On Eccentricity Version of Laplacian Energy of a Graph

Document Type: Special Issue: Energy of Graphs

Author

Calcutta Institute of Engineering and Management

Abstract

The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and the average degree of the vertices of G. Motivated by the work from Sharafdini and Panahbar [R. Sharafdini, H. Panahbar, Vertex weighted Laplacian graph energy and other topological indices. J. Math. Nanosci. 2016, 6, 57-65], in this paper we investigate the eccentricity version of Laplacian energy of a graph G.

Keywords

Main Subjects


1. T. Aleksic, Upper bounds for Laplacian energy of graphs, MATCH Commun.
Math. Comput. Chem.
60 (2008) 435 - 439.

2. R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004)
287 - 295.

3. K. C. Das, S. A. Mojallal, I. Gutman, On energy and Laplacian energy of
bipartite graphs,
Appl. Math. Comput. 273 (2016) 759 - 766.

4. N. De, New bounds for Zagreb eccentricity indices, Open J. Discrete Math. 3
(2013) 70 - 74.

5. J. B. Diaz, F. T. Metcalf, Stronger forms of a class of inequalities of G. PolyaG.Szego, and L. V. Kantorovich. Bull. Amer. Math. Soc. 69 (1963) 415-418.

6. G. H. Fath-Tabar, A. R. Ashrafi, Some remarks on Laplacian eigenvalues and
Laplacian energy of graphs,
Math. Commun. 15 (2010) 443 - 451.

7. I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forsch. Graz 103
(1978) 22 pp.

8. I. Gutman, The energy of graph: old and new results, Algebraic combinatorics
and applications
, Springer, Berlin, (2001) 196 - 211.

9. I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414
(2006) 29 - 37.

10. H. Liu, M. Lu, F. Tian, Some upper bounds for the energy of graphs, J. Math.
Chem.
41 (2007) 45 - 57.

11. Z. Luo, J. Wu, Zagreb eccentricity indices of the generalized hierarchical product graphs and their applications, J. Appl. Math. 2014 Art. ID 241712, 8 pp.

12. R. Merris, Laplacian matrices of graphs: a survey, Second Conference of the
International Linear Algebra Society (ILAS) (Lisbon, 1992)
Linear Algebra
Appl.
197/198 (1994) 143 - 176.

13. V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326
(2007) 1472 - 1475.

14. N. Ozeki, On the estimation of inequalities by the maximum, or minimum
values, (Japanese)
J. College Arts Sci. Chiba Univ. 5 (1968) 199 - 203.

15. G. Polya, G. Szego, Problems and Theorems in Analysis I: Series, Integral
Calculus, Theory of Functions
, Springer-Verlag, New York-Berlin (1972).

16. R. Sharafdini, H. Panahbar, Vertex weighted Laplacian graph energy and
other topological indices,
J. Math. Nanosci. 6 (2016) 57 - 65.

17. R. Xing, B. Zhou, N. Trinajstic, On Zagreb eccentricity indices, Croat. Chem.
Acta
84 (2011) 493 - 497.

18. B. Zhou, I. Gutman, T. Aleksic, A note on Laplacian energy of graphs,
MATCH Commun. Math. Comput. Chem. 60 (2008) 441 - 446.