Original Scientific Paper

The Non-Coprime Graph of Finite Groups

Gholamreza Aghababaei-Beni and Abbas Jafarzadeh *

Abstract

The non-coprime graph Π_G of a finite group G is a graph with the vertex set $G \setminus \{e\}$, where two distinct vertices u and ν are adjacent if they have noncoprime orders. In this paper, the main properties of Cartesian and tensor product of the non-coprime graph of two finite groups are investigated. We also describe the non-coprime graph of some groups including the dihedral and semi-dihedral groups. Some open questions are also proposed.

Keywords: Coprime graph, dihedral group, semi-dihedral group, dicyclic group.

2010 Mathematics Subject Classification: 05C15, 20D15, Secondary: 05C75.

How to cite this article

G. Aghababaei-Beni and A. Jafarzadeh, The non-coprime graph of finite groups, Math. Interdisc. Res. 7 (2022) 385-394.

1. Introduction

In this paper, all groups are finite and all graphs are undirected simple graphs without loops or multiple edges. For every graph Π , the sets of all vertices and edges of Π are denoted by $V(\Pi)$ and $E(\Pi)$, respectively.

Given a group G, there are different ways to associate a graph to G, including the prime graph [5], commuting graph [3], and Cayley graphs which have a long history and valuable applications.

The non-coprime graph Π_G of a finite group G is a graph with $G \setminus \{e\}$ as the vertex set and two distinct vertices u and ν are adjacent if $(|u|, |\nu|) \neq 1$. This

Received 17 February 2019, Accepted 27 February 2019

DOI: 10.22052/mir.2019.172393.1117

©2022 University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.

^{*} Corresponding author (E-mail: abbas.jafarzadeh@gmail.com, jafarzadeh.a@qiet.ac.ir) Academic Editor: Ali Reza Ashrafi

graph was first introduced in [4]. The relative non-coprime graph $\Pi_{(G,H)}$ of G and a subgroup H of G is a spanning subgraph of Π_G where two distinct vertices u and ν are adjacent if at least one of them belongs to H. Clearly $\Pi_{(G,G)} = \Pi_G$. In the next section, we investigate the Cartesian and tensor product of the non-coprime graph of two groups. In the last section, some properties of the non-coprime graph of the groups D_{2n} , U_{2nm} , V_{8n} , T_{4n} and SD_{8n} such as their clique numbers, chromatic numbers, and connectivity are investigated. We show that the non-coprime graph of all these groups are perfect.

We use the notation $u \sim v$ to show that two vertices u and v are adjacent in the background graph. For integers m and n, we use the notations (m,n) and [m,n] for the greatest common divisor and the least common multiple of a and b, respectively. Also if g is an element of a group G, the notation |g| stands for the order of g in G, i.e. the least positive integer n with $g^n = e$. All other notations are standard and can be found for example in [1, 2].

2. Graph Operations on Non-Coprime Graphs

The aim of this section is to study the non-coprime graph under two graph operations, Cartesian and tensor product of graphs.

Definition 2.1. Let G_1 and G_2 be two graphs. The Cartesian product of G_1 and G_2 denoted $G_1 \times G_2$, is the graph with vertex set $V(G_1) \times V(G_2)$ and two distinct vertices (u,v) and (u',v') are adjacent if u=u' and $v \sim v'$ or v=v' and $u \sim u'$. The tensor product of G_1 and G_2 denoted $G_1 \otimes G_2$, is a graph with a vertex set $V(G_1) \times V(G_2)$ and two distinct vertices (u,v) and (u',v') are adjacent if $u \sim u'$ and $v \sim v'$. For an arbitrary group G, we use G^* for the set of all non-identity elements of G.

Lemma 2.2. Let G_1 and G_2 be two groups. Then $\Pi_{G_1} \times \Pi_{G_2}$ and $\Pi_{G_1} \otimes \Pi_{G_2}$ both are proper spanning subgraphs of $\Pi_{G_1^* \times G_2^*}$ which is itself an induced subgraph of $\Pi_{G_1 \times G_2}$ on $G_1^* \times G_2^*$.

