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Calculations of Dihedral Groups Using

Circular Indexation

Reza Dianat⋆ and Mojgan Mogharrab

Abstract

In this work, a regular polygon with n sides is described by a periodic
(circular) sequence with period n. Each element of the sequence represents
a vertex of the polygon. Each symmetry of the polygon is the rotation of the
polygon around the center-point and/or flipping around a symmetry axis.
Here each symmetry is considered as a system that takes an input circular
sequence and generates a processed circular output sequence. The system
can be described by a permutation function. Permutation functions can be
written in a simple form using circular indexation. The operation between
the symmetries of the polygon is reduced to the composition of permutation
functions, which in turn is easily implemented using periodic sequences. It
is also shown that each symmetry is effectively a pure rotation or a pure flip.
It is also explained how to synthesize each symmetry using two generating
symmetries: time-reversal (flipping around a fixed symmetry axis) and unit-
delay (rotation around the center-point by 2π/n radians clockwise).
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1. Introduction

Let Pn be a regular polygon with n sides. Imagine Pn is drawn on a table with the
corners indexed sequentially from 0 to n− 1. Also, imagine that we have another
cardboard polygon, the same size as Pn with vertices indexed sequentially from x0
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to xn−1. The cardboard polygon is put on the table to cover exactly the drawn
polygon. Figure 1 demonstrates an example for P4. The squares are depicted with
different sizes so that both squares can be seen.
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Figure 1: P4 polygon along with its 2π/4 radians clockwise rotation and its flipped
version around the symmetry axis passing through the 0th corner.

A symmetry of Pn is defined as rotating the cardboard polygon around the
center O in the table plane and/or its flipping around its symmetry axes, so that
the cardboard polygon again covers the drawn polygon on the table. Therefore
the in-plane rotations must be an integer multiple of 2π/n radians. The symmetry
axes pass through the center O and a vertex or the midpoint of a side. Note that
the flipping happens out of the table plane. The order and the number of rotations
and flips are arbitrary.

The group of the symmetries of a polygon is called a dihedral group [2, 8].
Dihedral groups have applications in different fields. Here we are not to mention
an inclusive list of applications, but rather we suffice to mention few samples.
Dihedral groups can be applied to image processing and pattern recognition [3, 5].
Another application is the design of error-correction codes in telecommunication
engineering to combat the channel errors in data transmission [6]. In reference
[9], dihedral groups are exploited for remote sensing and feature extraction in the
images taken by synthetic aperture radars (SAR images). A frame is a set of over-
complete vectors to represent a vector space. It is desirables that the correlation
between the members of a frame to be as low as possible. In [10] dihedral groups
are deployed to design frames with low-correlation members.

2. System Interpretation of a Symmetry

Now, a permutation function is associated to each symmetry of Pn. If symmetry s
takes vertex xj of the cardboard polygon from corner j to corner i, the associated
permutation function is defined as

j = fs(i), 0 ≤ i, j ≤ n− 1. (1)
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The inverse function is itself a permutation and is defined as

i = gs(j), 0 ≤ i, j ≤ n− 1.

The group of the associated permutations is called the dihedral group Dn that
is of order 2n. The operation of the group is the composition of functions, so that
f1 ◦ f2(i) = f1(f2(i)).

A symmetry s of Pn can be thought of a system that takes a sequence xt, for
0 ≤ t ≤ n − 1, as input and produces another sequence yt, for 0 ≤ t ≤ n − 1, as
output. The system point of view is well-known in signal processing [7]. Figure 2
demonstrates the system. It means that if the vertices xt of the cardboard polygon
are in the corners t, then, after the symmetry is applied, in the corners t there are
vertices yt. From (1), the associated permutation says that

yt = xj , j = fs(t).

We denote this operation as

yt = xts = xfs(t). (2)

Equation (2) can be interpreted as a binary operation in which the left operand is
a sequence, while the right operand is a symmetry. The result of the operation is
a sequence.

xt yts

Figure 2: System model of a symmetry.

Suppose that first symmetry s1 is applied to sequence xt to produce sequence
yt and then symmetry s2 is applied to sequence yt to produce sequence zt. If the
associated permutations are f1 and f2 respectively, then we have

yt = xts1 = xj , j = f1(t) (3)

and
zt = yts2 = yk, k = f2(t). (4)

Substituting yk from (3) into (4), we have

zt = xks1 = xj , j = f1(k) = f1(f2(t)) = f1 ◦ f2(t). (5)

Equation (5) can be interpreted as the series of two systems. The first one takes
xt as input and gives yt, which is the input to the second system. The output
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Figure 3: Concatenation of two symmetries.

of the second system is zt. The effective associated permutation from xt to zt is
f1 ◦ f2. Figure 3 demonstrates the concatenation of the two systems.

