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Numerical Calculation of Fractional Derivatives
for the Sinc Functions via Legendre Polynomials

Abbas Saadatmandi⋆ , Ali Khani and Mohammad Reza Azizi

Abstract

This paper provides the fractional derivatives of the Caputo type for
the sinc functions. It allows to use efficient numerical method for solving
fractional differential equations. At first, some properties of the sinc func-
tions and Legendre polynomials required for our subsequent development are
given. Then we use the Legendre polynomials to approximate the fractional
derivatives of sinc functions. Some numerical examples are introduced to
demonstrate the reliability and effectiveness of the introduced method.
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1. Introduction

Fractional derivatives arise in many physical and engineering problems such as
electroanalytical chemistry, viscoelasticity, physics, electric transmission, modeling
of speech signals, fluid mechanics and economics [1, 2]. Today, there are many
considerable works on the numerical solution of fractional differential equations
and fractional integro-differential equations (see for example [3, 4, 5, 6, 7, 8, 9, 10,
11, 12] and the references therein). There are various definitions of a fractional
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derivative of order β > 0 [1, 2]. The Caputo fractional derivative is defined as

Dβf(x) =

{
1

Γ(n−β)
∫ x
0

f(n)(t)
(x−t)β+1−n dt, n− 1 < β < n, n ∈ N,

dn

dxn f(x), β = n ∈ N.
(1)

where Γ(.) is the Gamma function and n = [β] + 1, with [β] denoting the integer
part of β. Here, the Caputo fractional derivative is considered because it allows
traditional initial and boundary conditions to be included in the formulation of
the problem [2]. For the Caputo’s derivative we have [1],

DβC = 0, (2)

Dβ(a1f(x) + a2g(x)) = a1D
βf(x) + a2D

βg(x), (3)

Dβxm =

{
0, m < ⌈β⌉,
Γ(m+1)

Γ(m+1−β)x
m−β , m ≥ ⌈β⌉,

m ∈ N, (4)

where C, a1 and a2 are constants. Also, ⌈β⌉ denoting the smallest integer greater
than or equal to β.

The sinc method is a powerful numerical tool for finding fast and accurate solu-
tions in various scientific and engineering problems including squeezing flow [13],
integro-differential equation [14], boundary value problems [15], Thomas-Fermi
equation [16], Troesch’s problem [17], fractional convection-diffusion equations [8],
fractional differential equations [18, 19], time-fractional diffusion equation [20, 21],
time-fractional order telegraph equation [22] and Bagley-Torvik equation [12]. It
is worth indicating that, sinc-based approximations are characterized by exponen-
tially decaying errors and rapidly converging solutions [23, 24].

As far as we know, for the first time in 2009, sinc methods appeared in the
domain of fractional calculus [25], and later developed by Frank Stenger and his
colleagues for solution of some fractional differential and integral equations [26].
In this paper, we extend the applications of the sinc method to find a numer-
ical solution for fractional differential equations. At first, we use the Legendre
polynomials to approximate the fractional derivatives of sinc functions. Then a
collocation approach using sinc functions is applied to solve fractional differential
equations.

The organization of the rest of the paper is as follows: In Section 2, we present
some necessary definitions and mathematical preliminaries of sinc functions and
Legendre polynomials. In Section 3, the fractional derivative of the Caputo type
for the sinc function is obtained. Section 4 is devoted to applying sinc-collocation
method for solving fractional differential equations. In Section 5 the proposed
method is applied to several examples and is compared with the method existing
in the literature. Section 6 completes this report with a brief conclusion. Note
that we have computed the numerical results by Maple programming.
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2. Preliminaries and Notations
In this section, we present some basic definitions and preliminary materials which
will be used throughout the paper.

2.1 Sinc functions
The sinc functions and their properties are discussed in [23, 24]. For each integer
k and the mesh size h > 0, the translated sinc functions with equidistant space
nodes kh are given as

S(k, h)(x) = sinc
(
x− kh

h

)
, (5)

where the sinc function is defined on R, by

sinc(x) =

{
sin(πx)
πx , x ̸= 0,

1, x = 0.

If a function f is defined on R, then for mesh size h > 0 the Whittaker cardinal
expansion of f is as follows

C(f, h)(x) =

∞∑
k=−∞

f(kh) sinc
(
x− kh

h

)
,

whenever this series converges. To construct approximations on the interval (0, 1),
we choose the one-to-one conformal mapping

ϕ(x) = ln

(
x

1− x

)
,

which maps the eye-shaped region

DE =

{
z = x+ iy :

∣∣∣∣ arg( z

1− z

)∣∣∣∣ < d ≤ π

2

}
,

onto the infinite strip domain

DS =
{
w = t+ is : |s| < d ≤ π

2

}
.