Proof. It is obvious that $V(\Pi_{G_1} \times \Pi_{G_2}) = V(\Pi_{G_1} \otimes \Pi_{G_2}) = V(\Pi_{G_1^* \times G_2^*}) = G_1^* \times G_2^*$. Let (u,v) and (u',v') be two arbitrary vertices of $\Pi_{G_1} \times \Pi_{G_2}$ such that $(u,v) \sim (u',v')$. We claim that $(u,v) \sim (u',v')$ in $\Pi_{G_1 \times G_2}$. We have u=u' and $v \sim v'$ or v=v' and $u \sim u'$. Without loss of generality, let u=u' and $v \sim v'$. Then $(|v|,|v'|) \neq 1$. Hence there exists a positive integer $d \neq 1$ such that d||v| and d||v'|. Therefore d||(u,v)| and d||(u',v')| which implies that they are adjacent in $\Pi_{G_1 \times G_2}$. The proof is similar for $\Pi_{G_1} \otimes \Pi_{G_2}$.

The next corollary is an obvious result of the previous lemma:

Corollary 2.3. Let G_1 and G_2 be two groups and $H_1 \leqslant G_1$ and $H_2 \leqslant G_2$ be nontrivial subgroups of G_1 and G_2 , respectively. Then $\Pi_{G_1,H_1} \times \Pi_{G_2,H_2}$ and $\Pi_{G_1,H_1} \otimes \Pi_{G_2,H_2}$ are proper subgraphs of $\Pi_{G_1^* \times G_2^*,H_1^* \times H_2^*}$.

Remark 1. Let G_1 and G_2 be two groups and $(u,v) \in \Pi_{G_1} \otimes \Pi_{G_2}$. Then by definition, $\deg_{\Pi_{G_1} \otimes \Pi_{G_2}} ((u,v)) = \deg_{\Pi_{G_1}} (u) + \deg_{\Pi_{G_2}} (v)$.

The following theorem is an immediate consequence of the above remark:

Theorem 2.4. Let G_1 and G_2 be two groups of orders p^{k_1} and q^{k_2} , respectively, where p and q are odd primes and k_1 and k_2 are positive integers. Then $\Pi_{G_1} \otimes \Pi_{G_2}$ is a spanning Eulerian subgraph of $\Pi_{G_1^* \times G_2^*}$.

Proof. By Remark 1, it is sufficient to prove that $\Pi_{G_1} \otimes \Pi_{G_2}$ is Eulerian. Since G_1 and G_2 are of prime power orders, their non-coprime graphs are complete. Let (a,b) be an arbitrary vertex of $\Pi_{G_1} \otimes \Pi_{G_2}$. Then

$$\begin{split} \deg_{\Pi_{G_1} \otimes \Pi_{G_2}} \left((u,v) \right) &= \deg_{\Pi_{G_1}} (u) + \deg_{\Pi_{G_2}} (v) \\ &= p^{k_1} - 2 \ + \ q^{k_2} - 2 \\ &= p^{k_1} + q^{k_2} - 4. \end{split}$$

This means the degree of every vertex of $\Pi_{G_1} \otimes \Pi_{G_2}$ is even. Therefore, the graph is Eulerian.

3. The Non-Coprime Graph of Some Groups

Suppose $\alpha(G)$, $\omega(G)$, $\chi(G)$ and $\theta(G)$ denote the independence, clique, chromatic and covering numbers of a graph G, respectively. In this section, we obtain some results on the non-coprime graph of the dihedral groups, semi-dihedral groups and some other groups. Let $D_{2n} = \langle a, b \mid a^n = b^2 = 1, ba = a^{-1}b \rangle$ be the dihedral group of order 2n. We have the following results on its non-coprime graph:

Theorem 3.1. If n is an odd natural number, then

(i)
$$\omega(\Pi_{D_{2n}}) = \chi(\Pi_{D_{2n}}) = n$$
,

(ii)
$$\theta(\Pi_{D_{2n}}) = \theta(\Pi_{Z_n}) + 1 = |\pi(Z_n)| + 1$$
,

(iii)
$$\alpha(\Pi_{D_{2n}}) = \theta(\Pi_{D_{2n}}).$$

Proof. (i) For $1 \leq i, j \leq n$ we have $|a^ib| = 2$ and $|a^j|$ is odd such that $(|a^ib|, |a^j|) = 1$. Hence $\Pi_{D_{2n}}$ is a graph with two components $\Pi_{< a>}$ and K_n . Therefore $\omega(\Pi_{D_{2n}}) = \chi(\Pi_{D_{2n}}) = n$.

