, coupled fixed point, integral type contractive mapping, partial order, mixed g-monotone property, commuting maps.

2010 Mathematics Subject Classification: Primary 54H25; Secondary 47H10.

1. Introduction

Banach contraction principle [4], is one of the most celebrated fixed point theorem and has been generalized in various directions. Fixed point problems for contractive mappings in metric spaces with a partial order have been studied by many authors (see [1,3,5,8,12,13,17,19]). The study of metric spaces has attracted, and continued to attract the interest of many authors. There are many generalizations of metric spaces, such as 2-metric spaces [11], G-metric spaces [20], D^*-metric spaces [24], partial metric spaces [6], cone metric spaces [15], S-metric spaces [22], b-metric spaces [9] and G_b-metric spaces [2]. In 2012, Sedghi et al. [22] introduced the notion of S-metric space.

First we recall some notions, results and examples which will be useful later.
Definition 1.1. [22] Let X be a nonempty set. An S-metric on X is a function $S : X^3 \to [0, \infty)$ that satisfies the following conditions for all $x, y, z, a \in X$:

(S1) $0 < S(x, y, z)$ for all $x, y, z \in X$ with $x \neq y \neq z$;
(S2) $S(x, y, z) = 0$ if $x = y = z$;
(S3) $S(x, y, z) \leq S(x, x, a) + S(y, y, a) + S(z, z, a)$ for all $x, y, z, a \in X$.

The pair (X, S) is called an S-metric space.

Example 1.2. [22] Let $X = \mathbb{R}^2$ and d be an ordinary metric on X. Put $S(x, y, z) = d(x, y) + d(x, z) + d(y, z)$ for all $x, y, z \in \mathbb{R}^2$, that is, S is the perimeter of the triangle given by x, y, z. Then S is an S-metric on X.

Lemma 1.3. [21] In an S-metric space, we have $S(x, x, y) = S(y, y, x)$.

Definition 1.4. [23] Let (X, S) be an S-metric space and $A \subseteq X$.

(1) If for every $x \in X$ there exists $r > 0$ such that $B_s(x, r) \subseteq A$, then the subset A is called open subset of X.

(2) Subset A of X is said to be S-bounded if there exists $r > 0$ such that $S(x, x, y) < r$ for all $x, y \in A$.

(3) A sequence $\{x_n\}$ in X converges to x if and only if $S(x_n, x_n, x) \to 0$ as $n \to \infty$. That is, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for each $n \geq n_0$, $S(x_n, x_n, x) < \varepsilon$ and we denote by $\lim_{n \to \infty} x_n = x$.

(4) A sequence $\{x_n\}$ in X is called a Cauchy sequence if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for each $n, m \geq n_0$, $S(x_n, x_n, x_m) < \varepsilon$.

(5) The S-metric space (X, S) is said to be complete if every Cauchy sequence is convergent.

(6) Let τ be the set of all $A \subseteq X$ with $x \in A$ if and only if there exists $r > 0$ such that $B_s(x, r) \subseteq A$. Then τ is a topology on X.

Lemma 1.5. [23] Let (X, S) be an S-metric space. If there exist sequences $\{x_n\}, \{y_n\}$ such that $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$, then $\lim_{n \to \infty} S(x_n, x_n, y_n) = S(x, x, y)$.

Lemma 1.6. [10] Let (X, S) be an S-metric space. Then
\[S(x, x, z) \leq 2S(x, y, z) + S(y, y, z), \]
and
\[S(x, x, z) \leq 2S(x, y, z) + S(z, z, y), \]
for all \(x, y, z \in X \).

Definition 1.7. [14] Let \((X, \preceq) \) be partially ordered set. Then \(a, b \in X \) are called comparable if \(a \preceq b \) or \(b \preceq a \) holds.

Definition 1.8. Let \(X \) be a nonempty set. Then \((X, S, \preceq) \) is called an ordered \(S \)-metric space if:

1. \((X, S) \) is an \(S \)-metric space,
2. \((X, \preceq) \) is a partially ordered set.

Definition 1.9. \((X, S, \preceq)\) is said to be regular if it has the following properties:

1. if for a non-decreasing sequence \(\{x_n\} \), \(x_n \rightarrow^S x \) as \(n \rightarrow \infty \), then \(x_n \preceq x \) for all \(n \);
2. if for a non-increasing sequence \(\{x_n\} \), \(x_n \rightarrow^S x \), as \(n \rightarrow \infty \), then \(x_n \succeq x \) for all \(n \).

