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On Edge-Decomposition of Cubic Graphs into

Copies of the Double-Star with Four Edges

Abbas Seify ?

Abstract

A tree containing exactly two non-pendant vertices is called a double-
star. Let k1 and k2 be two positive integers. The double-star with degree
sequence (k1 + 1, k2 + 1, 1, . . . , 1) is denoted by Sk1,k2 . It is known that a
cubic graph has an S1,1-decomposition if and only if it contains a perfect
matching. In this paper, we study the S1,2-decomposition of cubic graphs.
We present some necessary and some sufficient conditions for the existence
of an S1,2-decomposition in cubic graphs.
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1. Introduction

Let G be a graph and V (G), E(G) denote the vertex set and the edge set of
G, respectively. Suppose that v ∈ V (G). We denote the set of neighbors of
v by N(v) and for X ⊆ V (G), N(X) = ∪x∈XN(x). Also, for S ⊆ V (G), let
NS(X) = N(X)∩S. We denote |N(v)| and |NS(v)| by d(v) and dS(v), respectively.

An independent set is a set of vertices in a graph in which no two vertices are
adjacent. The independence number, α(G), is the size of a largest independent set
in G. A dominating set of G is a subset D such that every vertex not in D is
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adjacent to at least one vertex in D. The domination number, γ(G), is the size of
a smallest dominating set in G.

A subset M ⊆ E(G) is called a matching, if no two edges of M are incident. A
matchingM is called a perfect matching, if every vertex of G is incident with some
edge in M . Hall proved that a bipartite graph G = (A,B) has a matching which
covers every vertex in A if and only if for every S ⊆ A we have |NB(S)| ≥ |S|, see
[3, Theorem 16.4].

Let A ⊆ V (G). Then the induced subgraph of G with vertex set A is denoted
by G[A]. Given a graph H, the graph G is called H-free, if it contains no induced
subgraph isomorphic toH. A graphG has anH-decomposition, if edges ofG can be
decomposed into subgraphs isomorphic to H. If G has an H-decomposition, then
we say that G is H-decomposable. A tree with exactly two non-pendant vertices is
called a double-star. Let k1 and k2 be two positive integers. The double-star with
degree sequence (k1 + 1, k2 + 1, 1, . . . , 1) is denoted by Sk1,k2 . A vertex of degree
i is called an i-vertex. If G is an r-regular graph with an S1,r−1-decomposition
and S ⊆ V (G) is the set of r-vertices of this decomposition, then we say that G is
(S1,r−1, S)-decomposable.

Figure 1: S1,2.

Tree decompositions of highly connected graphs have been extensively studied
by several authors, see [1], [5] and [6]. Barát and Gerbner [1] showed that every
191-edge-connected graph, whose size is divisible by 4 has an S1,2-decomposition.
Recently, Bensmail et al. [2] claimed that they have proved Barát-Thomassen
conjecture.

In this paper, we study the double-star decomposition of cubic graphs. Let
G be a cubic graph. If G is S-decomposable and S is a double-star, then S is
isomorphic to S1,1, S1,2 or S2,2, otherwise S has a vertex of degree at least four.
Kötzig [4] proved that a cubic graph has an S1,1-decomposition if and only if it
contains a perfect matching. We study the edge-decomposition of cubic graphs into
copies of S1,2. Also, we obtain some results on S1,r−1-decomposition of r-regular
graphs.

2. Results

Let G be an r-regular graph and S ⊆ V (G). The question is whether G is
(S1,r−1, S)-decomposable or not? For giving a response to this question, we use a
new bipartite graph H = (S,L), in which S is the set of r-vertices of S1,r−1-trees
and for each edge e ∈ E(G \ S), we put a vertex ue in L. Two vertices si and uej
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are adjacent in H if and only if we can obtain an S1,r−1 by adding ej to a K1,r−1
containing si as a central vertex. We have the following remarks which follow by
the fact that the vertices of degree r are not adjacent.

Remark 1. Let G be an r-regular graph of order n. Then G is (S1,r−1, S)-decompos-
able if and only if |S| = rn

2(r+1) and H = (S,L) has a perfect matching.

Remark 2. Let G be an r-regular graph of order n which is S1,r−1-decomposable.
Then α(G) ≥ rn

2(r+1) .

In the following lemma we provide some necessary conditions for the existence
of an S1,2-decomposition in cubic graphs.

