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Classification of Monogenic Ternary Semigroups

Nahid Ashrafi ? and Zahra Yazdanmehr

Abstract

The aim of this paper is to classify all monogenic ternary semigroups,
up to isomorphism. We divide them to two groups: finite and infinite.
We show that every infinite monogenic ternary semigroup is isomorphic to
the ternary semigroup O, the odd positive integers with ordinary addition.
Then we prove that all finite monogenic ternary semigroups with the same
index and the same period are isomorphic. We also investigate structure of
finite monogenic ternary semigroups and we prove that any finite monogenic
ternary semigroup is isomorphic to a quotient ternary semigroup.
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1. Introduction

The theory of ternary algebraic systems was introduced by D. H. Lehmer [3] in
1932, but before that (1904) such structures were studied by E. Kasner [1] who
gave the idea of n-ary algebras. Lehmer studied certain ternary algebraic systems
called triplexes, commutative ternary groups, in fact. Ternary structures and their
generalization, the so called n-ary structures, are outstanding for their application
in physics. The notion of ternary semigroup was known for the first time by S.
Banach. By bringing an example, he showed that a ternary semigroup did not
necessarily reduce to an ordinary semigroup ( T = {−i, i} is a ternary semigroup

?Corresponding author (Email: nashrafi@semnan.ac.ir
Academic Editor: Ali Reza Ashrafi
Received 2 March 2018, Accepted 4 June 2018
DOI: 10.22052/mir.2019.173544.1120

c©2018 University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.



132 N. Ashrafi and Z. Yazdanmehr

under the multiplication over complex numbers while T is not an ordinary semi-
group under complex number multiplication). J. Los [4] studied some properties
of ternary semigroups and he proved that every ternary semigroup could be em-
bedded in an ordinary semigroup.

In this paper we investigate monogenic ternary semigroups and we prove that
infinite monogenic ternary semigroups are isomorphic to the ternary semigroup O,
the odd positive integers with ordinary addition. We also show that there exists,
up to isomorphism, exactly one finite monogenic ternary semigroup with constant
index m and period r. We study some properties of the monogenic ternary semi-
groups. Then we characterize the structure of ideals of a finite monogenic ternary
semigroup. We also prove that any finite monogenic ternary semigroup is isomor-
phic to a quotient ternary semigroup of a finite monogenic ternary semigroup.

2. Results
The first we express some primary notions that we need them in the next sections.
A non-empty set T is called a ternary semigroup if there exists a ternary operation
T × T × T → T , written as (a, b, c) → abc satisfying the statement (abc)de =
a(bcd)e = ab(cde) for all a, b, c, d, e ∈ T .

Remark 2.1. Let T be a ternary semigroup and m,n ∈ N (m ≤ n) and x1, x2,
. . ., x2n+1 ∈ T . Then we can write

(x1x2...x2n+1) = (x1...((xmxm+1xm+2)xm+3xm+4)...x2n+1).

Example 2.2. Let N, E andO be the set of positive integers, even positive integers
and odd positive integers, respectively. Then with the usual ternary addition of
integers, N (E, O ) forms a ternary semigroup.

An element e of a ternary semigroup T is said to be idempotent if e3 = e. A
ternary semigroup T is said to be commutative if x1x2x3 = xσ(1)xσ(2)xσ(3) for
every permutation σ of {1, 2, 3} and x1, x2, x3 ∈ T . Let T be a ternary semigroup.
For non-empty subsets A,B and C of T , let ABC := {abc | a ∈ A, b ∈ B, c ∈ C}.
A non-empty subset S of T is called a ternary subsemigroup if SSS ⊆ S. If A is
a non-empty subset of T , then the smallest ternary subsemigroup of T containing
A (the intersection of all ternary subsemigroups of T containing A) is called the
ternary subsemigroup of T generated by A and it is denoted by 〈A〉. If A = {a},
then we denote 〈{a}〉 by 〈a〉 and we call it the monogenic ternary subsemigroup of
T generated by a. It is clear that: < A >= {a1a2...an| n is an odd number, ai ∈
A for all 1 ≤ i ≤ n} and < a >= {an|n is odd number}. The order of the element
a is defined, as in group theory, as the order of the ternary subsemigroup 〈a〉 and
we denote by |a|. If T is a ternary semigroup in which there exists an element a
such that T = 〈a〉, then T is said to be a monogenic ternary semigroup.