Definition 1.10. [5] Let \((X, \preceq) \) be partially ordered set and \(H : X \times X \rightarrow X \). The mapping \(H \) is said to has the mixed monotone property if \(H \) is monotone nondecreasing in its first argument and is monotone nonincreasing in its second argument, i.e., for any \(a, b \in X \),

\[
\begin{align*}
a_1, a_2 &\in X, a_1 \preceq a_2 \Rightarrow H(a_1, b) \preceq H(a_2, b), \\
b_1, b_2 &\in X, b_1 \preceq b_2 \Rightarrow H(a, b_1) \succeq H(a, b_2).
\end{align*}
\]

Definition 1.11. [7] Let \((X, \preceq) \) be partially ordered set and suppose \(H : X \times X \rightarrow X \) and \(g : X \rightarrow X \). The mapping \(H \) is said to has the mixed \(g \)-monotone property if \(H \) is monotone \(g \)-nondecreasing in its first argument and is monotone \(g \)-nonincreasing in its second argument, i.e., for any \(a, b \in X \),

\[
\begin{align*}
a_1, a_2 &\in X, g(a_1) \preceq g(a_2) \Rightarrow H(a_1, b) \preceq H(a_2, b), \\
b_1, b_2 &\in X, g(b_1) \preceq g(b_2) \Rightarrow H(a, b_1) \succeq H(a, b_2).
\end{align*}
\]

Definition 1.12. [5] An element \((a, b)\) \in \(X \times X \) is called a coupled coincidence point of the mappings \(F : X \times X \rightarrow X \) and \(g : X \rightarrow X \) if \(F(a, b) = ga \) and \(F(b, a) = gb \), and their common coupled fixed point if \(F(a, b) = ga = a \) and \(F(b, a) = gb = b \).

Definition 1.13. [17] Let \(X \) be a nonempty set. Then we say that the mappings \(F : X \times X \rightarrow X \) and \(g : X \rightarrow X \) are commutative if \(gF(a, b) = F(ga, gb) \).

Definition 1.14. [17] An element \((a, b)\) \in \(X \times X \) is called a coupled fixed point of mapping \(F : X \times X \rightarrow X \) if \(F(a, b) = a \) and \(F(b, a) = b \).

Definition 1.15. Let \((X, S) \) and \((X', S') \) be two \(S \)-metric spaces, and let \(f : (X, S) \rightarrow (X', S') \) be a function. Then \(f \) is said to be continuous at a point \(a \in X \) if and only if for every sequence \(x_n \) in \(X \), \(S(x_n, x_n, a) \rightarrow 0 \) implies \(S'(f(x_n), f(x_n), f(a)) \rightarrow 0 \). A function \(f \) is continuous at \(X \) if and only if it is continuous at all \(a \in X \).
Definition 1.16. [16] Let $X, Y \subset (-\infty, +\infty)$. The function $\varphi : X \to Y$ is called sub-additive integrable function if and only if for all $c, d \in X$,
\[\int_0^{c+d} \varphi(t) dt \leq \int_0^c \varphi(t) dt + \int_0^d \varphi(t) dt.\]

Example 1.17. [16] Let $X = (0, +\infty)$, $d(x, y) = |x - y|$, and $\varphi(t) = \frac{1}{t+1}$ for all $t > 0$. Then for all $c, d \in X$,
\[\int_0^{c+d} \frac{dt}{t+1} = \ln(c + d + 1), \quad \int_0^c \frac{dt}{t+1} = \ln(c + 1), \quad \int_0^d \frac{dt}{t+1} = \ln(d + 1),\]

since $cd \geq 0$, then $c + d + 1 \leq c + d + 1 + cd = (c + 1)(d + 1)$. Therefore,
\[\ln(c + d + 1) \leq \ln((c + 1)(d + 1)) = \ln(c + 1) + \ln(d + 1).\]

So, we show that φ is sub-additive integrable function.

Example 1.18. Let $X = (1, +\infty)$, and $\varphi(t) = e^t$. Then the function φ is not sub-additive integrable function.