(ii) By proof of (i), the minimum number of cliques that cover D_{2n} is the minimum number of cliques that cover Z_n plus 1.

Theorem 3.2. If $n = 2^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ where p_1, \dots, p_r are odd primes and k_1, \dots, k_r are non-negative integers with $k_1 \geq 1$, then $\Pi_{D_{2n}}$ is connected and

(i) diam
$$(\Pi_{D_{2n}}) \leq 2$$
,

- (ii) $\theta(\Pi_{D_{2n}}) = \theta(\Pi_{Z_n}) = |\pi(Z_n)|,$
- (iii) $\omega(\Pi_{D_{2n}}) = \frac{n(2^{k_1}-1)}{2^{k_1}} + n.$

Proof. (i) D_{2n} has an element of order $2p_2p_3\cdots p_r$ such that it is adjacent to all the other vertices. Hence $\Pi_{D_{2n}}$ is connected and $\operatorname{diam}(\Pi_{D_{2n}}) \leq 2$.

(ii) The minimum number of cliques that cover D_{2n} is the minimum number of cliques that cover Z_n .

(iii) It is obvious by (ii).

Let V_{8n} be the group defined by $\langle a , b \mid a^{2n} = b^4 = 1, ba = a^{-1}b^{-1}, b^{-1}a =$ $a^{-1}b$. We have the following results on its non-coprime graph:

Theorem 3.3. (i) $\Pi_{V_{8n}}$ is a connected graph.

- (ii) $\Pi_{V_{8n}}$ is Eulerian if and only if n is a power of 2.
- (iii) $\Pi_{V_{8n}}$ has an Eulerian spanning subgraph.

Proof. (i) Since $\Pi_{\langle a \rangle}$ is a subgraph of $\Pi_{V_{8n}}$. The order of $\Pi_{V_{8n}-\langle a \rangle}$ is even, two vertices of order 2 are adjacent and $\Pi_{Z_{2n}}$ is connected, $\Pi_{V_{8n}}$ is connected.

(ii) Let $n=2^k$. Since $\Pi_{V_{8n}}$ is a complete graph of odd order, the degree of each vertex is even. So, the graph is Eulerian. If $8n = 2^{k_1} p_2^{k_2} \dots p_r^{k_r}$ with $k_2 \geq 2$, then the number of vertices that are divided by p_i $(2 \le i \le r)$ is even. Hence the degree of p_i is odd and $\Pi_{V_{8n}}$ is not Eulerian.

(iii) Each edge in $\Pi_{V_{8n}}$ is on a triangle, so the graph has an Eulerian spanning subgraph.

Theorem 3.4. In the graph $\Pi_{V_{8n}}$

- (i) If n is a power of 2, then $\omega(\Pi_{V_{8n}}) = 8n 1$;
- (ii) If $n = 2^{k_1} p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}$ where p_2, \dots, p_r are distinct odd prime numbers and k_1, \ldots, k_r are positive integers, then

$$\omega(\Pi_{V_{8n}}) = 8n - p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}.$$

Proof. (i) If $n=2^k$ for some positive integer k, then 2 divides the order of each

vertex. Hence $\omega(\Pi_{V_{8n}}) = 8n - 1$. (ii) If $n = 2^{k_1} p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}$, then the number of vertices $v \in V(\Pi_{V_{8n}})$ such that p_i divides the order |v|, but 2, $p_1, \ldots, p_{i-1}, p_{i+1}, \ldots p_r$ do not divide |v|, is $p_i^{k_i}-1$. Moreover, the number of vertices $v\in V(\Pi_{V_{8n}})$ such that 2 does not divide |v| is $p_2^{k_2}p_3^{k_3}\cdots p_r^{k_r}$ and so the largest clique has even order. Thus, $\omega(\Pi_{V_{8n}})$ = $8n-p_2^{k_2}p_3^{k_3}\cdots p_r^{k_r}$.