The basis functions on (0, 1) are taken to be the composite translated sinc func-
tions,

Sk(x) = S(k, h) ◦ ϕ(x) = sinc
(
ϕ(x)− kh

h

)
, (6)

where S(k, h) ◦ ϕ(x) is defined by S(k, h)(ϕ(x)). The sinc grid points xk ∈ (0, 1)
will be defined as the inverse images of the equispaced grids as

xk = ϕ−1(kh) =
ekh

1 + ekh
, k = 0,±1,±2, . . . (7)
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Also, we may define the inverse image of the real line as

Γ =
{
ψ(t) = ϕ−1(t) ∈ DE : −∞ < t <∞

}
= (0, 1),

Let B(DE) denote the family of all functions f that are analytic in DE and satisfy∫
ψ(t+L)

|f(z)dz| −→ 0, as t −→ ±∞,

where L =
{
iv : |v| < d ≤ π

2

}
, and on the boundary ofDE , (denoted ∂DE), satisfy

N(f) =

∫
∂DE

|f(z)dz| <∞.

The next theorem guarantees the exponential convergence of the sinc approxima-
tion in B(DE) .

Theorem 2.1. ([24]) If ϕ′f ∈ B(DE), then for all x ∈ Γ∣∣∣∣∣f(x)−
∞∑

k=−∞

f(xk)S(k, h) ◦ ϕ(x)

∣∣∣∣∣ ≤ N(fϕ′)

2πd sinh(πd/h)

≤ 2N(fϕ′)

πd
e−πd/h.

Moreover, if |f(x)| ≤ Ce−α|ϕ(x)|, x ∈ Γ, for some positive constants C and α,
and if the selection h =

√
πd/αN ≤ 2πd/ ln 2, then∣∣∣∣∣f(x)−

N∑
k=−N

f(xk)S(k, h) ◦ ϕ(x)

∣∣∣∣∣ ≤ C2

√
N exp(−

√
πdαN), x ∈ Γ,

where C2 depends only on f, d and α.
Also, the derivatives of sinc basis functions evaluated at the nodes will be needed [24]:

δ
(0)
k,j = [S(k, h) ◦ ϕ(x)]|x=xj =

{
1, k = j,

0, k ̸= j.
(8)

δ
(1)
k,j = h

d

dϕ
[S(k, h) ◦ ϕ(x)]|x=xj =

{
0, k = j,

(−1)j−k

j−k , k ̸= j.
(9)

δ
(2)
k,j = h2

d2

dϕ2
[S(k, h) ◦ ϕ(x)]|x=xj =

{
−π2

3 , k = j,
−2(−1)j−k

(j−k)2 . k ̸= j.
(10)
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2.2 Legendre Polynomials
Legendre polynomials are defined on the interval [−1, 1] and they are satisfy the
following recurrence formulae [5]:

Li+1(z) =
2i+ 1

i+ 1
zLi(z)−

i

i+ 1
Li−1(z), i = 1, 2, ...,

where L0(z) = 1 and L1(z) = z. In order to use these polynomials on the interval
x ∈ [0, 1] we define the so-called shifted Legendre polynomials by introducing the
change of variable z = 2x− 1. Let the shifted Legendre polynomials Li(2x− 1) be
denoted by Pi(x). Then Pi(x) can be obtained as follows :

Pi+1(x) =
(2i+ 1)(2x− 1)

i+ 1
Pi(x)−

i

i+ 1
Pi−1(x), i = 1, 2, . . . , (11)

where P0(x) = 1 and P1(x) = 2x − 1. The analytic closed form of the shifted
Legendre polynomial Pi(x) of degree i is given by [5]

Pi(x) =
i∑

k=0

(−1)i+k
(i+ k)!

(i− k)!

xk

(k!)2
. (12)

The orthogonality condition is∫ 1

0

Pi(x)Pj(x)dx =

{
1

2i+1 for i = j,

0 for i ̸= j.
(13)

A function y(x), square integrable in [0, 1], may be expressed in terms of shifted
Legendre polynomials as

y(x) =
∞∑
j=0

cjPj(x),

where the coefficients cj are given by

cj = (2j + 1)

∫ 1

0

y(x)Pj(x)dx, j = 1, 2, . . .