Lemma 2.1. Let G be a cubic graph of order n which has an S1,2-decomposition.
Then there exists an independent set S ⊂ V (G) of size 3n

8 such that:

1. Each component of G \ S is either a cycle or a tree,

2. No component of G \ S has two 3-vertices.

Proof. Let S ⊆ V (G) be the set of 3-vertices in an S1,2-decomposition and H =
(S,L) be the bipartite graph defined before Remark 1. Also, suppose that F is
a given component of G \ S. If F is neither a tree nor a cycle, then it contains
a cycle C : v1, e1, v2, e2, . . . , vt, et, v1 and an edge e = viw, where 1 ≤ i ≤ t and
w ∈ V (F ). Let A = E(C), then |NH(A)| ≤ |A| − 1. Now, by Hall’s theorem,
H has no perfect matching. Then by Remark 1, G has no S1,2-decomposition, a
contradiction.

If there exist two 3-vertices u and v in some component F , then there exists a
(u, v)-path P in F . Now, let A = E(P ). Then |NH(A)| ≤ |A|−1, a contradiction.

These necessary conditions are not sufficient. Some examples are given in
Figure 2.

Figure 2: Cubic graphs with no S1,2-decomposition.
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By Lemma 2.1, if G is an S1,2-decomposable cubic graph, then α(G) ≥ 3n
8 .

We consider the case that α(G) = 3n
8 and find two sufficient conditions for the

existence of an S1,2-decomposition in this case.
First, we prove the following theorem. Note that if α(G) = 3n

8 and S is an
independent set with |S| = 3n

8 , then each components of G \ S is a cycle, path or
an isolated vertex. In the following we consider the case in which each component
is either a cycle or an isolated vertex.

Theorem 2.2. Let G be a cubic graph of order n with α(G) = 3n
8 . Suppose that

there exists an independent set S ⊆ V (G) such that |S| = 3n
8 and each component

of G\S is a cycle or an isolated vertex. If no vertex of S is contained in a triangle,
then G is (S1,2, S)-decomposable.

Proof. Suppose that C1, . . . , Ct are cycle components of G \ S and let W =
V (C1)

⋃
. . .

⋃
V (Ct). We claim that NS({u}) 6= NS({v}), for every two vertices

u, v ∈ W . If u and v are adjacent, then since no vertex of S is contained in
a triangle, we are done. So we may assume that u and v are not adjacent. If
NS({u}) = NS({v}) = {s}, then S′ = (S \ {s})∪ {u, v} is an independent set and
|S′| > 3n

8 , a contradiction.
This implies that every w ∈ W is adjacent to one vertex in S and no vertex

of S is adjacent to two vertices in W . Hence, H = (S,L) defined before Remark
1 is a 2-regular graph and has a perfect matching. This yields that G is (S1,2, S)-
decomposable.

Now, we prove the following theorem.

Theorem 2.3. Let G be a cubic graph of order n with α(G) = 3n
8 and S be an

independent set of size 3n
8 . Let I be the set of isolated vertices in G \ S. If there

exists no cycle of length 3, 5 or 7 in G[V (G) \ I] which contains a vertex of S,
then G has a S1,2-decomposition.

Proof. First note that there exists a graph with the conditions of this theorem,
see Figure 3. We divide the proof into four claims.

Figure 3: A graph with the conditions of Theorem 2.3.

Claim 1. Each component of G \ S is a path or a cycle.
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If there exists a vertex of degree 3 in G \S, then by adding this vertex to S we
obtain an independent set S′ such that |S′| = 3n

8 + 1, a contradiction.

Claim 2. Let u, v ∈ V (G\S) be two 2-vertices in G\S. ThenNS({u}) 6= NS({v}).
Let u and v be two vertices in G \ S such that dG\S(u) = dG\S(v) = 2 and

NS({u}) = NS({v}) = {s}. If u and v are adjacent, then s is contained in a
triangle in G[V (G) \ I], a contradiction. Also, if u and v are not adjacent, then
S′ = (S \ {s}) ∪ {u, v} is an independent set and |S′| = 3n

8 + 1, a contradiction.
So, the claim is proved.

Now, we check the condition of Hall’s theorem for the edges of G \S. Suppose
that L = {e1, . . . , el} ⊆ E(G \ S). Let P1, . . . , Pk be path components of G \ S.
Let 〈L〉 be an induced subgraph with edge set L. Now, we consider two cases:

Case 1. No Pi is contained in 〈L〉.
Note that for each edge e ∈ L, one of its end points has degree two in G \ S.