Lemma 1.19. [18] Let $\{r_n\}_{n \in \mathbb{N}}$ be a non-negative sequence such that $\lim_{n \to \infty} r_n = a$. Then
\[\lim_{n \to \infty} \int_0^{r_n} \varphi(t) dt = \int_0^a \varphi(t) dt,\]
where $\varphi : [0, +\infty) \to [0, +\infty]$ is Lebesgue integrable, summable on each compact subset of $[0, +\infty)$ and $\int_0^a \varphi(t) dt > 0$ for each $\varepsilon > 0$.

Lemma 1.20. [18] Let $\{r_n\}_{n \in \mathbb{N}}$ be a non-negative sequence. Then
\[\lim_{n \to \infty} \int_0^{r_n} \varphi(t) dt = 0,\]
if and only if $\lim_{n \to \infty} r_n = 0$, where $\varphi : [0, +\infty) \to [0, +\infty]$ is Lebesgue integrable, summable on each compact subset of $[0, +\infty)$ and $\int_0^a \varphi(t) dt > 0$ for each $\varepsilon > 0$.

2. Results

Theorem 2.1. Let (X, S, \preceq) be an ordered S-metric space. Let $H : X \times X \to X$ and $g : X \to X$ be mappings such that H has the mixed g-monotone property on X and there exist two elements $a_0, b_0 \in X$ with $g(a_0) \preceq H(a_0, b_0)$ and $g(b_0) \succeq H(b_0, a_0)$. Let there exists a constant $k \in (0, \frac{1}{2})$ such that the following holds:
\[\int_0^{S(H(a,b), H(p,q), H(c,r))} \varphi(t) dt \leq k \int_0^{S(ga,gp,gc)+S(gh,gq,gr)} \varphi(t) dt,\]
for \(a, b, c, p, q, r \in X\) with \(ga \succeq gp \succeq gc\) and \(gb \preceq gq \preceq gr\) or \(ga \preceq gp \preceq gc\) and \(gb \succeq gq \succeq gr\), where \(\varphi : [0, \infty) \to [0, \infty)\) is a Lebesgue integrable mapping which is summable, non-negative, sub-additive integrable function and such that for each \(\varepsilon > 0\), \(\int_0^\varepsilon \varphi(t)dt > 0\). Assume the following conditions:

(a) \(H(X \times X) \subset g(X)\),

(b) \(g(X)\) is complete,

(c) \(g\) is continuous and commutes with \(H\),

(d) \((X, S, \preceq)\) is regular.

Then \(H\) and \(g\) have a coupled coincidence point \((a, b)\). If \(ga \succeq gb\) or \(ga \preceq gb\), then \(g(a) = H(a, a) = a\).

Proof. Let \(a_0, b_0\) be two points such that \(g(a_0) \preceq H(a_0, b_0)\) and \(g(b_0) \succeq H(b_0, a_0)\).

As \(H(X \times X) \subset g(X)\), we may choose \(a_1, b_1\) in a way that \(g(a_1) = H(a_0, b_0)\) and \(g(b_1) = H(b_0, a_0)\).

Again since \(H(X \times X) \subset g(X)\), we may choose \(a_2, b_2 \in X\) such that \(g(a_2) = H(a_1, b_1)\) and \(g(b_2) = H(b_1, a_1)\). Repeating this process, we can build two sequences \(\{a_n\}\) and \(\{b_n\}\) in \(X\) such that,

\[
g(a_{n+1}) = H(a_n, b_n) \quad \text{and} \quad g(b_{n+1}) = H(b_n, a_n), \quad \text{for all } n \geq 0. \tag{2}
\]

Now, we claim that for all \(n \geq 0\),

\[
g(a_n) \preceq g(a_{n+1}), \tag{3}
\]

and

\[
g(b_n) \succeq g(b_{n+1}). \tag{4}
\]

Now we will use mathematical induction. Suppose that \(n = 0\). Since \(g(a_0) \preceq H(a_0, b_0)\) and \(g(b_0) \succeq H(b_0, a_0)\), we see that \(g(a_1) = H(a_0, b_0)\) and \(g(b_1) = H(b_0, a_0)\), so \(g(a_0) \preceq g(a_1)\) and \(g(b_0) \succeq g(b_1)\), i.e., (3) and (4) hold for \(n = 0\).