The described procedure can be generalized to more than two systems. If
symmetries s1 to sk with associated permutations f1 to fk are applied in serial to
a sequence xt to produce a sequence yt, then it is displayed as

yt = xts1s2 . . . sk = xj , j = f1 ◦ f2 . . . ◦ fk(t).

3. Two Generator Symmetries: Unit-Delay

and Time-Reversal

We want to extend the sequences over the whole Z. To do so, we choose circular
indexing to get periodic sequences. Vertices x0 to xn−1 are extended periodically
(circularly) to create a periodic sequence xt, so that xt+n = xt, ∀t ∈ Z. For
squares, for instance, x−1 = x−1+4 = x3 and so on. Figure 4 depicts the periodic
extension. As it is clear from the Figure, x−1 = xn−1 as a result of circular
indexing with period n. Other indices are attributed corresponding vertices in an
analogous way.

We introduce two elements of the group of the symmetries of Pn that other
elements can be synthesized by them.

3.1. Unit-Delay

This element is a system that produces the sequence yt = xt−1 when it is fed
with the sequence xt as input. We call it unit-delay, as its output in time t is
equal to its one-unit delayed input. As it is shown in Figure 4, in time t = 1,
y1 is x0 and so on. Not that y0 = x−1 = xn−1 as a natural result of periodic
extension of sequences. It is equivalent to 2π/n radians clockwise rotation of the
cardboard polygon. Figure 1 demonstrates an example for n = 4. From Figure 4
it is seen that vertices xt−1 are in the positions t. The same is true in Figure 1
for the rotated polygon. In general, using the periodic sequences in the interval
0 ≤ t ≤ n − 1 we can obtain the resultant new positions of the vertices of the
polygon.

We display the unit-delay symmetry with d and its corresponding permutation
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function as
fd(t) = d(t) = t− 1

for convenience.

3.2. Time-Reversal

This system when is provided with input xt, generates output yt = x−t. Again note
the indices should be interpreted periodically. In Figure 4 time-reversal is depicted.
For example y1 = x−1 = xn−1. This system can be understood as the mirror
image of sequence xt relative to the axis t = 0 as shown in Figure 4. Therefore
the systems exchanges x1 with x−1, x2 with x−2 and other elements in a similar
way. x0 remains unmoved. If n is an even integer, yn/2 = x−n/2 = xn−n/2 = xn/2

and therefore, xn/2 does not move as well. Time reversal is equivalent to flipping
the cardboard polygon around the axis passing through the corner 0 as shown in
Figure 1. Again it is seen that the result of this flipping can be calculated with
the aid of the sequence yt = x−t in Figure 1 with n = 4 and 0 ≤ t ≤ 3. For
convenience, we denote the time-reversal symmetry as r and its permutation as

fr(t) = r(t) = −t.

t
0 1 n− 1 n n+ 2n+ 1−1−2

xt

x0 x1 xn−1 x0 x2x1xn−1xn−2

yt = xt−1

xn−1 x0 xn−2 xn−1 x1x0xn−2xn−3

yt = x−t

x0 xn−1 x1 x0 xn−2xn−1x1x2

axis t = 0

Figure 4: Periodic extension of sequences.

4. General Forms of Symmetries

As it was seen in the previous section, two symmetries were interpreted through
periodic sequences and system point of view. In fact, all the symmetries of a
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polygon can be synthesized by periodic sequences and their calculation can be
performed by their interpretation as systems. Each symmetry s of Pn can be
attributed to a permutation function of the form fs(t) = at+b, where a ∈ {−1,+1}
and b is an integer and 0 ≤ b ≤ n− 1. When a sequence xt is processed with the
symmetry s, the output sequence is yt = xat+b. In the following through the
examples, we explain that how to calculate a and b for each symmetry and then
how to synthesize the symmetry by two symmetries: Time-reversal and/or unit-
delay.

4.1. Flipping Around an Axis Passing Through a Corner

Here, it is desired to derive the system for flipping the polygon around an axis
passing through the corner t0. As it is seen in Figure 5, it is equivalent to mirror
imaging of the input sequence xt relative to axis t0. It means that the vertex that
is located t units right of the axis t0 must be exchanged with the vertex in the t
units left of the axis t0. Therefore, if the output of the system is yt, then

yt0+t = xt0−t. (6)

Replacing t with t− t0 in (6) we get

yt = x2t0−t. (7)

t
t0 − t t0

t0 + t

axis t0

✲✛

t
✲✛

t

xt

xt0−t xt0 xt0+t

yt
xt0+t xt0 xt0−t

Figure 5: Input and output of the system equivalent to the flipping the polygon
around corner t0.

