On Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges

Abbas Seify *

Abstract

A tree containing exactly two non-pendant vertices is called a double-star. Let k_1 and k_2 be two positive integers. The double-star with degree sequence $(k_1 + 1, k_2 + 1, 1, \ldots, 1)$ is denoted by S_{k_1,k_2}. It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching. In this paper, we study the $S_{1,2}$-decomposition of cubic graphs. We present some necessary and some sufficient conditions for the existence of an $S_{1,2}$-decomposition in cubic graphs.

Keywords: Edge-decomposition, double-star, cubic graph, regular graph, bipartite graph.

2010 Mathematics Subject Classification: Primary 05C51, Secondary 05C05.

How to cite this article

1. Introduction

Let G be a graph and $V(G)$, $E(G)$ denote the vertex set and the edge set of G, respectively. Suppose that $v \in V(G)$. We denote the set of neighbors of v by $N(v)$ and for $X \subseteq V(G)$, $N(X) = \bigcup_{x \in X} N(x)$. Also, for $S \subseteq V(G)$, let $N_S(X) = N(X) \cap S$. We denote $|N(v)|$ and $|N_S(v)|$ by $d(v)$ and $d_S(v)$, respectively.

An independent set is a set of vertices in a graph in which no two vertices are adjacent. The independence number, $\alpha(G)$, is the size of a largest independent set in G. A dominating set of G is a subset D such that every vertex not in D is
adjacent to at least one vertex in D. The domination number, $\gamma(G)$, is the size of a smallest dominating set in G.

A subset $M \subseteq E(G)$ is called a matching, if no two edges of M are incident. A matching M is called a perfect matching, if every vertex of G is incident with some edge in M. Hall proved that a bipartite graph $G = (A, B)$ has a matching which covers every vertex in A if and only if for every $S \subseteq A$ we have $|N_B(S)| \geq |S|$, see [3, Theorem 16.4].

Let $A \subseteq V(G)$. Then the induced subgraph of G with vertex set A is denoted by $G[A]$. Given a graph H, the graph G is called H-free, if it contains no induced subgraph isomorphic to H. A graph G has an H-decomposition, if edges of G can be decomposed into subgraphs isomorphic to H. If G has an H-decomposition, then we say that G is H-decomposable. A tree with exactly two non-pendant vertices is called a double-star. Let k_1 and k_2 be two positive integers. The double-star with degree sequence $(k_1 + 1, k_2 + 1, 1, \ldots , 1)$ is denoted by S_{k_1,k_2}. A vertex of degree i is called an i-vertex. If G is an r-regular graph with an $S_{1,r-1}$-decomposition and $S \subseteq V(G)$ is the set of r-vertices of this decomposition, then we say that G is $(S_{1,r-1},S)$-decomposable.

Figure 1: $S_{1,2}$.

Tree decompositions of highly connected graphs have been extensively studied by several authors, see [1], [5] and [6]. Barát and Gerbner [1] showed that every 191-edge-connected graph, whose size is divisible by 4 has an $S_{1,2}$-decomposition. Recently, Bensmail et al. [2] claimed that they have proved Barát-Thomassen conjecture.

In this paper, we study the double-star decomposition of cubic graphs. Let G be a cubic graph. If G is S-decomposable and S is a double-star, then S is isomorphic to $S_{1,1}$, $S_{1,2}$ or $S_{2,2}$, otherwise S has a vertex of degree at least four. Kotzig [4] proved that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching. We study the edge-decomposition of cubic graphs into copies of $S_{1,2}$. Also, we obtain some results on $S_{1,r-1}$-decomposition of r-regular graphs.

2. Results

Let G be an r-regular graph and $S \subseteq V(G)$. The question is whether G is $(S_{1,r-1},S)$-decomposable or not? For giving a response to this question, we use a new bipartite graph $H = (S,L)$, in which S is the set of r-vertices of $S_{1,r-1}$-trees and for each edge $e \in E(G \setminus S)$, we put a vertex u_e in L. Two vertices s_i and u_e,
are adjacent in H if and only if we can obtain an $S_{1,r-1}$ by adding e_j to a $K_{1,r-1}$ containing s_i as a central vertex. We have the following remarks which follow by the fact that the vertices of degree r are not adjacent.

Remark 1. Let G be an r-regular graph of order n. Then G is $(S_{1,r-1}, S)$-decomposable if and only if $|S| = \frac{rn}{2(r+1)}$ and $H = (S, L)$ has a perfect matching.