We now suppose that (3) and (4) are valid for some \(n > 0\). As we know that \(H\) has mixed \(g\)-monotone property and also \(g(a_n) \preceq g(a_{n+1})\), \(g(b_n) \succeq g(b_{n+1})\), then from (2), we have

\[
g(a_{n+1}) = H(a_n, b_n) \preceq H(a_{n+1}, b_n)
\]

and

\[
H(b_{n+1}, a_n) \preceq H(b_{n+1}, a_n) = g(b_{n+1}).
\]

Also we have,

\[
g(a_{n+2}) = H(a_{n+1}, b_{n+1}) \succeq H(a_{n+1}, b_n)
\]
and

\[H(b_{n+1}, a_n) \geq H(b_{n+1}, a_{n+1}) = g(b_{n+2}). \]

Then from (2) and (3), we get

\[g(a_{n+1}) \preceq g(a_{n+2}) \text{ and } g(b_{n+1}) \succeq g(b_{n+2}). \]

We conclude by mathematical induction that (3) and (4) hold for all \(n \geq 0 \). Continuing this process, we see clearly that

\[g(a_0) \preceq g(a_1) \preceq g(a_2) \preceq ... \preceq g(a_{n+1}) \]

and

\[g(b_0) \succeq g(b_1) \succeq g(b_2) \succeq ... \succeq g(b_{n+1}) \]

If \((a_{n+1}, b_{n+1}) = (a_n, b_n)\), then \(H \) and \(g \) have a coupled coincidence point. So we suppose that \((a_{n+1}, b_{n+1}) \neq (a_n, b_n)\) for all \(n \geq 0 \), i.e., we suppose that either \(g(a_{n+1}) = H(a_n, b_n) \neq g(a_n) \) or \(g(b_{n+1}) = H(b_n, a_n) \neq g(b_n) \).

Next, we prove that, for all \(n \geq 0 \),

\[\int_{0}^{S(ga_{n+1}, ga_{n+1}, ga_n)} \varphi(t) dt \leq \frac{1}{2} (2k)^n \int_{0}^{[S(ga_1, ga_1, ga_0) + S(gb_1, gb_1, gb_0)]} \varphi(t) dt. \] \((5)\)

For \(n = 1 \), we have

\[\int_{0}^{S(ga_2, ga_2, ga_1)} \varphi(t) dt = \int_{0}^{S(H(a_1, b_1), H(a_1, b_1), H(a_0, b_0))} \varphi(t) dt \]

\[\leq k \int_{0}^{[S(ga_1, ga_1, ga_0) + S(gb_1, gb_1, gb_0)]} \varphi(t) dt \]

\[= \frac{1}{2} (2k)^1 \int_{0}^{[S(ga_1, ga_1, ga_0) + S(gb_1, gb_1, gb_0)]} \varphi(t) dt, \]

and hence (5) holds for \(n = 1 \). Therefore, we assume that (5) holds for \(n > 0 \).

Since \(g(a_{n+1}) \succeq g(a_n) \) and \(g(b_{n+1}) \preceq g(b_n) \), by using (2) and (5), we have

\[\int_{0}^{S(ga_{n+1}, ga_{n+1}, ga_n)} \varphi(t) dt = \int_{0}^{S(H(a_n, b_n), H(a_n, b_n), H(a_{n-1}, b_{n-1}))} \varphi(t) dt \]

\[\leq k \int_{0}^{[S(ga_n, ga_n, ga_{n-1}) + S(gb_n, gb_n, gb_{n-1})]} \varphi(t) dt. \] \((6)\)

Now,
\[
\int_0^{S(g_{an}, ga_{n} - 1)} \varphi(t) dt = \int_0^{\rho(H(a_{n-1}, b_{n-1}), H(a_{n-2}, b_{n-2}))} \varphi(t) dt \\
\leq k \int_0^{[S(g_{an}, ga_{n-1}, ga_{n-2}) + S(g_{b_{an-1}}, gb_{n-1}, gb_{n-2})]} \varphi(t) dt, \quad (7)
\]

and
\[
\int_0^{S(g_{bn}, gb_{n} - 1)} \varphi(t) dt = \int_0^{\rho(H(b_{n-1}, a_{n-1}), H(b_{n-2}, a_{n-2}))} \varphi(t) dt \\
\leq k \int_0^{[S(g_{bn}, gb_{n-1}, gb_{n-2}) + S(g_{an}, ga_{n-1}, ga_{n-2})]} \varphi(t) dt. \quad (8)
\]