As an example, consider flipping a square P4 around the axis passing through
the corner t0 = 1. From (7), for 0 ≤ t ≤ 3, the new positions of the vertices
are calculated as y0 = x2×1−0 = x2, y1 = x2×1−1 = x1, y2 = x2×1−2 = x0 and
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y3 = x2×1−3 = x−1 = x−1+4 = x3. The results can be visualized and verified
in Figure 6. Also, from this Figure it is seen that the axis passes through corner
t0 = 3 as well. It means that, letting t0 = 3 instead of t0 = 1, we should get the
same result. It is easily verified as y0 = x2×3−0 = x6 = x6−4 = x2, y1 = x2×3−1 =
x5 = x5−4 = x1, y2 = x2×3−2 = x4 = x4−4 = x0 and y3 = x2×3−3 = x3. It can
also be seen as if we use (7) with t0 = 3 and period n = 4, the output sequence
is yt = x2×3−t = x6−t = x6−t−4 = x2−t, which is the same output for (7) with
t0 = 1.
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Figure 6: Flipping a square P4 around the corner 1.

The system for flipping around t0 can be synthesized with unit-delays and a
time-reversal. For example, one way is to apply the time-reversal to the input
sequence xt and then feed the output to a series of 2t0 unit-delay systems that
effectively are equivalent to a 2t0-unit-delay system. To see how this works, note
that the output sequence of the time-reversal system is yt = x−t. If this output
is the input to a unit-delay system, then the output is zt = yt−1 = x−(t−1) =
x1−t. If instead of one unit-delay system, we have 2t0 unit-delay systems in series,
then the output will be zt = yt−2t0 = x−(t−2t0) = x2t0−t as is the corresponding
permutation to flipping around the axis passing through the corner t0 as given in
(7).

Another way to synthesize the desired flipping system is that at first the se-
quence is applied to 2t0 inverse-unit-delay systems that are connected serially.
The permutation function of the inverse-unit-delay system is fi(t) = t + 1. The
effective permutation function of the serial inverses is t + 2t0 so that the output
is yt = xt+2t0 . This output is then applied to a time-reversal system to generate
the final output zt = y−t = x−t+2t0 , the same result as that of the first solution.
These two solutions are demonstrated in Figure 7. The flipping around the corner



44 R. Dianat and M. Mogharrab

t0 can be formulated as the following:

yt = xtrd
2t0 = xtd

−2t0r = xj , j = 2t0 − t . (8)
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Figure 7: Two syntheses for flipping around corner t0.

In (8), xt is the input sequence and yt is the output sequence and the resultant
sequence of the flipping. Symmetry r stands for time-reversal (flipping around
the 0th corner) and symmetry d is the unit-delay. Note that each symmetry d is
equivalent to 2π/n radians clockwise rotation of the polygon Pn, while d−1 stands
for 2π/n radians counter-clockwise rotation. In terms of the operation of the group
of the symmetries of a polygon Pn, equation (8) says that

rd2t0 = d−2t0r, ∀t0 ∈ Z.

4.2. Flipping Around an Axis Passing Through the Midpoint

of a Side

Assume that the polygon Pn is to be flipped around the axis passing through the
midpoint of the side connecting corners t0 and t0 + 1. Again this symmetry is
formulated by the aid of sequences. Figure 8 displays the sequence-equivalent of
this flipping. As this Figure shows, this operation can be considered as the mirror-
imaging of the input sequence relative to the axis passing through the time instant
t0+

1
2 . It means that the vertex that is located t+ 1

2 units right of the axis should
be exchanged with the vertex located t + 1

2 units left of the axis. Therefore, the
following relation holds between the input and output sequences of this flip.

y(t0+0.5)+t+0.5 = x(t0+0.5)−(t+0.5)

yt0+t+1 = xt0−t (9)
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Substituting t with t− t0 − 1 in (9), we get the following:

yt = x2t0+1−t. (10)

As an example, consider a pentagon is flipped around the axis passing through
the midpoint of the side from corner t0 = 1 to corner t0 + 1 = 2. Using (10) with
t0 = 1 and period n = 5, we have y0 = x2×1+1−0 = x3, y1 = x2×1+1−1 = x2, y2 =
x2×1+1−2 = x1, y3 = x2×1+1−3 = x0 and y4 = x2×1+1−4 = x−1 = x−1+5 = x4.
This example can be visualized in Figure 9. From this Figure it is seen that we can
consider the flipping axis passing through the corner 4 instead and get the same
answer. To do this, let t0 = 4 and use (7) to get y0 = x2×4−0 = x8 = x8−5 = x3,
y1 = x2×4−1 = x7 = x7−5 = x2, y2 = x2×4−2 = x6 = x6−5 = x1, y3 = x2×4−3 =
x5 = x5−5 = x0 and y4 = x2×4−4 = x4. This is expectable as setting t0 = 4 in (7)
gives yt = x2×4−t = x8−t = x8−t−5 = x3−t, which is the same result for (10) with
t0 = 1.

t
t0 − t t0 t0 + t+ 1

axis t0 +
1
2
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t+ 1
2

✲✛

t+ 1
2

t0 + 1

xt

xt0−t xt0 xt0+t+1xt0+1

yt
xt0+t+1 xt0+1 xt0−txt0

Figure 8: Sequence flipping around the midpoint t0 +
1
2 .