Now we introduce the Legendre-Gauss quadrature rule that will be used in the
sequel. Let zi, 1 ≤ i ≤ m be the m roots of the Legendre polynomial Lm(z).
Clearly, zi ∈ (−1, 1). Let [27]

ωi =
2

(1− z2i )(L
′
m(zi))2

, i = 1, ...,m, (14)

which are them weights in the Legendre-Gauss quadrature formula associated with
m roots. Them-point Legendre-Gauss quadrature rule can be used to approximate
the integral of a function over the range [−1, 1] as∫ 1

−1

f(x)dx ≃
m∑
i=1

ωif(zi). (15)
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Also, the error is
22m+1(m!)4

(2m+ 1) [(2m)!]
3 f

(2m)(ξ),

where −1 < ξ < 1. Thus, the m-point Legendre-Gauss quadrature rule is exact
when f is any polynomial of degree 2m− 1 or less.

3. Fractional Derivative for Sk(x) at the Sinc Nodes
First of all, we approximate Sk(x) by (m+ 1) terms of shifted Legendre series as

Sk(x) ≃
m∑
j=0

ckjPj(x), (16)

where

ckj = (2j + 1)

∫ 1

0

Sk(x)Pj(x)dx.

Employing the m-point Legendre-Gauss quadrature rule (15), we get

ckj ≃
(2j + 1)

2

m∑
i=1

ωiSk

(
zi + 1

2

)
Pj

(
zi + 1

2

)
, (17)

where ωi is given in Eq. (14).

Theorem 3.1. Let Sk(x) be approximated by the shifted Legendre polynomials as
(16) and also suppose β > 0 then

DβSk(xi) ≃
m∑

j=⌈β⌉

j∑
ℓ=⌈β⌉

ckj(−1)(j+ℓ)(j + ℓ)!x
(ℓ−β)
i

(j − ℓ)!(ℓ)!Γ(ℓ+ 1− β)
, (18)

where ckj is given in Eq. (17).

Proof. Since the Caputo’s fractional differentiation is a linear operation we have

DβSk(x) ≃
m∑
j=0

ckjD
β(Pj(x)). (19)

Employing Eqs. (2), (3) and (4) in Eq. (12) we obtain

DβPj(x) = 0, j = 0, 1, ..., ⌈β⌉ − 1. (20)

Also, for j = ⌈β⌉, ...,m, by using Eqs. (3),(4) and (12) we get

DβPj(x) =

j∑
ℓ=0

(−1)j+ℓ(j + ℓ)!

(j − ℓ)!(ℓ!)2
Dβ(xℓ) =

j∑
ℓ=⌈β⌉

(−1)j+ℓ(j + ℓ)!

(j − ℓ)!(ℓ!)Γ(ℓ− β + 1)
xℓ−β .

(21)
A combination of Eqs. (19), (20) and (21) leads to the desired result.
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Corollary 3.2. Let u(x) be approximated by the sinc basis functions as

u(x) ≃ uM (x) =
N∑

k=−N

ukSk(x), (22)

where uk = u(xk) and M = 2N + 1. Also suppose β > 0 then

DβuM (xi) ≃
N∑

k=−N

uk

{
δ
(β)
ki

}
, i = −N, ..., N, (23)

where δ(β)ki is given by

δ
(β)
ki =

m∑
j=⌈β⌉

j∑
ℓ=⌈β⌉

ckj(−1)(j+ℓ)(j + ℓ)!x
(ℓ−β)
i

(j − ℓ)!(ℓ)!Γ(ℓ+ 1− β)
(24)

Proof. Immediately obtained from Eq. (18).

Now, we define the M ×M matrix D(β) = [δ
(β)
ki ], i.e., the matrix whose ki-

entry is given by δ
(β)
ki . Then, the approximation of the fractional derivative of

order β can be written as
−→u (β) ≈ D(β)−→u . (25)

where, −→u = [u−N , ..., uN ]T and −→u (β) = [DβuM (x−N ), ..., DβuM (xN )]T .

4. Application of the Matrix D(β)

In this section, we apply the matrix D(β) to solve linear two-point fractional bound-
ary value problem

a2(x)u
′′(x)+a1(x)u

′(x)+λ(x)Dβu(x)+a0(x)u(x) = f(x), x ∈ [0, 1], 0 < β < 2,
(26)

u(0) = u(1) = 0, (27)

where a0(x), a1(x), a2(x) and λ(x) are known function, and u(x) is an unknown
function.