Combining (7) and (8), we get that
\[
\int_0^{S(g_{an}, ga_{n} - 1)} \varphi(t) dt + \int_0^{S(g_{bn}, gb_{n} - 1)} \varphi(t) dt \\
\leq 2k \int_0^{[S(g_{an}, ga_{n-1}, ga_{n-2}) + S(g_{bn}, gb_{n-1}, gb_{n-2})]} \varphi(t) dt
\]
holds for \(n \in \mathbb{N} \). From (6), we have
\[
\int_0^{S(g_{an+1}, ga_{n+1} - 1)} \varphi(t) dt \leq k \int_0^{[S(g_{an}, ga_{n}, ga_{n-1}) + S(g_{bn}, gb_{n}, gb_{n-1})]} \varphi(t) dt \\
\leq 2k^2 \int_0^{[S(g_{an}, ga_{n-1}, ga_{n-2}) + S(g_{bn}, gb_{n-1}, gb_{n-2})]} \varphi(t) dt \\
\vdots \\
\leq \frac{1}{2} (2k)^n \int_0^{[S(g_{a1}, ga_{1}, ga_{0}) + S(g_{b1}, gb_{1}, gb_{0})]} \varphi(t) dt.
\]

Hence for all \(n \in \mathbb{N} \), we have
\[
\int_0^{S(g_{an+1}, ga_{n+1} - 1)} \varphi(t) dt \leq \frac{1}{2} (2k)^n \int_0^{[S(g_{a1}, ga_{1}, ga_{0}) + S(g_{b1}, gb_{1}, gb_{0})]} \varphi(t) dt. \quad (9)
\]

Suppose \(m, n \in \mathbb{N} \), with \(m > n \). First, let \(m = 2p + 1 \), (9) and condition that \(\varphi \) is sub-additive integrable function, we have
\[\int_0^{S(g_{a_m}, g_{a_m}, g_{a_n})} \varphi(t) dt \leq 2 \int_0^{S(g_{a_{n+1}}, g_{a_{n+1}}, g_{a_n})} \varphi(t) dt + \cdots \]

\[+ \int_0^{S(g_{a_{m-1}}, g_{a_{m-1}}, g_{a_m} - 2)} \varphi(t) dt \]

\[+ \int_0^{S(g_{a_m}, g_{a_m}, g_{a_{m-1}})} \varphi(t) dt \]

\[\leq \left(\sum_{i=n}^{m-2} (2k)^i + \frac{1}{2} (2k)^{m-1} \right) \]

\[\times \int_0^{S(g_{a_1}, g_{a_1}, g_{a_0}) + S(g_{b_1}, g_{b_1}, g_{b_0})} \varphi(t) dt \]

\[\leq \left(\frac{(2k)^n}{1 - 2k} + \frac{1}{2} (2k)^{m-1} \right) \]

\[\times \int_0^{S(g_{a_1}, g_{a_1}, g_{a_0}) + S(g_{b_1}, g_{b_1}, g_{b_0})} \varphi(t) dt. \]

Further, let \(m = 2p. \) Again, using (S3), (9) and condition that \(\varphi \) is sub-additive integrable function, we obtain

\[\int_0^{S(g_{a_m}, g_{a_m}, g_{a_n})} \varphi(t) dt \leq 2 \int_0^{S(g_{a_{n+1}}, g_{a_{n+1}}, g_{a_n})} \varphi(t) dt + \cdots \]

\[+ \int_0^{S(g_{a_{m-1}}, g_{a_{m-1}}, g_{a_m} - 2)} \varphi(t) dt \]

\[\leq \sum_{i=n}^{m-1} (2k)^i \int_0^{S(g_{a_1}, g_{a_1}, g_{a_0}) + S(g_{b_1}, g_{b_1}, g_{b_0})} \varphi(t) dt \]

\[\leq \frac{(2k)^n}{1 - 2k} \int_0^{S(g_{a_1}, g_{a_1}, g_{a_0}) + S(g_{b_1}, g_{b_1}, g_{b_0})} \varphi(t) dt. \]