A non-empty subset A of a ternary semigroup T is called, (i) a left ideal if
TTA ⊆ A; (ii) a right ideal if ATT ⊆ A; (iii) a lateral ideal if TAT ⊆ A; (iv) a
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two-sided ideal if it is a left and right ideal; (v) an ideal if it is a left, right and
lateral ideal.

A non-empty set Q of a ternary semigroup T is called a quasi-ideal of T , if
TTQ ∩ (TQT ∪ TTQTT ) ∩QTT ⊆ Q. A ternary semigroup T is called a ternary
group if for every a, b, c ∈ T , the equations abx = c, axb = c and xab = c have
solutions in T . An equivalence relation ρ on a ternary semigroup T is said to be
a congruence if for all a, b, c, a′, b′, c′ ∈ T , aρa′, bρb′, cρc′ imply abc ρ a′b′c′.

If ρ is a congruence on a ternary semigroup T , then for every a ∈ T we denote
the equivalent class contains a by [a]ρ and we define a ternary operation on the
quotient set T/ρ, the set of all equivalent classes, by [a]ρ[b]ρ[c]ρ = [abc]ρ for all
a, b, c ∈ T . Note that with this ternary operation, T/ρ forms a ternary semigroup.

Let S and T be two ternary semigroups. Then the map f : S → T is called
a homomorphism if f(abc) = f(a)f(b)f(c) for all a, b, c ∈ S. A homomorphism
f : S → T is called a monomorphism (an epimorphism) if it is one to one (onto).
Also f is called an isomorphism if it is both one to one and onto. In this case we
say that ternary semigroups S and T are isomorphic and we denote it by S ' T .

Theorem 2.3. Let S and T be two ternary semigroups. Also let f : S → T be a
homomorphism. Then kerf = {(a, b) ∈ S × S | f(a) = f(b)} is a congruence on S
and S

kerf ' Imf .

Proof. See [2, Theorem 3.5].

Now we try to classify all monogenic ternary semigroups. Let a be an element
of a ternary semigroup T . Then we have two cases:

1. There are no repetitions in the list a, a3, a5, . . . i.e. for every odd numbers
m,n, am = an implies m = n. In this case ϕ : (O,+)→ 〈a〉 by ϕ(n) = an for
every n ∈ O is an isomorphism and we say that 〈a〉, the monogenic ternary
subsemigroup generated by a, is an infinite monogenic ternary semigroup
and that a has infinite order in T .

2. There are m,n ∈ O such that am = an. Then the set

{x ∈ O | ∃y ∈ O (y 6= x), ax = ay}

is non-empty and so it has a least element. Let us denote this least element by
m and we call it the index of the element a. Now the set {x ∈ E | am+x = am}
is non-empty and so it too has a least element r, which we call it the period
of a. We shall also refer to m and r as the index and period, respectively, of
the monogenic ternary semigroup 〈a〉.

It is obvious that if a is an element of a ternary semigroup T with index m and
period r then am = am+qr for every q ∈ N.

Proposition 2.4. Let a be an element of a ternary semigroup T with index m
and period r. Then,
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(i) for every u, v ∈ E, am+u = am+v if and only if u ≡ v (mod r),
(ii) < a >= {a, a3, . . . , am, am+2, . . . , am+r−2} and |a| = (m+ r − 1)/2.

Proof. By the minimality of m and r, we deduce that the elements a, a3, . . . , am,
. . . , am+r−2 are all distinct. Let s be an odd number such that s > m. Then
s = m+ k for some k ∈ E. Now we can, by division algorithm, write k = qr + u,
where q ≥ 0 and 0 ≤ u ≤ r−1. It then follows that as = am+qrau = amau = am+u.
Also since k, r ∈ E, then u ∈ E. Thus am+u = am+v if and only if u ≡ v (mod r).
Therefore < a >= {a, a3, . . . , am, am+2 . . . am+r−2} and |a| = (m+ r − 1)/2.