Remark 2. Let G be an r-regular graph of order n which is $S_{1,r-1}$-decomposable. Then $\alpha(G) \geq \frac{rn}{2(r+1)}$.

In the following lemma we provide some necessary conditions for the existence of an $S_{1,2}$-decomposition in cubic graphs.

Lemma 2.1. Let G be a cubic graph of order n which has an $S_{1,2}$-decomposition. Then there exists an independent set $S \subset V(G)$ of size $\frac{3n}{8}$ such that:

1. Each component of $G \setminus S$ is either a cycle or a tree,

2. No component of $G \setminus S$ has two 3-vertices.

Proof. Let $S \subseteq V(G)$ be the set of 3-vertices in an $S_{1,2}$-decomposition and $H = (S, L)$ be the bipartite graph defined before Remark 1. Also, suppose that F is a given component of $G \setminus S$. If F is neither a tree nor a cycle, then it contains a cycle $C : v_1, e_1, v_2, e_2, \ldots, v_t, e_t, v_1$ and an edge $e = v_iw$, where $1 \leq i \leq t$ and $w \in V(F)$. Let $A = E(C)$, then $|N_H(A)| \leq |A| - 1$. Now, by Hall’s theorem, H has no perfect matching. Then by Remark 1, G has no $S_{1,2}$-decomposition, a contradiction.

If there exist two 3-vertices u and v in some component F, then there exists a (u, v)-path P in F. Now, let $A = E(P)$. Then $|N_H(A)| \leq |A| - 1$, a contradiction. \hfill \Box

These necessary conditions are not sufficient. Some examples are given in Figure 2.

![Figure 2: Cubic graphs with no $S_{1,2}$-decomposition.](image-url)
By Lemma 2.1, if G is an $S_{1,2}$-decomposable cubic graph, then $\alpha(G) \geq \frac{3n}{8}$. We consider the case that $\alpha(G) = \frac{3n}{8}$ and find two sufficient conditions for the existence of an $S_{1,2}$-decomposition in this case.

First, we prove the following theorem. Note that if $\alpha(G) = \frac{3n}{8}$ and S is an independent set with $|S| = \frac{3n}{8}$, then each components of $G\setminus S$ is a cycle, path or an isolated vertex. In the following we consider the case in which each component is either a cycle or an isolated vertex.

Theorem 2.2. Let G be a cubic graph of order n with $\alpha(G) = \frac{3n}{8}$. Suppose that there exists an independent set $S \subseteq V(G)$ such that $|S| = \frac{3n}{8}$ and each component of $G\setminus S$ is a cycle or an isolated vertex. If no vertex of S is contained in a triangle, then G is $(S_{1,2}, S)$-decomposable.

Proof. Suppose that C_1, \ldots, C_t are cycle components of $G\setminus S$ and let $W = V(C_1) \cup \ldots \cup V(C_t)$. We claim that $N_S(\{u\}) \neq N_S(\{v\})$, for every two vertices $u, v \in W$. If u and v are adjacent, then since no vertex of S is contained in a triangle, we are done. So we may assume that u and v are not adjacent. If $N_S(\{u\}) = N_S(\{v\}) = \{s\}$, then $S' = (S \setminus \{s\}) \cup \{u, v\}$ is an independent set and $|S'| > \frac{3n}{8}$, a contradiction.

This implies that every $w \in W$ is adjacent to one vertex in S and no vertex of S is adjacent to two vertices in W. Hence, $H = (S, L)$ defined before Remark 1 is a 2-regular graph and has a perfect matching. This yields that G is $(S_{1,2}, S)$-decomposable. \hfill \square

Now, we prove the following theorem.

Theorem 2.3. Let G be a cubic graph of order n with $\alpha(G) = \frac{3n}{8}$ and S be an independent set of size $\frac{3n}{8}$. Let I be the set of isolated vertices in $G\setminus S$. If there exists no cycle of length 3, 5 or 7 in $G[V(G) \setminus I]$ which contains a vertex of S, then G has a $S_{1,2}$-decomposition.

Proof. First note that there exists a graph with the conditions of this theorem, see Figure 3. We divide the proof into four claims.

![Figure 3: A graph with the conditions of Theorem 2.3.](image)

Claim 1. Each component of $G \setminus S$ is a path or a cycle.
If there exists a vertex of degree 3 in \(G \setminus S \), then by adding this vertex to \(S \) we obtain an independent set \(S' \) such that \(|S'| = \frac{3n}{8} + 1 \), a contradiction.