Letting \(n, m \to \infty. \) Since \(2k < 1, \) using Lemma 1.20 we conclude that

\[\lim_{n,m \to \infty} S(g_{a_m}, g_{a_m}, g_{a_n}) = 0. \]

Thus \(\{g_{a_n}\} \) is Cauchy sequence in \(g(X). \) Similarly, we can show that \(\{g_{b_n}\} \) is Cauchy sequence in \(g(X). \) Since \(g(X) \) is complete, we have \(\{g_{a_n}\} \) and \(\{g_{b_n}\} \) are convergent to some \(a \in X \) and \(b \in X \) respectively. Since \(g \) is continuous, we have \(\{g(g_{a_n})\} \) is convergent to \(g(a) \) and \(\{g(g_{b_n})\} \) is convergent to \(g(b), \) that is,

\[\lim_{n \to \infty} g(g_{a_n}) = g(a) \quad \text{and} \quad \lim_{n \to \infty} g(g_{b_n}) = g(b). \]
Since, H and g are commutative, we have
\[H(g(a_n), g(b_n)) = g(H(a_n, b_n)) = g(a_{n+1}) \]
and
\[H(g(b_n), g(a_n)) = g(H(b_n, a_n)) = g(b_{n+1}) \]

Next, we claim that (a, b) is coupled coincidence point of H and g.

From (1) we have
\[
\int_0^{S(H(a, b), H(a, b), g^2a_{n+1})} \varphi(t)dt = \int_0^{S(H(a, b), H(a, b), H(ga, gb))} \varphi(t)dt \leq k \int_0^{[S(ga, ga, ga_{n+1}) + S(gb, gb, gb_{n+1})]} \varphi(t)dt.
\]

Letting $n \to \infty$ and also g is continuous, we get
\[
\int_0^{S(H(a, b), H(a, b), ga)} \varphi(t)dt \leq k \int_0^{[S(ga, ga, ga) + S(gb, gb, gb)]} \varphi(t)dt = 0.
\]

Hence $ga = H(a, b)$. Similarly, we can show that $gb = H(b, a)$.

Next we claim that $H(a, a) = g(a) = a$. Since (a, b) is a coupled coincidence point of H and g, we have $ga = H(a, b)$ and $gb = H(b, a)$. Suppose that $ga \neq gb$.

Then from (1), we have
\[
\int_0^{S(gb, gb, ga)} \varphi(t)dt = \int_0^{S(H(b, a), H(b, a), H(b, a))} \varphi(t)dt \leq k \int_0^{[S(gb, gb, ga) + S(ga, ga, ga)]} \varphi(t)dt.
\]

Also,
\[
\int_0^{S(ga, ga, gb)} \varphi(t)dt = \int_0^{S(H(a, b), H(a, b), H(b, a))} \varphi(t)dt \leq k \int_0^{[S(ga, ga, gb) + S(gb, gb, gb)]} \varphi(t)dt.
\]

Therefore,
\[
\int_0^{S(gb, gb, ga)} \varphi(t)dt + \int_0^{S(ga, ga, gb)} \varphi(t)dt \leq 2k \int_0^{[S(gb, gb, ga) + S(ga, ga, gb)]} \varphi(t)dt.
\]

Since $2k < 1$, we get
\[
\int_0^{S(gb, gb, ga)} \varphi(t)dt + \int_0^{S(ga, ga, gb)} \varphi(t)dt < \int_0^{S(gb, gb, ga)} \varphi(t)dt + \int_0^{S(ga, ga, gb)} \varphi(t)dt,
\]
which is contradiction. Hence $ga = gb$ and
\[H(a, b) = ga = gb = H(b, a). \]

Since \(\{ga_{n+1}\} \) is a subsequence of \(\{ga_n\} \), we have \(\{ga_{n+1}\} \) is convergent to \(a \). Thus,

\[
\int_{S(ga, ga, ga_{n+1})} \varphi(t) dt = \int_0^{S(H(a, b), H(a, b), H(a_n, b_n))} \varphi(t) dt \\
\leq k \int_0^{[S(ga, ga, ga_n)+S(gb, gb, gb_n)]} \varphi(t) dt.
\]

Letting \(n \to \infty \) and also \(g \) is continuous, we get

\[
\int_0^{S(ga, ga, a)} \varphi(t) dt \leq k \int_0^{[S(ga, ga, a)+S(gb, gb, b)]} \varphi(t) dt.
\]