Remark 2.5. An ordinary monogenic semigroup is finite if and only if it contains
one idempotent but there is no need any finite monogenic ternary semigroup to
have an idempotent. However we have the following proposition.

Proposition 2.6. A finite monogenic ternary semigroup contains an idempotent
if and only if it has period r = 2k where k is an odd number.

Proof. Let T = 〈a〉 be a finite monogenic ternary semigroup with index m and
period r = 2k (k ∈ N). Also suppose that T contains idempotent element t. It
is clear that t = am+p ( p ∈ {0, 2, 4, . . . , r − 2} ). Now 2m + 3p ≡ p (mod r) since
am+p = a3(m+p). Hence r| 2(m+p) and so k|m+p. Therefore k is an odd number
since m+ p is an odd number. Conversely suppose that k is an odd number. Also
suppose that n is an odd number such that n ≥ 3 and nk ≥ m. We prove that
t = ank is an idempotent element of T . Since r| 2nk, so r| (3nk −m)− (nk −m).
Hence 3nk −m ≡ nk −m (mod r). Therefore a3nk = ank by Proposition 2.4.

Clearly every infinite monogenic ternary semigroup does not have any idem-
potent. Therefore there are infinite ternary semigroups that have no idempotent.
There are also infinite semigroups that every element of them is an idempotent.
My favorite example of this so far is Z, the set of integers, with ternary operation
abc = min{a, b, c}.

Remark 2.7. Every finite monogenic ternary semigroup T = 〈a〉 is homomorphic
image of an infinite monogenic ternary semigroup (consider the epimorphism ϕ :
O −→ T by ϕ(k) = ak for every k ∈ O). Also it is easy to see that all the
homomorphic images of an infinite monogenic ternary semigroup, which are not
isomorphic to it, will be finite monogenic ternary semigroup.

Let T = 〈a〉 be a finite monogenic ternary semigroup with index m and period
r. Then for every t ∈ {1, 3, 5, . . . ,m} we denote subset {at, at+2, . . . , am+r−2} of
T by It.

Proposition 2.8. Let T = 〈a〉 be a finite monogenic ternary semigroup with index
m and period r. Then the subset I of T is an ideal of T if and only if I = It for
some t ∈ {1, 3, 5, . . . ,m}.
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Proof. It is clear that It is an ideal of T for every t ∈ {1, 3, 5, . . . ,m}. Conversely
suppose that t is the least element of {k ∈ O | 1 ≤ k ≤ m + r − 2, ak ∈ I}. It is
easy to verify I = It. Note that t ≤ m because if t = m+s ( s ∈ E, 2 ≤ s ≤ r−2 ),
then am = am+r = atar−s ∈ I. Therefore am ∈ It and it is a contradiction.

Since every monogenic ternary semigroup is a commutative ternary semigroup
we have the following proposition:

Proposition 2.9. Let T = 〈a〉 be a finite monogenic ternary semigroup with index
m and period r. Then the subset I of T is an left (right, lateral) ideal of T if and
only if I = It for some t ∈ {1, 3, 5, . . . ,m}.

Remark 2.10. Every left (right, lateral) ideal of a ternary semigroup T is a quasi-
ideal of T but the converse is not true generally. However in a monogenic ternary
semigroup these concepts coincide.

Let T = 〈a〉 be a finite monogenic ternary semigroup with index m and period
r. Then from Proposition 2.9, the subset Ka = {am, am+2, . . . , am+r−2} of T is a
minimal ideal of T . We call Ka, the kernel of 〈a〉.

Proposition 2.11. Let T = 〈a〉 be a finite monogenic ternary semigroup with
index m and period r. Then Ka, the kernel of 〈a〉, is a maximal subgroup of T .