Theorem 3.5. $\Pi_{V_{8n}}$ is not a planar graph.

Proof. Since there are at least 5 vertices of even order, we have $K_5 \leq \Pi_{V_{8n}}$. Hence $\Pi_{V_{8n}}$ is not planar.

Let U_{2nm} be the group defined by $\langle a, b|a^{2n} = b^m = 1, aba^{-1} = b^{-1} \rangle$.

Theorem 3.6. Suppose that $n=2^{k_1}p_2^{k_2}\dots p_r^{k_r}$ where p_2,\dots,p_r are distinct odd primes and $m=2^{l_1}q_2^{l_2}\dots q_s^{l_s}$ where q_2,\dots,q_s are distinct odd primes and $k_1,\dots,k_r,l_1,\dots,l_s$ are non-negative integers. Then we have the following statements in U_{2nm} :

- (i) The number of elements of even order is $2nm-\frac{nm}{2^{k_1+l_1}}$
- (ii) The number of elements of order divided by p_i where $p_i=q_j$ for some j is $2nm-\frac{nm}{p_i^{k_i}}-\frac{nm}{p_i^{k_i+l_j}},$
- (iii) The number of elements of order divided by p_i if $p_i \nmid m$ is $2nm \frac{2nm}{p_i^{k_i}}$,
- (iv) The number of elements of order divided by q_j if $q_j \nmid n$ is $nm \frac{nm}{q_j^{l_j}}$.

Proof. Let i and j be integers with $1 \le i \le 2n$ and $1 \le j \le m$. It is easily checked that in U_{2nm} , if i is odd, then the order of a^ib^j is $\frac{2n}{(i,n)}$, and if i is even, then the order of a^ib^j is $[\frac{2n}{(i,2n)}, \frac{m}{(j,m)}]$.

(i) To obtain the number of elements of even order, we subtract the number of elements of odd order from 2nm.

By the above note, if i is odd, then there is no element a^ib^j with even order. The number of all even i's with $\frac{2n}{(i,2n)}$ odd is $p_2^{k_2}p_3^{k_3}\dots p_r^{k_r}=\frac{n}{2^{k_1}}$, and the number of

j's with $\frac{m}{(j,m)}$ odd is $q_2^{l_2}q_3^{l_3}\dots q_s^{l_s}=\frac{m}{2^{l_1}}$. Hence the number of all elements of even order is $2nm-\frac{nm}{2^{k_1+l_1}}$.

(ii) Similar to the proof of (i), if i is odd, then the number of elements $a^i b^j$ with $p_i \nmid |a^i b^j|$ is $\frac{n}{p_i^{k_i}} m$, and if i is even, then the number of elements $a^i b^j$ with

 $p_i \nmid |a^i b^j|$ is $\frac{n}{p_i^{k_i}} \cdot \frac{m^i}{p_i^{l_i}}$. So the number of elements whose order is divided by p_i is $2nm - \frac{nm}{p_i^{k_i}} - \frac{nm}{p_i^{k_i+l_t}}$.

(iii) If either i is odd or i is even, then the number of elements a^ib^j with $p_i \nmid |a^ib^j|$ is $\frac{n}{p_i^{k_i}} m$. So the number of elements whose order is divided by p_i is

$$2nm - \frac{n}{p_i^{k_i}}m - \frac{n}{p_i^{k_i}}m = 2nm - \frac{2nm}{p_i^{k_i}}.$$

(iv) If i is odd, then the number of elements a^ib^j with $q_j\nmid |a^ib^j|$ is nm, and if i is even, then the number of elements a^ib^j with $q_j\nmid |a^ib^j|$ is $\frac{nm}{p_i^{k_i}}$. So the number of elements whose order is divided by q_j is

$$2nm - (nm + \frac{nm}{q_j^{l_j}}) = nm - \frac{nm}{q_j^{l_j}}.$$

Theorem 3.7. $\Pi_{U_{2nm}}$ is a planar graph if and only if n < 2 and m < 4 or (n,m) = (3,1).