Claim 2. Let \(u, v \in V(G \setminus S) \) be two 2-vertices in \(G \setminus S \). Then \(N_S(\{u\}) \neq N_S(\{v\}) \).

Let \(u \) and \(v \) be two vertices in \(G \setminus S \) such that \(d_{G \setminus S}(u) = d_{G \setminus S}(v) = 2 \) and \(N_S(\{u\}) = N_S(\{v\}) = \{s\} \). If \(u \) and \(v \) are adjacent, then \(s \) is contained in a triangle in \(G[V(G) \setminus \{s\}] \), a contradiction. Also, if \(u \) and \(v \) are not adjacent, then \(S' = (S \setminus \{s\}) \cup \{u, v\} \) is an independent set and \(|S'| = \frac{3n}{8} + 1 \), a contradiction. So, the claim is proved.

Now, we check the condition of Hall's theorem for the edges of \(G \setminus S \). Suppose that \(L = \{e_1, \ldots, e_t\} \subseteq E(G \setminus S) \). Let \(P_1, \ldots, P_k \) be path components of \(G \setminus S \). Let \(\langle L \rangle \) be an induced subgraph with edge set \(L \). Now, we consider two cases:

Case 1. No \(P_i \) is contained in \(\langle L \rangle \).

Note that for each edge \(e \in L \), one of its end points has degree two in \(G \setminus S \). Because if both end points are of degree one in \(G \setminus S \), then the induced subgraph on this edge is a path component of \(G \setminus S \). Now, we show that for each edge \(e_i \in L \), one can find \(v_{e_i} \in V(G \setminus S) \) such that \(d_{G \setminus S}(v_{e_i}) = 2 \), \(v_{e_i} \) is an end point of \(e_i \) and if \(i \neq j \), then \(v_{e_i} \neq v_{e_j} \).

Suppose that \(P_i = v_1v_2 \ldots v_l \) has some edge in \(\langle L \rangle \), where \(1 \leq i \leq k \). Let \(e_{i_1}, e_{i_2}, \ldots, e_{i_t} \) be edges of \(P_i \) contained in \(\langle L \rangle \) such that \(i_1 < i_2 < \ldots < i_t \) and \(e_{i_j} = v_{i_j}v_{i_j+1} \). If \(e_{i-1} \notin \langle L \rangle \), then let \(v_{e_{i_j}} = v_{i_j-1} \) and we are done. Also, if \(e_{t+1} \notin \langle L \rangle \), then let \(v_{e_{i_j}} = v_{i_{j+1}} \). So, we may assume that \(e_1, e_{t+1} \in \langle L \rangle \). Since \(P_t \) is not contained in \(\langle L \rangle \), there exists \(1 < l < l-1 \), such that \(e_l \notin \langle L \rangle \). Now, if \(i_j < l \), let \(v_{e_{i_j}} = v_{i_j-1} \) and if \(i_j > l \), let \(v_{e_{i_j}} = v_{i_j+1} \). By repeating this procedure for \(P_1, P_2, \ldots, P_k \), we are done.

Now, Claim 2 implies that for each \(e \in L \) there exists a distinct vertex in \(S \) which is adjacent to \(v \), and so in this case, the condition of Hall's theorem holds.

Case 2. There exist \(i_1, \ldots, i_t \) such that \(1 \leq i_1, \ldots, i_t \leq k \) and \(P_{i_1}, \ldots, P_{i_t} \) are path components of \(G \setminus S \) contained in \(\langle L \rangle \). Let \(W_2 \subseteq V(G \setminus S) \) be the set of vertices of degree \(j \) in \(G \setminus S \), for \(j = 0, 1, 2 \). We have the following.

Claim 3. Let \(v \in V(G \setminus S) \) such that \(d_{G \setminus S}(v) = 1 \) and \(N_S(\{v\}) = \{x, y\} \). Then \(N_{G \setminus S}(\{x\}) \cap W_2 = \emptyset \) or \(N_{G \setminus S}(\{y\}) \cap W_2 = \emptyset \).