Proof. ClearlyKa is a ternary semigroup. Suppose that am+u, am+v and am+w are
arbitrary elements of Ka. Choose x ∈ E such that x ≡ w−u−v−2m (mod r) and
0 ≤ x ≤ r−2. So, we have am+u am+v am+x = am+u am+x am+v = am+x am+u am+v

= am+w. Therefore Ka is a ternary subgroup of T . Now let L be a subgroup of
T such that K ⊆ L. Also let at is an arbitrary element of L. Then there exists
k ∈ O such that atatak = at. So a2t+k = at. Hence t ≥ m and K = L. Therefore
K is a maximal subgroup.

Example 2.12. Zn with the usual multiplication of Zn is a ternary semigroup
for every n ∈ N. 2̄ ∈ Z8 has index 3 and period 2 but 2̄ as an element of Z20 has
index 3 and period 4.

Let X be a non-empty set. Then we denote the set of all maps from X into
X by TX . TX with ternary composition of maps is a ternary semigroup. Ternary
semigroup TX is called the full transformation ternary semigroup on X. If T is
a ternary subsemigroup of TX , then we say that T is a transformation ternary
semigroup.

Example 2.13. Let X = {1, 2, . . . , 7} and consider the element

α =

(
1 2 3 4 5 6 7
2 3 4 5 6 7 5

)



136 N. Ashrafi and Z. Yazdanmehr

of the ternary semigroup TX . Then it is easy to calculate that:

α3 =

(
1 2 3 4 5 6 7
4 5 6 7 5 6 7

)
,

α5 =

(
1 2 3 4 5 6 7
6 7 5 6 7 5 6

)
,

α7 =

(
1 2 3 4 5 6 7
5 6 7 5 6 7 5

)
,

α9 =

(
1 2 3 4 5 6 7
7 5 6 7 5 6 7

)
,

α11 =

(
1 2 3 4 5 6 7
6 7 5 6 7 5 6

)
.

So α5 = α11. Thus α has index 5 and period 6. Also Kα = {α5, α7, α9}.

Proposition 2.14. For every m ∈ O and r ∈ E, there exists a ternary semigroup
T containing an element a of index m and period r.

Proof. It is easy to verify that the element

α =

(
1 2 . . . m+ 1 . . . m+ r − 1 m+ r
2 3 . . . m+ 2 . . . m+ r m+ 1

)
of the semigroup TX has index m and period r, where X = {1, 2, . . . ,m+ r}.

Theorem 2.15. Let a and b be elements of finite order in the same or different
ternary semigroup. Then 〈a〉 ' 〈b〉 if and only if a and b have the same index and
the same period.

Proof. Suppose that a and b have the same index m and period r. Then
〈a〉 = {a, a3, . . . , am, . . . , am+r−2} and 〈b〉 = {b, b3, . . . , bm, . . . , bm+r−2}. It is
clear that for every i ∈ O ( 1 ≤ i ≤ m + r − 2 ), ϕ : 〈a〉 → 〈b〉 by ϕ(ai) = bi is an
isomorphism. Therefore 〈a〉 ' 〈b〉.

Conversely, let ϕ : 〈a〉 → 〈b〉 be an isomorphism. Also let a has index m
and period r and b has index m′ and period r′. Then m + r = m′ + r′ since
|〈a〉| = |〈b〉|. Moreover suppose that ϕ(a) = bt and ϕ−1(b) = as( t, s ∈ O, 1 6 t 6
m′+r′−2, 1 6 s 6 m+r−2 ). Then we have a = ϕ−1ϕ(a) = ϕ−1(bt) = (as)t = ast

and b = ϕϕ−1(b) = ϕ(as) = bst. Thus either m = m′ = 1 or s = t = 1.
Therefore ϕ(a) = b and ϕ−1(b) = a. Now ϕ(am

′
) = bm

′
= bm

′+r′ = ϕ(am
′+r′)

and ϕ−1(bm) = am = am+r = ϕ−1(bm+r). Hence am
′

= am
′+r′ and bm = bm+r

and consequently m ≤ m′ and m′ ≤ m. Therefore m = m′ and consequently
r = r′.