4.3. General Symmetries

As explained, any symmetry s of the polygon Pn is corresponding to a permutation
function fs(t) = at + b, where a ∈ {−1,+1} and 0 ≤ b ≤ n − 1. Therefore, the
group of the symmetries has totally 2n members. If a = 1, the symmetry s can
be synthesized as s = d−b, where d is the unit-delay symmetry and d−1 is its
inverse. Therefore, d−b is equivalent to the series of b inverse-unit-delay systems.
If a = −1, then f(t) = −t+b. In this case, we can say s = rdb. It means that s can
be synthesized by the concatenation of a time-reversal with b unit-delay systems.
The procedure is illustrated in Figure 10.

Another way to synthesize the function fs(t) = −t+b is to apply b inverse-unit-
delay systems in series and then a time-reversal so that s = d−br. This synthesis
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Figure 9: Pentagon P5 along with its flipped version around the axis passing
through the midpoint of the side from corner t0 = 1 to corner t0 + 1 = 2.

is illustrated in Figure 10 too. From these two syntheses the following identity
results:

rdm = d−mr, m ∈ Z

Note that the identity holds for all integer m.

xt
yt = x−t

r db
zt = yt−b = x−(t−b) = x−t+b

xt
yt = xt+b

d−b r
zt = y−t = x(−t)+b = x−t+b

Figure 10: Synthesizing a symmetry.

4.4. Symmetries in Series

Let two symmetries s1 and s2 are connected serially. Further assume that the
corresponding permutation functions are f1(t) = a1t + b1 and f2(t) = a2t + b2
respectively. The product s1s2 can be calculated by the aid of the corresponding
permutation f1(f2(t)) = a1(a2t+ b2) + b1. Therefore,

fs1s2(t) = a1a2t+ (a1b2 + b1).

The following example is helpful. Let s1 be the flipping around the vertical axis
of a square and s2 be 2π/4 radians counter-clockwise rotation around the center
of the square. For s1, use (10) with t0 = 0 to get f1(t) = 1 − t. As s2 is the
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inverse-unit-delay, we have f2(t) = t + 1. The series product s1s2 is equivalent
to the permutation f1(f2(t)) = 1 − (t + 1) = −t. Therefore, the result of this
product is a time-reversal. Figure 11 illustrates this example. The reader can
easily check that the result is the same as the output of a time-reversal symmetry
that is flipping around the axis passing through the 0th corner.
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Figure 11: Series of two symmetries.

4.5. Pure-Rotation or Pure-Flip Synthesis of a Symmetry

This fact that each symmetry s can be explained by a corresponding permutation
fs(t) = at + b comes up with this conclusion that any symmetry is effectively a
pure rotation or a pure flip. If a = 1, s is 2πb/n radians counter-clockwise rotation
of the polygon Pn or equivalently 2π(n− b)/n radians clockwise rotation. In this
case s = d−b = dn−b. It is a pure rotation. If a = −1, then the symmetry is
a flip around the axis passing through the corner b/2 for even b using (8). For
odd b, from (10), s is a flip around the axis passing through the midpoint of the
side connecting corner t0 = (b − 1)/2 to corner t0 + 1. Therefore, for a = −1, the
symmetry is effectively a pure flip. Table 1 summarizes the results.

5. Proposal for Future Work

Dihedral groups only work on the peripherals of polygons. It seems that gen-
eralizations of dihedral groups can be made to include more complex and real
problems concerning surfaces, volumes and higher-dimensional spaces. The gen-
eralized methods can be options besides the already available methods. As an
example, in [1] perturbation method is used to analyze fluid model for blood flow.
Another example is the real-time process algebra (RTPA) that is a set of math-
ematical notations for formally describing system architectures. This model is
deployed in [11] for air traffic control. Mathematical models of algebraic topology,
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Table 1: Symmetries and their permutations.
associated permutation

Symmetry s
fs(t) = at+ b

Identity (e) t
Unit-delay (d) t− 1

Inverse-unit-delay t+ 1
b-unit delay t− b

Time-reversal (r) −t
Flip around the axis

passing through corner t0
−t+ 2t0

Flip around the axis
passing through the midpoint

of the side t0 to t0 + 1
−t+ 2t0 + 1

with their applications to computer generation of surfaces and modeling of smart
cloud business are proposed in [4].
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