By contrary, suppose that \(x \) and \(y \) are adjacent to \(v_x \) and \(v_y \) in \(G \setminus S \), respectively, and \(d_{G \setminus S}(v_x) = d_{G \setminus S}(v_y) = 2 \). Note that \(v \) is not adjacent to \(v_x \) and \(v_y \), since otherwise there exists a triangle containing \(v \), a contradiction. Now, if \(v_x \) and \(v_y \) are adjacent, then \(C : v, x, v_x, v_y, y, v \) is a cycle of length 5 containing \(v \), a contradiction. These imply that \(\{v, v_x, v_y\} \) is an independent set. Now, let \(S' = (S \setminus \{x, y\}) \cup \{v, v_x, v_y\} \). It can be easily seen that \(S' \) is an independent set and \(|S'| = \frac{3n}{8} + 1 \), a contradiction.

Now, we can prove that in the second case, \(L \) satisfies the condition of Hall's theorem. It suffices to show that the edges of \(P_1, \ldots, P_t \) satisfy Hall's condition.
Because, similar to the proof of the first case, one can see that other edges have distinct neighbors in S and we are done. Now, Claim 2 implies that we can find $\sum_{j=1}^{t}(|E(P_j)| - 1)$ vertices in S which are adjacent to the vertices of degree two in P_1, P_2, \ldots, P_t. Let $T \subseteq S$ be the set of vertices in S which are adjacent to the end vertices of P_1, \ldots, P_t, and to no vertex of degree two in $G \setminus S$. It suffices to show that $|T| \geq t$.

By contrary, suppose that $|T| \leq t - 1$. Then Claim 3 implies that each end vertex of the paths has a neighbor in T. Let A be the set of end vertices of paths that have one neighbor in T and let B be the set of end vertices which have two neighbors in T. We have the following.

$$|A| + |B| = 2t, \quad |A| + 2|B| \leq 3t - 3.$$

Hence, we conclude that $|A| \geq t + 3$. Now, we prove the following claim.

Claim 4. If $u, v \in A$, then $N_T(\{u\}) \cap N_T(\{v\}) = \emptyset$.

First, note that if u and v are adjacent, then we are done. So, we may assume that u and v are not adjacent. Let $N_T(\{u\}) = N_T(\{v\}) = \{w\}$. Suppose that $N_S(\{u\}) = \{w, x\}$ and $N_S(\{v\}) = \{w, y\}$. By the definition of T, we conclude that x and y are adjacent to some vertices of degree 2 in $G \setminus S$, say v_x and v_y, respectively. First, suppose that $x = y$. If $\{u, v, v_x\}$ is not independent set, then one can find a triangle contains a vertex of S, a contradiction, see Figure 4. Thus, $\{u, v, v_x\}$ is an independent set. Now, $S' = (S \setminus \{w, x\}) \cup \{u, v, v_x\}$ is an independent set of size $\frac{2n}{3} + 1$, a contradiction.

Figure 4: The case $x = y$ (left side) and the case $x \neq y$ (right side).

So, we may assume that $x \neq y$. We show that $\{u, v, v_x, v_y\}$ is an independent set.

Since no vertex of S is contained in a triangle in $G[V(G) \setminus I]$, we conclude that u and v_x are not adjacent (similarly, v and v_y are not adjacent). So, suppose that v and v_x are adjacent. Then $C: u, v, v_x, v, w, u$ is a cycle of length 5 in $G[V(G) \setminus I]$ which contains $w \in S$, a contradiction, see Figure 4. Also, note that v_x and v_y are not adjacent. Since, otherwise $C: u, x, v_x, v_y, y, v, w, u$ is a cycle of length 7 in $G[V(G) \setminus I]$ which contains $w \in S$, a contradiction, see Figure 4. These imply that $\{u, v, v_x, v_y\}$ is an independent set. Now, let $S' = (S \setminus \{x, y, w\}) \cup \{u, v, v_x, v_y\}$.

Then S' is an independent set and $|S'| > \frac{3n}{8}$, a contradiction and this completes the proof of the claim.

Now, Claim 4 implies that for every $v \in A$ we have a distinct neighbor $t_v \in T$ and this implies that $|T| \geq t + 3$, a contradiction. This completes the proof. \hfill \qed

We have the following result in regular bipartite graphs which makes a connection between the domination number and the existence of a $S_{1,r-1}$-decomposition.

Theorem 2.4. If $G = (A, B)$ is a bipartite r-regular graph of order n such that $r + 1 \mid n$ and $\gamma(G) = \frac{n}{r+1}$, then G is $S_{1,r-1}$-decomposable.