To solve this problem, we first use Eq. (22) to approximate u(x) by uM (x).
Note that uM (x) = 0 when x tends to 0 or 1. Let us define the first and
second derivatives of vector −→u as −→u ′ = [u′M (x−N ), ..., u′M (xN )]T and −→u ′′ =
[u′′M (x−N ), ..., u′′M (xN )]T respectively. As said in [12], the approximation of the
first and second derivatives can be written as

−→u ′ ≃
{
1

h
I(1)E(ϕ′)

}
−→u ≡ D(1)−→u . (28)
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−→u ′′ ≃
{
1

h
I(1)E(ϕ′′) +

1

h2
I(2)E(ϕ′2)

}
−→u ≡ D(2)−→u , (29)

where

I(1) =


0 −1 . . . (−1)M−1

M−1

1 . . .
...

...
...

. . . −1
(−1)1−M

1−M . . . . . . 0


M×M

,

I(2) =


−π2

3 2 . . . −2(−1)M−1

(M−1)2

2 . . .
...

...
...

. . .
...

−2(−1)M−1

(M−1)2 . . . . . . −π2

3


M×M

,

E(p) =


p(x−N ) 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 p(xN )


M×M

, p is an arbitrary function.

It is worth to mention here that, the Toeplitz matrix I(1) = [δ
(1)
kj ] is a skew-

symmetric matrix, i.e., I(1)kj = −I(1)jk , the Toeplitz matrix I(2) = [δ
(2)
kj ] is a symmetric

matrix, i.e., I(2)kj = I(2)jk and also E(p) is a diagonal matrix.

We are now ready to solve problem (26)-(27). Substituting uM (x) in Eq. (26)
we obtain

a2(x)u
′′
M (x) + a1(x)u

′
M (x) + λ(x)DβuM (x) + a0(x)uM (x) = f(x), (30)

A collocation scheme is defined in Eq. (30) by evaluating the result at the sinc
points {xk}k=Nk=−N given in Eq. (7). Then the discrete sinc-collocation system for
(26)-(27) is given by

A−→u =
−→
f , (31)

where,
A = E(a2)D(2) + E(a1)D(1) + E(λ)D(β) + E(a0)I(0). (32)

Here,
−→
f = [f(x−N ), ..., f(xN )]T is a known vector and also I(0) = [δ

(0)
kj ] is an

identity matrix. The linear system (31) can be directly solved for the unknown
vector −→u . Consequently uM (x) given in Eq. (22) can be calculated.
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Remark. It is important to note that, if instead of homogeneous boundary con-
ditions (27) we have the following nonhomogeneous boundary conditions

u(0) = a, u(1) = b,

then we reformulate the problem (26)-(27) by applying the transformation y(x) =
u(x) + (a− b)x− a that makes the boundary conditions become homogeneous.

5. Numerical Examples
To show the efficiency of the method described above, we present some examples.
These examples are chosen such that there exist exact solutions for them. In all
examples we choose α = 1/2 and d = π/2 which leads to h = π/

√
N . Also, we

choose m = 12.

Example 5.1. As the first example, we consider the following fractional differen-
tial equation [19]

u′′(x)− xu′(x) +D0.5u(x) = f(x),

with the nonhomogeneous boundary conditions

u(0) = 0, u(1) = 2,

where
f(x) = −3x3 − 2x2 + 6x+ 2 +

6

Γ(3.5)
x2.5 +

2

Γ(2.5)
x1.5.

It can be easily verified that the exact solution is u(x) = x3 + x2. In Table 1, we
compare the absolute error of our method with N = 16, 32 and 64 together with
the result obtained by using sinc-Galerkin method given in [19]. This table shows
that our approximate solution is in good agreement with the exact values and also
the present method is clearly reliable if compared with the sinc-Galerkin method.

Example 5.2. Consider the following Bagley-Torvik equation [11, 12]

u′′(x) +
8

17
D1.5u(x) +

13

51
u(x) =

x−1/2

89250
√
π

(
48p(x) + 7

√
πxq(x)

)
,

with the homogeneous boundary conditions

u(0) = u(1) = 0,

where p(x) = 16000x4−32480x3+21280x2−4746x and q(x) = 3250x5−9425x4+
264880x3 − 448107x2 + 233262x− 34578. The exact solution is

u(x) = x5 − 29

10
x4 +

76

25
x3 − 339

250
x2 +

27

125
x.