Similarly, we can show that

\[
\int_0^{S(gb, gb, b)} \varphi(t) dt \leq k \int_0^{[S(gb, gb, b)+S(ga, ga, a)]} \varphi(t) dt.
\]

Thus

\[
\int_0^{S(ga, ga, a)} \varphi(t) dt + \int_0^{S(gb, gb, b)} \varphi(t) dt \leq 2k \int_0^{[S(ga, ga, a)+S(gb, gb, b)]} \varphi(t) dt.
\]

Since \(2k < 1 \), the last inequality happens only if \(S(ga, ga, a) = 0 \) and \(S(gb, gb, b) = 0 \). Hence \(a = ga \) and \(b = gb \). Thus we get \(ga = H(a, a) = a \). \(\square \)

Corollary 2.2. Let \((X, S, \preceq) \) be an ordered S-metric space. Let \(H : X \times X \to X \) and \(g : X \to X \) be mappings such that \(H \) has the mixed \(g \)-monotone property on \(X \) and there exist two elements \(a_0, b_0 \in X \) with \(g(a_0) \preceq H(a_0, b_0) \) and \(g(b_0) \succeq H(b_0, a_0) \). Let there exists a constant \(k \in (0, \frac{1}{2}) \) such that the following holds:

\[
\int_0^{S(H(p, q), H(p, q), H(a, b))} \varphi(t) dt \leq k \int_0^{[S(gp, gp, gr)+S(gq, gq, gr)]} \varphi(t) dt
\]

for \(a, b, p, q \in X \) with \(ga \succeq gp \) and \(gb \succeq gq \) or \(ga \preceq gp \) and \(gb \succeq gq \), where \(\varphi : [0, \infty) \to [0, \infty) \) is a Lebesgue integrable mapping which is summable, non-negative, sub-additive integrable function and such that for each \(\varepsilon > 0 \), \(\int_0^\varepsilon \varphi(t) dt > 0 \). Assume the following conditions:

(i) \(H(X \times X) \subseteq g(X) \),

(ii) \(g \) is continuous and commutes with \(H \),

(iii) \(g(X) \) is complete,

(iv) \((X, S, \preceq) \) is regular.
Then there exists \(a \in X \) such that \(ga = H(a,a) = a \).

Proof. From Theorem 2.1 by taking \(a = p \) and \(b = q \). \(\square \)

Corollary 2.3. Let \((X, S, \preceq)\) be an ordered \(S \)-metric space. Let \(H : X \times X \to X \) be mapping such that \(H \) has the mixed monotone property on \(X \) and there exist two elements \(a_0, b_0 \in X \) with \(a_0 \preceq H(a_0, b_0) \) and \(b_0 \preceq H(b_0, a_0) \). Let there exists a constant \(k \in (0, \frac{1}{2}) \) such that the following holds:

\[
\int_0^S(H(p,q),H(p,q),H(a,b)) \varphi(t)dt \leq k \int_0^|S(p,p,a)+S(q,q,b)| \varphi(t)dt
\]

for \(a, b, p, q \in X \) with \(a \preceq p \) and \(b \preceq q \) or \(a \preceq p \) and \(b \preceq q \), where \(\varphi : [0, \infty) \to [0, \infty) \) is a Lebesgue integrable mapping which is summable, non-negative, sub-additive integrable function and such that for each \(\epsilon > 0 \), \(\int_0^\epsilon \varphi(t)dt > 0 \). If \((X, S, \preceq)\) is regular then there exists \(a \in X \) such that \(H(a,a) = a \).

Proof. We defined \(g : X \to X \) by \(ga = a \). Then the mappings \(H \) and \(g \) satisfy all the conditions of Corollary 2.2. Hence the result follows. \(\square \)

Corollary 2.4. Let \((X, S, \preceq)\) be an ordered \(S \)-metric space. Let \(H : X \times X \to X \) and \(g : X \to X \) be mappings such that \(H \) has the mixed \(g \)-monotone property on \(X \) and there exist two elements \(a_0, b_0 \in X \) with \(g(a_0) \preceq H(a_0, b_0) \) and \(g(b_0) \preceq H(b_0, a_0) \). Let there exists a constant \(k \in (0, \frac{1}{2}) \) such that the following holds:

\[
S(H(p,q),H(p,q),H(a,b)) \leq k[S(gp, gp, ga) + S(gq, gg, gb)]
\]

for \(a, b, p, q \in X \) with \(ga \preceq gp \) and \(gb \preceq gq \) or \(ga \preceq gp \) and \(gb \preceq gq \). Assume the following conditions:

(a) \(H(X \times X) \subset g(X) \),
(b) \(g(X) \) is complete,
(c) \(g \) is continuous and commutes with \(H \),
(d) \((X, S, \preceq)\) is regular.