Because if both end points are of degree one in G \ S, then the induced subgraph
on this edge is a path component of G\S. Now, we show that for each edge ei ∈ L,
one can find vei ∈ V (G \ S) such that dG\S(vei) = 2, vei is an end point of ei and
if i 6= j, then vei 6= vej .

Suppose that Pi = v1v2 . . . vt has some edge in 〈L〉, where 1 ≤ i ≤ k. Let
ei1 , ei2 , . . . , eit be edges of Pi contained in 〈L〉 such that i1 < i2 < . . . < it and
eij = vijvij+1. If e1 /∈ 〈L〉, then let veij = vij−1 and we are done. Also, if
et−1 /∈ 〈L〉, then let veij = vij+1. So, we may assume that e1, et−1 ∈ 〈L〉. Since
Pi is not contained in 〈L〉, there exists 1 < l < t − 1, such that el /∈ 〈L〉. Now, if
ij < l, let veij = vij+1 and if ij > l, let veij = vij−1. By repeating this procedure
for P1, P2, . . . , Pk, we are done.

Now, Claim 2 implies that for each e ∈ L there exists a distinct vertex in S
which is adjacent to ve and so in this case, the condition of Hall’s theorem holds.

Case 2. There exist i1, . . . , it such that 1 ≤ i1, . . . , it ≤ k and Pi1 , . . . , Pit are
path components of G \ S contained in 〈L〉. Let Wj ⊆ V (G \ S) be the set of
vertices of degree j in G \ S, for j = 0, 1, 2. We have the following.

Claim 3. Let v ∈ V (G \ S) such that dG\S(v) = 1 and NS({v}) = {x, y}. Then
NG\S({x})

⋂
W2 = ∅ or NG\S({y})

⋂
W2 = ∅.

By contrary, suppose that x and y are adjacent to vx and vy in G \ S, re-
spectively, and dG\S(vx) = dG\S(vy) = 2. Note that v is not adjacent to vx and
vy, since otherwise there exists a triangle containing v, a contradiction. Now, if
vx and vy are adjacent, then C : v, x, vx, vy, y, v is a cycle of length 5 containing
v, a contradiction. These imply that {v, vx, vy} is an independent set. Now, let
S′ = (S \ {x, y}) ∪ {v, vx, vy}. It can be easily seen that S′ is an independent set
and |S′| = 3n

8 + 1, a contradiction.
Now, we can prove that in the second case, L satisfies the condition of Hall’s

theorem. It suffices to show that the edges of Pi1 , . . . , Pit satisfy Hall’s condition.
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Because, similar to the proof of the first case, one can see that other edges have
distinct neighbors in S and we are done. Now, Claim 2 implies that we can find∑t

j=1(|E(Pij )| − 1) vertices in S which are adjacent to the vertices of degree two
in Pi1 , Pi2 , . . . , Pit . Let T ⊆ S be the set of vertices in S which are adjacent to
the end vertices of Pi1 . . . , Pit and to no vertex of degree two in G \ S. It suffices
to show that |T | ≥ t.

By contrary, suppose that |T | ≤ t − 1. Then Claim 3 implies that each end
vertex of the paths has a neighbor in T . Let A be the set of end vertices of paths
that have one neighbor in T and let B be the set of end vertices which have two
neighbors in T . We have the following.

|A|+ |B| = 2t , |A|+ 2|B| ≤ 3t− 3.

Hence, we conclude that |A| ≥ t+ 3. Now, we prove the following claim.

Claim 4. If u, v ∈ A, then NT ({u}) ∩NT ({v}) = ∅.
First, note that if u and v are adjacent, then we are done. So, we may assume

that u and v are not adjacent. Let NT ({u}) = NT ({v}) = {w}. Suppose that
NS({u}) = {w, x} and NS({v}) = {w, y}. By the definition of T , we conclude
that x and y are adjacent to some vertices of degree 2 in G \ S, say vx and
vy, respectively. First, suppose that x = y. If {u, v, vx} is not independent set,
then one can find a triangle contains a vertex of S, a contradiction, see Figure 4.
Thus, {u, v, vx} is an independent set. Now, S′ = (S \ {w, x}) ∪ {u, v, vx} is an
independent set of size 3n

8 + 1, a contradiction.

Figure 4: The case x = y (left side) and the case x 6= y (right side).

So, we may assume that x 6= y. We show that {u, v, vx, vy} is an independent
set.