To make a comparison, in Table 2 we compare absolute error of the new method
with N = 32 and 64 together with the result obtained by using the sinc operational
matrix method given in [12].
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Table 1: Comparison of absolute error for Example 5.1.
sinc-Galerkin [19] Present method

x N = 100 N = 16 N = 32 N = 64
0.1 4.32 e-05 1.79 e-04 5.21 e-06 3.16 e-08
0.2 8.58 e-05 1.88 e-04 5.49 e-06 3.33 e-08
0.3 1.30 e-04 1.98 e-04 5.75 e-06 3.49 e-08
0.4 1.69 e-04 2.06 e-04 6.01 e-06 3.65 e-08
0.5 2.01 e-04 2.15 e-04 6.28 e-06 3.80 e-08
0.6 2.24 e-04 2.23 e-04 6.50 e-06 3.95 e-08
0.7 2.48 e-04 2.31 e-04 6.74 e-06 4.09 e-08
0.8 2.40 e-04 2.39 e-04 6.96 e-06 4.23 e-08
0.9 1.61 e-04 2.46 e-04 7.18 e-06 4.36 e-08

Table 2: Comparison of absolute error for Example 5.2.
N=32 N=64

x Method of [12] Present method Method of [12] Present method
0.1 1.36 e-06 4.76 e-07 3.92 e-09 2.89 e-09
0.2 4.17 e-06 4.18 e-07 4.59 e-09 2.54 e-09
0.3 1.36 e-06 3.57 e-07 4.16 e-09 2.19 e-09
0.4 5.30 e-06 2.99 e-07 4.12 e-09 1.83 e-09
0.5 3.41 e-06 2.39 e-07 3.87 e-09 1.46 e-09
0.6 3.19 e-07 1.79 e-07 3.82 e-09 1.10 e-09
0.7 2.17 e-06 1.21 e-07 4.54 e-09 7.39 e-10
0.8 2.74 e-06 5.75 e-08 4.78 e-09 3.72 e-10
0.9 1.65 e-06 1.23 e-09 3.19 e-09 6.24 e-12
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Example 5.3. Consider the following linear fractional boundary value prob-
lem [18]:

u′′(x) + x2u′(x)−D0.7u(x) + u(x) = f(x),

with the homogeneous boundary conditions

u(0) = u(1) = 0,

where

f(x) = 5x6 − 3x5 − x4 + 20x3 − 12x2 − 120

Γ(5.3)
x4.3 +

24

Γ(4.3)
x3.3.

The exact solution of this problem is u(x) = x4(x− 1). Figure 1 shows the plot of
absolute error with N = 32 and N = 64 using the presented method. The authors
of [18] used sinc-collocation method to solve this example. For the purpose of
comparison in Table 3 we compare the absolute error of our method with N = 5, 50
together with the absolute error given in [18].

Example 5.4. Consider the following singular linear fractional boundary value
problem:

u′′(x) +

(
1

x

)
u′(x)−D1.5u(x) = 6− 2

x
− 4

√
x

π
,

subject to the homogeneous boundary conditions

u(0) = u(1) = 0.

The exact solution of this problem is u(x) = x2 − x. Figure 2 shows the plot of
absolute error with N = 32 and N = 64 using the presented method.

According to these experiments, we find that the our method can be considered
as an efficient method. Also if N increases, then the errors become smaller quickly.

6. Conclusion
In this paper, we use the Legendre polynomials to approximate the fractional
derivatives of sinc functions. We derive the matrix D(β). This matrix together
with the sinc-collocation method are then utilized to reduce the solution of linear
fractional differential equations to the solution of a system of linear algebraic
equations. The proposed technique is easy to implement. Illustrative examples
demonstrate the validity and applicability of the new method.
Acknowledgement. The authors are very grateful to reviewers for their com-
ments and suggestions which have led to improvement of the paper.
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Figure 1: Plot of the absolute error, with N = 32 (upper) and N = 64 (down) for
Example 5.3.
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Figure 2: Plot of the absolute error, with N = 32 (upper) and N = 64 (down) for
Example 5.4.
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Table 3: Comparison of absolute error for Example 3.
N=5 N=50

x Method of [18] Present method Method of [18] Present method
0.1 2.82 e-03 4.52 e-04 1.35 e-05 1.02 e-08
0.2 1.73 e-03 2.45 e-05 2.76 e-05 2.09 e-08
0.3 3.31 e-04 7.54 e-04 4.12 e-05 3.21 e-08
0.4 1.15 e-03 1.32 e-03 5.25 e-05 4.37 e-08
0.5 1.75 e-03 1.55 e-03 5.84 e-05 5.57 e-08
0.6 2.36 e-03 1.73 e-03 5.56 e-05 6.78 e-08
0.7 1.49 e-03 1.81 e-03 4.20 e-05 8.00 e-08
0.8 2.66 e-03 1.82 e-03 1.99 e-05 9.19 e-08
0.9 4.88 e-03 2.80 e-03 9.90 e-07 1.03 e-07
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