Trees with Extreme Values of Second Zagreb Index and Coindex

Document Type: Original Scientific Paper

Authors

1 Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I. R. Iran

2 Faculty of Mathematical Sciences, University of Tabriz, Tabriz, I. R. Iran

Abstract

In this paper we present a generalization of the aforementioned bound for all trees in terms of the order and maximum degree. We also give a lower bound on the second Zagreb coindex of trees.

Keywords

Main Subjects


[1] A. R. Ashrafi, T. Došlić and A. Hamzeh, The Zagreb coindices of graph
operations, Discrete Appl. Math. 158 (2010) 1571–1578.
[2] K. Ch. Das, Sharp bounds for the sum of the squares of the degrees of a
graph, Kragujevac J. Math. 25 (2003) 31–49.
[3] K. Ch. Das, Maximizing the sum of the squares of the degrees of a graph,
Discrete Math. 285 (2004) 57–66.
[4] D. de Caen, An upper bound on the sum of squares in a graph, Discrete Math.
185 (1998) 245–248.
[5] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars
Math. Contemp. 1 (2008) 66–80.
[6] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, total
-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972)
535–538.
[7] Ž. Kovijanić Vukićević and G. Popivoda, Chemical trees with extreme values
of Zagreb indices and coindices, Iranian J. Math. Chem. 5 (2014) 19–29.
[8] X. Li and I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure
Descriptors, Mathematical Chemistry Monograph 1, University of Kragujevac
and Faculty of Science Kragujevac, Kragujevac, 2006.
[9] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices
30 years after, Croat. Chem. Acta 76 (2003) 113–124

[10] R. Rasi, S. M. Sheikholeslami and A. Behmaram, An upper bound on the
first Zagreb index in trees, Iranian J. Math. Chem. 8(1) (2017) 71–82.

[11] S. Zhang, W. Wang and T. C. E. Cheng, Bicyclic graphs with the first three
smalllest and largest values of the first general Zagreb index, MATCH Commun.
Math. Comput. Chem. 56 (2006) 579–592.
[12] B. Zhou and I. Gutman, Relations betweenWiener, hyper-Wiener and Zagreb
indices, Chem. Phys. Lett. 394 (2004) 93–95.


Volume 4, Issue 2
Special Issue: Spectral Graph Theory and Mathematical Chemistry with Connection to Computer Science
Autumn 2019
Pages 227-238