Proof. By previous theorem, k_5 is not subgraph of $\Pi_{U_{2nm}}$ if and only if m=1 and n=3 or m<3 and n<2.

Theorem 3.8. The graph $\Pi_{U_{2nm}}$

- (i) is connected, unless n = 1 and m is odd;
- (ii) has an end-vertex if it is connected;
- (iii) is a line graph when n and m are powers of the same prime p.

Proof. (i) If n=1 and m is odd, the elements of even order are all of order 2, and other elements have odd order. So there is no path between elements of order 2 and elements of even order and hence the graph is not connected. Otherwise, there are elements of order [m, n] that are connected to all vertices of $\Pi_{U_{2nm}}$.

- (ii) All elements of order [m, n] are end-vertices.
- (iii) If $nm = p^i$, then in $\Pi_{U_{2nm}}$ each vertex is at most in two different cliques and so $\Pi_{U_{2nm}}$ is a line graph.

Theorem 3.9. In the graph $\Pi_{U_{2nm}}$ we have

$$\omega(\Pi_{U_{2nm}}) \ge \max\{t_1, t_2, t_3, t_4\}$$

in which $t_1 = nm(2 - \frac{1}{2^{k_1 + l_1}})$, $t_2 = 2nm(1 - \frac{1}{p_{r_1}^{k_{r_1}}})$, $t_3 = 2nm - nm(\frac{1}{p_t^{k_t}} + \frac{1}{p_t^{k_t + l_j}})$

and $t_4 = nm - (1 - \frac{1}{q_{s_1}^{l_{s_1}}})$ where $p_t^{k_t}$ is the greatest divisor of n that divides m so

that $p_t = q_j$, $p_{r_1}^{k_{r_1}}$ is the greatest divisor of n that does not divide m and $q_{s_1}^{l_{s_1}}$ is the greatest divisor of m that does not divide n.

Proof. It is enough to obtain the number of elements whose order is a prime power that is divided by m or n and the number of elements whose order is even. So the proof is completed.

Theorem 3.10. The graph $\Pi_{U_{2nm}}$ has a spaning Eulerian subgraph for all n and m, unless n = m = 1 and (n, m) = (1, 3).

Proof. If $\Pi_{U_{2nm}}$ is a disconnected graph, then the number of vertices of even order is more than 2 and there are vertices that are connected to vertices of odd order. So each edge belongs to a triangle. If $\Pi_{U_{2nm}}$ is a connected graph, then it has at least 2 end-vertices and each edge belongs to a triangle. Hence $\Pi_{U_{2nm}}$ is Eulerian. \square

Let T_{4n} be the group defined by $\langle a, b|a^{2n}=1, a^n=b^2, b^{-1}ab=a^{-1}\rangle$.

Theorem 3.11. The graph $\Pi_{T_{4n}}$

- (i) is a connected graph,
- (ii) is Eulerian if and only if $n = 2^k$,
- (iii) has an Eulerian spanning subgraph,
- (iv) $\gamma(\Pi_{T_{4n}}) = 1$,
- (v) is not a planar graph if n > 1.

Proof. (i) Since $\Pi_{\mathbb{Z}_{2n}}$ is a subgraph of $\Pi_{T_{4n}}$ and vertices of $\Pi_{T_{4n}-\mathbb{Z}_{2n}}$ are joined to vertices of $\Pi_{\mathbb{Z}_{2n}}$ and since $\Pi_{\mathbb{Z}_{2n}}$ is connected, hence $\Pi_{T_{4n}}$ is connected.

(ii) If $n = 2^k$, then $\Pi_{T_{4n}}$ is a complete graph of order 4n - 1 and the degree of each vertex is 4n - 2 which is even. So $\Pi_{T_{4n}}$ is Eulerian. If p is an odd divisor of n, then the degree of the vertex whose order is p is equal to

$$\frac{2n(p_i^{k_i} - 1)}{p_i^{k_i}} - 1,$$

that is odd and hence $\Pi_{T_{4n}}$ is not Eulerian.