Since no vertex of S is contained in a triangle in G[V (G)\ I], we conclude that
u and vx are not adjacent (similarly, v and vy are not adjacent). So, suppose that
v and vx are adjacent. Then C : u, x, vx, v, w, u is a cycle of length 5 in G[V (G)\I]
which contains w ∈ S, a contradiction, see Figure 4. Also, note that vx and vy
are not adjacent. Since, otherwise C : u, x, vx, vy, y, v, w, u is a cycle of length 7 in
G[V (G)\I] which contains w ∈ S, a contradiction, see Figure 4. These imply that
{u, v, vx, vy} is an independent set. Now, let S′ = (S \ {x, y, w}) ∪ {u, v, vx, vy}.
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Then S′ is an independent set and |S′| > 3n
8 , a contradiction and this completes

the proof of the claim.
Now, Claim 4 implies that for every v ∈ A we have a distinct neighbor tv ∈ T

and this implies that |T | ≥ t+ 3, a contradiction. This completes the proof.

We have the following result in regular bipartite graphs which makes a connec-
tion between the domination number and the existence of a S1,r−1-decomposition.

Theorem 2.4. If G = (A,B) is a bipartite r-regular graph of order n such that
r + 1|n and γ(G) = n

r+1 , then G is S1,r−1-decomposable.

Proof. Let D be a dominating set of G of size n
r+1 . Then vertices of D have no

common neighbor in V (G) \ D. Now, let DA = D ∩ A and DB = D ∩ B and
|DA| = a, |DB | = b. Since D is a dominating set of size n

r+1 we have:

a+ b = n
r+1 , ra+ b = n

2 .

Then a = b = n
2(r+1) . Now, let S = N(DA). We show that G has a (S1,r−1, S)-

decomposition. Clearly, |S| = rn
2(r+1) and E(G \ S) is exactly the set of edges

between DB and N(DB). Note that if v ∈ N(DB), then dS(v) = r − 1. Now, it
is not hard to see that the graph H = (S,L), defined in Remark 1, is a (r − 1)-
regular bipartite graph and hence it has a perfect matching. So, by Remark 1, G
is (S1,r−1, S)-decomposable.

In bipartite cubic graphs we can find a better result.

Theorem 2.5. Let G = (A,B) be a cubic bipartite graph of order n such that 8|n.
Then γ(G) = n

4 if and only if there exists S ⊆ A of size 3n
8 such that G is both

(S1,2, S)-decomposable and (S1,2, N(A \ S))-decomposable.

Proof. Note that if γ(G) = n
4 , then by Theorem 2.4, we are done.

For converse, first notice that if G is a cubic graph, then γ(G) ≥ n
4 . Sup-

pose that there exists S ⊆ A such that G is both (S1,2, S)-decomposable and
(S1,2, N(A \ S))-decomposable. Note that each vertex in A \ S is a 3-vertex in
G \ S. Now, Lemma 2.1 implies that each of them is in a different component
of G \ S and so they have no common neighbors. By a similar method, one
can show that the vertices of B \ N(A \ S) have no common neighbors. Now,
D = (A \ S)∪ (B \N(A \ S)) is a dominating set of size n

4 and this completes the
proof.

Now, we provide another sufficient condition for the existence of an S1,2-
decomposition in bipartite cubic graphs.

Theorem 2.6. Let G = (A,B) be a bipartite cubic graph of order n and S ⊆ A
be of size 3n

8 . Then G is (S1,2, S)-decomposable if and only if there exists a perfect
matching between S and N(A \ S).
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Proof. First, suppose that G is (S1,2, S)-decomposable. Then the second part of
Lemma 2.1 indicates that no component of G \ S has two 3-vertices. This implies
that no two vertices of A \ S have a common neighbor in B. So, |N(A \ S)| = 3n

8 .
Now, note that if Hall’s condition does not hold for S and N(A \ S), then Hall’s
condition does not hold in H = (S,L), too. This is a contradiction and this
completes the proof.

Now, suppose that there exists a perfect matching between S and N(A \ S).
Then |N(A \S)| = 3n

8 which implies that no two vertices of A \S have a common
neighbor in B. For each vertex v ∈ N(A \ S), there exists a unique edge ev ∈
E(G \ S) in which v is one of its end points. Let M = {(ui, vi)| i = 1, 2, . . . , 3n8 }
be a matching between S and N(A \ S). Then by adding the edge evi to a claw
containing ui as a 3-vertex, one can obtain an S1,2-decomposition.

We close the paper with the following questions.

Question 1. Does there exist a triangle-free 2-connected cubic graph of order
divisible by 8 which has no S1,2-decomposition?

Question 2. Is it true that every bipartite cubic graph of order divisible by 8 is
S1,2-decomposable?
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