Seidel Signless Laplacian Energy of Graphs

Document Type: Special Issue: Energy of Graphs

Authors

1 Karnatak University

2 University Kragujevac, Serbia

3 Hirasugar Institute of Technology

Abstract

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,\ldots, n-1-2d_n)$ be the diagonal matrix
with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian
matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless
Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+}(G)$ is defined as the sum of the absolute deviations of the eigenvalues of $SL^+(G)$ from their mean. In this paper, we establish the main properties of the eigenvalues of $SL^+(G)$ and of $E_{SL^+}(G)$.

Keywords

Main Subjects


1. N. Abreu, D. M. Cardoso, I. Gutman, E. A. Martins, M. Robbiano, Bounds
for the signless Laplacian energy,
Linear Algebra Appl. 435 (2011) 2365–2374.

2. M. Biernacki, H. Pidek, C. Ryll–Nardzewski, Sur une inégalité entre des intégrales définies, Univ. Maria Curie Skłodowska A4 (1950) 1–4.

3. B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices,
MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.

4. D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs – Theory and Application, Academic Press, New York, 1980.

5. D. Cvetković, P. Rowlinson, S. Simić, Signless Laplacians of finite graphs,
Linear Algebra Appl. 423 (2007) 155–171.

6. D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph
Spectra
, Cambridge Univ. Press, Cambridge, 2010.

7. D. Cvetković, S. K. Simić, Towards a spectral theory of graphs based on the
signless Laplacian I,
Publ. Inst. Math. (Beograd) 85 (2009) 19–33.

8. D. Cvetković, S. K. Simić, Towards a spectral theory of graphs based on the
signless Laplacian II,
Linear Algebra Appl. 432 (2010) 2257–2272.

9. D. Cvetković, S. K. Simić, Towards a spectral theory of graphs based on the
signless Laplacian III,
Appl. Anal. Discr. Math. 4 (2010) 156–166.

10. J. B. Diaz, F. T. Metcalf, Stronger forms of a class of inequalities of G.Pólya–
G.Szegő and L.V.Kantorovich,
Bull. Am. Math. Soc. 69 (1963) 415–418.

11. E. Ghorbani, On eigenvalues of Seidel matrices and Haemers conjecture, Designs, Codes Cryptography 84 (2017) 189–195.

12. R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discr.
Math.
7 (1994) 221–229.

13. R. Grone, R. Merris, V. S. Sunder, The Laplacian spectrum of a graph, SIAM
J. Matrix Anal. Appl.
11 (1990) 218–238.

14. I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz
103 (1978) 1–22.

15. I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.

16. I. Gutman, B. Furtula, Survey of graph energies, Math. Interdisc. Res. 2
(2017) 85–129.

17. I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414
(2006) 29–37.

18. W. H. Haemers, Seidel switching and graph energy, MATCH Commun. Math.
Comput. Chem.
68 (2012) 653–659.

19. X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.

20. R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197-
198
(1994) 143–176.

21. R. Merris, A survey of graph Laplacians, Linear Multilin. Algebra 39 (1995) 19–31.

22. B. Mohar, The Laplacian spectrum of graphs, in: Y. Alavi, G. Chartrand,
O. R. Oellermann, A. J. Schwenk (Eds.),
Graph Theory, Combinatorics and
Applications
, Wiley, New York, 1991, pp. 871–898.

23. P. Nageswari, P. B. Sarasija, Seidel energy and its bounds, Int. J. Math. Anal. 8 (2014) 2869–2871.

24. M. R. Oboudi, Energy and Seidel energy of graphs, MATCH Commun. Math.
Comput. Chem.
75 (2016) 291–303.

25. N. Ozeki, On the estimation of inequalities by maximum and minimum values,
J. Coll. Arts Sci. Chiba Univ. 5 (1968) 199–203 (in Japanese).

26. G. Pólya, G. Szegő, Problems and Theorems in Analysis, Series, Integral
Calculus, Theory of Functions
, Springer, Berlin, 1972.

27. M. R. Rajesh Kanna, R. P. Kumar, M. R. Farahani, Milovanović bounds for
Seidel energy of a graph,
Adv. Theor. Appl. Math. 10 (2016) 37–44.

28. H. S. Ramane, M. M. Gundloor, S. M. Hosamani, Seidel equienergetic graphs,
Bull. Math. Sci. Appl. 16 (2016) 62–69.

29. H. S. Ramane, I. Gutman, M. M. Gundloor, Seidel energy of iterated line
graphs of regular graphs,
Kragujevac J. Math. 39 (2015) 7–12.

30. H. S. Ramane, R. B. Jummannaver, I. Gutman, Seidel Laplacian energy of
graphs,
Int. J. Appl. Graph Theory 1 (2017) 74–82.