(iii) $\Pi_{\mathbb{Z}_{2n}}$ has a spanning Eulerian subgraph and each edge of this subgraph is in a triangle. It is enough to prove that if $e = v_1 v_2$ is an edge, then e be in triangle. If n = 1, then $\Pi_{T_{4n}}$ is a complete graph of order 3. If n > 1, then there are at least 6 vertices of order 4 in $\Pi_{T_{4n}}$. Now if $|v_1| = 4$ and $|v_2| \neq 4$, then the order of v_2 is even, hencen there is an edge between v_2 and a vertex of order 4 such as v_3 , so $v_3 \sim v_1 \sim v_2 \sim v_3$ and e is in a triangle. If $|v_1| = |v_2| = 4$ proof is similar.

(iv) $\Pi_{T_{4n}}$ has a vertex of order 2n that joins to all other vertices, hence $\gamma(\Pi_{T_{4n}}) = 1$.

(v) Obviously Π_{T_4} is of order less than 5 and so is planar. If n > 1, then there are at least 6 vertices of order 4 that pairwise join. So $k_5 \leq \Pi_{T_{4n}}$ is not planar.

Theorem 3.12. Let $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ where p_1, \dots, p_r are distinct prime number and k_1, \dots, k_r are positive integers.

- (i) If n is odd, then $\omega(\Pi_{T_{4n}}) = 3n$.
- (ii) If *n* is even, letting $p_1 = 2$, then $\omega(\Pi_{T_{4n}}) = 4n p_2^{k_2} p_3^{k_3} \dots p_r^{k_r}$.

Proof. Since $\Pi_{\mathbb{Z}_{2n}}$ is a subgraph of $\Pi_{T_{4n}}$ and the order of all elements of $\Pi_{T_{4n}-\mathbb{Z}_{2n}}$ is 4 that join to vertices of even order, the clique of even vertices is the largest clique of $\Pi_{T_{4n}}$, so it is sufficient to obtain the the number of vertices of even order.

- (i) The number of elements of even order in \mathbb{Z}_{2n} is $\frac{2n(2-1)}{2}=n$, hence the number of elements of even order in $\Pi_{T_{4n}}$ is 2n+n=3n.
- ii) The number of elements of even order in \mathbb{Z}_{2n} is $\frac{2n(2^{k_1+1}-1)}{2^{k_1+1}}$, hence the number of elements of even order in $\Pi_{T_{4n}}$ is

$$2n + \frac{2n(2^{k_1+1}-1)}{2^{k_1+1}} = 2n(2 - \frac{1}{2^{k_1+1}}) = 4n - p_2^{k_2} p_3^{k_3} \dots p_r^{k_r}.$$

Theorem 3.13. $\chi(\Pi_{T_{4n}}) = \omega(\Pi_{T_{4n}}).$

Proof. Let n be odd. Then the largest clique contains $\omega(\Pi_{T_{4n}})=3n$ vertices and remaining n-1 vertices have odd order. We can color them with 3n colors. If n is even, then the largest clique contains $\omega(\Pi_{T_{4n}})=4n-p_2^{k_2}p_3^{k_3}\dots p_r^{k_r}$ vertices where $n=2^{k_1}p_2^{k_2}\dots p_r^{k_r}$ and $p_2^{k_2}p_3^{k_3}\dots p_r^{k_r}< n$, so $4n-p_2^{k_2}p_3^{k_3}\dots p_r^{k_r}>3n$, and remaining n-2 vertices have odd order. We can color the graph with $\omega(\Pi_{T_{4n}})$ colors and hence $\chi(\Pi_{T_{4n}})=\omega(\Pi_{T_{4n}})$.

Theorem 3.14. In graph $\Pi_{T_{4n}}$

- (i) diam $(\Pi_{T_{4n}}) \leq 2$.
- (ii) $\Pi_{T_{4n}}$ is a line graph if and only if $n = p^k$ or $n = 2^k$ or $n = 2^k p^k$, where p is prime.
- (iii) if $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$, then the number of end-vertices is

$$\begin{cases} (p_1^{k_1} - 1)(p_2^{k_2} - 1) \cdots (p_r^{k_r} - 1), & n \text{ is odd,} \\ (2^{k_1+1} - 1)(p_2^{k_2} - 1) \cdots (p_r^{k_r} - 1), & n \text{ is even.} \end{cases}$$

Proof. (i) Since diam $(\Pi_{\mathbb{Z}_{2n}}) \leqslant 2$, diam $(\Pi_{T_{4n}}) \leqslant 2$.