Proof. Let D be a dominating set of G of size $\frac{n}{r+1}$. Then vertices of D have no common neighbor in $V(G) \setminus D$. Now, let $D_A = D \cap A$ and $D_B = D \cap B$ and $|D_A| = a, |D_B| = b$. Since D is a dominating set of size $\frac{n}{r+1}$ we have:

$$a + b = \frac{n}{r+1}, \quad ra + b = \frac{n}{2}.$$

Then $a = b = \frac{n}{2(r+1)}$. Now, let $S = N(D_A)$. We show that G has a $(S_{1,r-1}, S)$-decomposition. Clearly, $|S| = \frac{ra}{2(r+1)}$ and $E(G \setminus S)$ is exactly the set of edges between D_B and $N(D_B)$. Note that if $v \in N(D_B)$, then $d_{S}(v) = r - 1$. Now, it is not hard to see that the graph $H = (S, L)$, defined in Remark 1, is a $(r-1)$-regular bipartite graph and hence it has a perfect matching. So, by Remark 1, G is $(S_{1,r-1}, S)$-decomposable. \hfill \qed

In bipartite cubic graphs we can find a better result.

Theorem 2.5. Let $G = (A, B)$ be a cubic bipartite graph of order n such that $8 \mid n$. Then $\gamma(G) = \frac{n}{4}$ if and only if there exists $S \subseteq A$ of size $\frac{3n}{8}$ such that G is both $(S_{1,2}, S)$-decomposable and $(S_{1,2}, N(A \setminus S))$-decomposable.

Proof. Note that if $\gamma(G) = \frac{n}{4}$, then by Theorem 2.4, we are done. For converse, first notice that if G is a cubic graph, then $\gamma(G) \geq \frac{n}{4}$. Suppose that there exists $S \subseteq A$ such that G is both $(S_{1,2}, S)$-decomposable and $(S_{1,2}, N(A \setminus S))$-decomposable. Note that each vertex in $A \setminus S$ is a 3-vertex in $G \setminus S$. Now, Lemma 2.1 implies that each of them is in a different component of $G \setminus S$ and so they have no common neighbors. By a similar method, one can show that the vertices of $B \setminus N(A \setminus S)$ have no common neighbors. Now, $D = (A \setminus S) \cup (B \setminus N(A \setminus S))$ is a dominating set of size $\frac{n}{4}$ and this completes the proof. \hfill \qed

Now, we provide another sufficient condition for the existence of an $S_{1,2}$-decomposition in bipartite cubic graphs.

Theorem 2.6. Let $G = (A, B)$ be a bipartite cubic graph of order n and $S \subseteq A$ be of size $\frac{3n}{8}$. Then G is $(S_{1,2}, S)$-decomposable if and only if there exists a perfect matching between S and $N(A \setminus S)$.
A. Seify

Proof. First, suppose that G is $(S_{1,2}, S)$-decomposable. Then the second part of Lemma 2.1 indicates that no component of $G \setminus S$ has two 3-vertices. This implies that no two vertices of $A \setminus S$ have a common neighbor in B. So, $|N(A \setminus S)| = \frac{3n}{8}$. Now, note that if Hall’s condition does not hold for S and $N(A \setminus S)$, then Hall’s condition does not hold in $H = (S, L)$, too. This is a contradiction and this completes the proof.

Now, suppose that there exists a perfect matching between S and $N(A \setminus S)$. Then $|N(A \setminus S)| = \frac{3n}{8}$ which implies that no two vertices of $A \setminus S$ have a common neighbor in B. For each vertex $v \in N(A \setminus S)$, there exists a unique edge $e_v \in E(G \setminus S)$ in which v is one of its end points. Let $M = \{(u_i, v_i) | i = 1, 2, \ldots, \frac{3n}{8}\}$ be a matching between S and $N(A \setminus S)$. Then by adding the edge e_v, to a claw containing u_i as a 3-vertex, one can obtain an $S_{1,2}$-decomposition.

We close the paper with the following questions.

Question 1. Does there exist a triangle-free 2-connected cubic graph of order divisible by 8 which has no $S_{1,2}$-decomposition?

Question 2. Is it true that every bipartite cubic graph of order divisible by 8 is $S_{1,2}$-decomposable?

Conflicts of Interest. The author declares that there are no conflicts of interest regarding the publication of this paper.

References

Abbas Seify
Department of Sciences,
Shahid Rajaei Teacher Training University,
Tehran, I. R. Iran
E-mail: abbas.seify@gmail.com