Then there exists \(a \in X \) such that \(H(a,a) = ga = a \).

Proof. Put \(\varphi(t) = 1 \) for all \(t \in [0, \infty) \), the result follows. Moreover, we get a generalization of theorem given in [5]. \(\square \)

Corollary 2.5. Let \((X, S, \preceq)\) be a complete ordered \(S \)-metric space. Let \(H : X \times X \to X \) be mapping has the mixed monotone property on \(X \) and there exist two elements \(a_0, b_0 \in X \) with \(a_0 \preceq H(a_0, b_0) \) and \(b_0 \preceq H(b_0, a_0) \). Let there exists a constant \(k \in (0, \frac{1}{2}) \) such that the following holds:

\[
S(H(p,q),H(p,q),H(a,b)) \leq k[S(p,p,a) + S(q,q,b)]
\]

for \(a, b, p, q \in X \) with \(a \preceq p \) and \(b \preceq q \) or \(a \preceq p \) and \(b \preceq q \). If \((X, S, \preceq)\) is regular, then there exists \(a \in X \) such that \(H(a,a) = a \).
Proof. Let \(g : X \to X \) be defined as \(g(a) = a \). Then all conditions of Corollary 2.4 are satisfied.

Example 2.6. Suppose \(X = [0, 1] \) be ordered by the following relation \(a \preceq b \) if and only if \(a \leq b \). Let the metric \(S \) be defined by

\[
S(a, b, c) = |b + c - 2a| + |b - c|.
\]

Then clearly, \((X, S, \preceq)\) is a complete ordered \(S \)-metric space. Let \(g : X \to X \) and \(H : X \times X \to X \) be defined by

\[
ga = \frac{a}{2} \quad \text{and} \quad H(a, b) = \frac{a + b}{20}.
\]

Let \(\varphi(t) = e^t \). Then by (1), we have

\[
\int_0^1 \varphi(t)dt = \int_0^1 |(H(p, q) + H(c, r) - 2H(a, b)) + |H(p, q) - H(c, r)|| \varphi(t)dt
\]

\[
= \int_0^1 \left| \frac{2a + 2b + 2c - 2(a + b)}{20} + \frac{a + c - a - c}{20} \right| \varphi(t)dt
\]

\[
\leq \int_0^1 \left| \frac{2a + 2b + 2c - 2(a + b)}{20} + \frac{a + c - a - c}{20} \right| \varphi(t)dt
\]

\[
= \int_0^1 \left(|gp + gc - 2ga| + |gp + gr - 2gb| + |gp - gc| + |gp - gr| \right) \varphi(t)dt
\]

\[
\leq \int_0^1 \left(S(gp, gp, gc) + S(gb, gb, gr) \right) \varphi(t)dt
\]

\[
\leq \frac{1}{10} \int_0^1 \left(S(gp, gp, gc) + S(gb, gb, gr) \right) \varphi(t)dt.
\]

Acknowledgement. The third author is thankful to Ministry of Education, Sciences and Technological Development of Serbia.

References

AbdolSattar Gholidahneh
Department of Mathematics, Qaemshahr Branch,
Islamic Azad University, Qaemshahr, Iran
E-mail: Gholidahneh.s@gmail.com

Shaban Sedghi
Department of Mathematics, Qaemshahr Branch,
Islamic Azad University, Qaemshahr, Iran
E-mail: sedghi_gh@yahoo.com

Tatjana Došenović
Faculty of Technology,
University of Novi Sad, Bulevar cara Lazara 1, Serbia
E-mail: tatjanad@tf.uns.ac.rs

Stojan Radenović
Faculty of Mechanical Engineering,
University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia
and
Department of Mathematics,
University of Novi Pazar, Novi Pazar, Serbia
E-mail: radens@beotel.rs