- (ii) The edge set of $\Pi_{T_{4n}}$ can be partitioned into a set of clique with the property that any vertex lies in at most two clique if and only if n be $n=p^k$ or $n=2^k$ or $n=2^kp^k$ by [2, Theorem 1.7.2] the proof is complete.
- (iii) The number of $\Pi_{T_{4n}}$ end-vertices is equal to the number of $\Pi_{\mathbb{Z}_{2n}}$ end-vertices that is the number of vertices that $p_1p_2\cdots p_r$ divides their order and is $(p_1^{k_1}-1)(p_2^{k_2}-1)\dots(p_r^{k_r}-1)$ when n is odd and is $(2^{k_1+1}-1)(p_2^{k_2}-1)\dots(p_r^{k_r}-1)$ when n is even.

Theorem 3.15. Let $SD_{8n} = \langle a, b | a^{4n} = b^2 = 1, bab = a^{2n-1} \rangle$. Then

- (i) $\Pi_{SD_{8n}}$ is connected graph.
- (ii) $\Pi_{SD_{8n}}$ is Eulerian if and only if $n=2^k$ $(0 \leqslant k \in \mathbb{Z})$.
- (iii) $\Pi_{V_{8n}}$ has an Eulerian spanning subgraph.

Proof. Since $\Pi_{\mathbb{Z}_{4n}}$ is a subgraph of $\Pi_{SD_{8n}}$ and the order of vertices of $\Pi_{SD_{8n}-\mathbb{Z}_{4n}}$ is even, where 2n vertices are of order 2 and 2n vertices of order 4 that join to vertices of even order, then this graph has specifications of $\Pi_{\mathbb{Z}_{4n}}$.

Theorem 3.16. Let $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$.

- (i) If n is odd, then $\omega(\Pi_{SD_{8n}}) = 7n$.
- (ii) If *n* is even i.e. $p_1 = 2$, then $\omega(\Pi_{SD_{8n}}) = 8n p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}$.

Proof. The number of elements of odd order in $\Pi_{SD_{8n}}$ is $p_2^{k_2} \cdots p_r^{k_r} - 1$. Then clique number of $\Pi_{SD_{8n}}$ is the number of vertices that order is even that is

$$8n - 1 - p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r} - 1,$$

then

$$\omega(\Pi_{SD_{8n}}) = 8n - p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}.$$

Corollary 3.17. $\chi(\Pi_{SD_{8n}}) = \omega(\Pi_{SD_{8n}}).$

Proof. By previous theorem $7n \leq \omega(\Pi_{SD_{8n}})$, then vertices that remaining of the largest clique are coloring with 7n color. Thus $\chi(\Pi_{SD_{8n}}) = \omega(\Pi_{SD_{8n}})$.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication of this article.

References

- [1] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, London: Macmillan, 1976.
- [2] C. Godsil and G. F. Royle, *Algebraic Graph Theory*, Springer Science & Business Media, 2001.
- [3] A. Iranmanesh and A. Jafarzadeh, On the commuting graph associated with the symmetric and alternating groups, J. Algebra Appl. **7**(1) (2008) 129–146.
- [4] F. Mansoori, A. Erfanian and B. Tolue, Non-coprime graph of a finite group, *AIP Conference Proceedings*, **1750** (1) (2016) 050017.

[5] J. S. Williams, Prime graph components of finite groups, J. Algebra, **69** (2) (1981) 487–513.

Gholamreza Aghababaei-Beni Department of Pure Mathematics, International Campus of Ferdowsi University of Mashhad, Mashhad, Iran e-mail: g_aghababaei@yahoo.com

Abbas Jafarzadeh Department of Mathematics, Quchan University of Technology, Quchan, Iran

e-mail: abbas.jafarzadeh@gmail.com, jafarzadeh.a@qiet.ac.ir