By attention to previous theorem, for every m ∈ O and r ∈ E there exists, up
to isomorphism, exactly one monogenic ternary semigroup. Let us we denote this
monogenic ternary semigroup by MT (m, r).
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By attention to Proposition 2.16, MT (1, r) is a ternary group for every r ∈ E
which we call it cyclic ternary group.

Proposition 2.16. For every m ∈ O, m 6= 1 and r ∈ E, T = MT (m, r) has
exactly one generator.

Proof. Suppose that T = 〈a〉 = 〈b〉. Then T = {a, a3, . . . , am, . . . , am+r−2}. We
prove that T r T 3 = {a}. We have a3 ∈ T 3, a5 = a3aa ∈ T 3, . . . , am+r−2 =
am+r−4aa ∈ T 3. Now if a ∈ T 3, then a = ak for some k ∈ O. Thus m = 1 that is
a contradiction. Hence, T r T 3 = {a}. By the same way T r T 3 = {b}. Therefore
a = b.

Let T be a commutative ternary semigroup. Then for every n ∈ E define
the relation θTn on T by a θTn b if and only if x1x2 . . . xna = x1x2 . . . xnb for every
x1, x2, . . . , xn ∈ T . It is clear that θTn is a congruence on T and θT2 ⊆ θT4 ⊆ θT6 ⊆ . . ..
For every n ∈ E, we denote ternary semigroup T

θTn
by Tn.

Lemma 2.17. Let T be a commutative ternary semigroup. Then Tn ' Tn−2

θ
Tn−2
2

.

Proof. Define ϕ : Tn−2 −→ Tn by ϕ([a]θn−2
) = [a]θn for every a ∈ T . If [a]θn−2

=
[b]θn−2

then (a, b) ∈ θn−2 ⊆ θn. Hence [a]θn = [b]θn . So ϕ is well-defined . Also, ϕ
is an epimorphism clearly. Now if a, b ∈ T then

[a]θn−2 θ
Tn−2

2 [b]θn−2 ⇐⇒ [xya]θn−2 = [xyb]θn−2 (∀x, y ∈ T )

⇐⇒ x1 . . . xn−2xya = x1 . . . xn−2xyb (∀x1, . . . , xn−2, x, y ∈ T )

⇐⇒ a θn b

⇐⇒ ϕ([a]θn−2) = ϕ([b]θn−2)

⇐⇒ [a]θn−2 kerϕ [b]θn−2 .

Therefore ker ϕ = θ
Tn−2

2 and consequently Tn ' Tn−2

θ
Tn−2
2

.

Theorem 2.18. Let m ∈ O, r ∈ E (m 6= 1). Then for every n ∈ E (n < m),

MT (m, r)

θ
MT (m,r)
n

'MT (m− n, r).

Proof. We first prove that MT (m,r)

θ
MT (m,r)
2

'MT (m−2, r). Suppose that T = MT (m, r)

= 〈a〉 = {a, a3, . . . , am−2, am, am+2, . . . , am+r−2} and [an1 ]θ2 = [an2 ]θ2 for some
an1 , an2 ∈MT (m, r). Then aaan1 = aaan2 . So an1+2 = an2+2. If n1 6= m+ r − 2
and n2 6= m+r−2 then n1 = n2. On the other hand, [am−2]θ2 = [am+r−2]θ2 since
at1at2am−2 = at1at2−2am = at1at2−2am+r = at1at2am+r−2 for every at1 , at2 ∈
MT (m, r). This shows that MT (m,r)

θ
MT (m,r)
2

= {[a], [a]3, . . . , [a]m−2, [a]m, . . . , [a]m+r−4}

' MT (m − 2, r). Now T
θT4

= T4 ' T2

θ
T2
2

' MT (m−2,r)
θ
MT (m−2,r)
2

' MT (m − 4, r) and by

induction we deduce that MT (m,r)

θ
MT (m,r)
n

'MT (m− n, r) for every n ∈ E.
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