Oboudi-Type Bounds for Graph Energy

Document Type: Original Scientific Paper

Author

‎Faculty of Science‎, ‎‎University of Kragujevac‎, ‎‎P‎. ‎O‎. ‎Box 60‎, ‎34000 Kragujevac‎, ‎Serbia

Abstract

The graph energy is the sum of absolute values of the eigenvalues of the (0, 1)-adjacency matrix. Oboudi recently obtained lower bounds for graph energy, depending on the largest and smallest graph eigenvalue. In this paper, a few more Oboudi-type bounds are deduced.

Keywords


[1] D. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs – Theory and Application,
Academic Press, New York, 1980; 2nd revised ed.: Barth, Heidelberg,
1995.
[2] D. Cvetkovic, P. Rowlinson and S. Simic, An Introduction to the Theory of
Graph Spectra, Cambridge Univ. Press, Cambridge, 2010.

[3] I. Gutman, Total -electron energy of benzenoid hydrocarbons, Topics Curr.
Chem. 162 (1992) 29–63.
[4] I. Gutman and T. Soldatovic, (n;m)-Type approximations for total -electron
energy of benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem.
44 (2001) 169–182.
[5] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012.
[6] B. J. McClelland, Properties of the latent roots of a matrix: The estimation
of -electron energies, J. Chem. Phys. 54 (1971) 640–643.
[7] M. R. Oboudi, A new lower bound for the energy of graphs, Linear Algebra
Appl. 590 (2019) 384–395.


Volume 4, Issue 2
Special Issue: Spectral Graph Theory and Mathematical Chemistry with Connection to Computer Science
Autumn 2019
Pages 151-155