Some Graph Polynomials of the Power Graph and its Supergraphs

Asma Hamzeh *

Abstract

In this paper, exact formulas for the dependence, independence, vertex cover and clique polynomials of the power graph and its supergraphs for certain finite groups are presented.

Keywords: Dependence polynomial, independence polynomial, vertex cover polynomial, clique polynomial, power graph.

2010 Mathematics Subject Classification: 05C31, 05C25.

1. Introduction

Let Γ be an undirected simple graph with edge set $E(\Gamma)$, and vertex set $V(\Gamma)$. We use $|\Gamma|$ to denote the number of vertices of Γ. A set of vertices in a graph such that no two of them are adjacent, is called an independent set. For the graph Γ, a set S of vertices is a clique, if every two distinct vertices in S are adjacent. The clique number of Γ, $\omega(\Gamma)$, is the size of the largest clique in Γ. A vertex cover of a graph is a set S of vertices such that each edge of the graph is incident to at least one vertex of S. The dependence polynomial is introduced by Fisher and Solow in [3]. For a graph Γ this polynomial is defined as

$$f_{\Gamma}(z) = 1 - c_1 z + c_2 z^2 - c_3 z^3 + \cdots + (-1)^{\omega(\Gamma)} c_{\omega(\Gamma)} z^{\omega(\Gamma)},$$

where c_k is the number of complete subgraphs of size k in Γ. The clique polynomial of Γ, $D_{\Gamma}(z)$, is defined as

$$D_{\Gamma}(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots + c_{\omega(\Gamma)} z^{\omega(\Gamma)},$$

where c_k
is the number of cliques with \(k \) vertices in \(\Gamma \). The relation between the dependence and clique polynomials can be described as \(D_{\Gamma}(z) = f_{\Gamma}(z) \). The independence polynomial of the graph \(\Gamma \) is defined as \(I_{\Gamma}(z) = \sum_{k=0}^n \frac{(-1)^k}{k!} \delta_k(z) \), in which \(\delta_k \) is the number of independent vertex sets of size \(k \) of \(\Gamma \). The dependence and independence polynomials are in relation \(I_{\Gamma}(z) = f_{\Gamma}(z) \). Let \(c_k \) be the number of vertex covers of size \(k \) of \(\Gamma \) and let \(|\Gamma| = n \). The vertex cover polynomial of \(\Gamma \) which is denoted by \(\Psi_{\Gamma}(z) \) is defined as \(\Psi_{\Gamma}(z) = 1 - c_1 z + c_2 z^2 - c_3 z^3 + \cdots + (-1)^n c_n z^n \). This polynomial is related to the independence polynomial by \(\Psi_{\Gamma}(z) = z^n I_{\Gamma}(z^{-1}) \).

Following Sabidussi [11, p. 396], the \(A \)-join of a set of graphs \(\{G_a\}_{a \in A} \) is defined as the graph \(H \) with the vertex and edge sets

\[
V(H) = \{ (x, y) \mid x \in V(A) \land y \in V(G_a) \},
\]

\[
E(H) = \{ (x, y)(x', y') \mid xx' \in E(A) \text{ or else } x = x' \land yy' \in E(G_a) \}.
\]

If \(A \) is labeled and has \(p \) points, then the \(A \)-join of \(H_1, H_2, \ldots, H_p \) is denoted by \(H_{[1, H_1, 2, H_2, \ldots, p]} \).

If \(\Gamma_1 \) and \(\Gamma_2 \) are two graphs with disjoint vertex sets, then the graph union \(\Gamma_1 \cup \Gamma_2 \) is a graph with \(V(\Gamma_1 \cup \Gamma_2) = V(\Gamma_1) \cup V(\Gamma_2) \) and \(E(\Gamma_1 \cup \Gamma_2) = E(\Gamma_1) \cup E(\Gamma_2) \). The join of two graphs \(\Gamma_1 \) and \(\Gamma_2 \), denoted by \(\Gamma_1 + \Gamma_2 \), is a graph obtained from \(\Gamma_1 \) and \(\Gamma_2 \) by joining each vertex of \(\Gamma_1 \) to all vertices of \(\Gamma_2 \). Following Došlíc [1], for given vertices \(y \in V(\Gamma_1) \) and \(z \in V(\Gamma_2) \), a splice of \(\Gamma_1 \) and \(\Gamma_2 \) by vertices \(y \) and \(z \), \((\Gamma_1, \Gamma_2)(y, z) \), is defined by identifying the vertices \(y \) and \(z \) in the union of \(\Gamma_1 \) and \(\Gamma_2 \).

Let \(G \) be a finite group. The order of \(x \in G \) is denoted by \(o(x) \). Moreover, we use \(\pi_x(G) \) to denote the set of all element orders of \(G \) and \(\Omega_i(G) \) stands for the number of all elements of order \(i \) of \(G \). The notation \(\phi \) is used for the Euler’s totient function. The power graph is introduced by Kelarev and Quinn in [7]. Two vertices \(x \) and \(y \) are adjacent in the power graph if and only if one is a power of the other. Following Feng et al. [2], let \(C(G) = \{ C_1, \ldots, C_k \} \) be the set of all cyclic subgroups of \(G \) and define \(L_G \) to be the graph with vertex set \(C(G) \) in which two cyclic subgroups are adjacent if one is contained in the other. For complete graph \(K_{b_i} \), where \(b_i = \phi(|C_i|) \) and \(C_i \in C(G) \), the power graph \(P(G) \) is isomorphic to \(L_G[K_{b_1}, K_{b_2}, \ldots, K_{b_k}] \).

Choose a finite group \(G \). The cyclic graph \(\Gamma_G \) is a simple graph with vertex set \(G \). Two elements \(x, y \in G \) are adjacent in the cyclic graph if and only if \((x, y) \) is cyclic [8]. For \(C(G) = \{ C_1, \ldots, C_k \} \), define \(W_G \) to be the graph with vertex set \(C(G) \) in which two cyclic subgroups \(C_i \) and \(C_j \) are adjacent if one is contained in the other or there exists a cyclic subgroup \(C_k \) such that \(C_i \subseteq C_k \) and \(C_j \subseteq C_k \). As a result, \(\Gamma_G = W_G[K_{b_1}, K_{b_2}, \ldots, K_{b_k}] \) with \(b_i = \phi(|C_i|) \). Set \(\pi_x(G) = \{ a_1, \ldots, a_k \} \) and assume that \(\Delta_G \) is a graph with vertex set \(\pi_x(G) \) and edge set \(E(\Delta_G) = \{ xy \mid x, y \in \pi_x(G), x \neq y \} \). As defined in [4, 5], the main supergraph \(S(G) \) is a graph with vertex set \(G \) in which two vertices \(x \) and \(y \) are adjacent if and only if \(o(x) | o(y) \) or \(o(y) | o(x) \). In [5], the authors have proved that \(S(G) = \Delta_G[K_{\Omega_{a_1}(G)}, \ldots, K_{\Omega_{a_k}(G)}] \). Note that the graphs \(S(G) \) and \(\Gamma_G \) are
supergraphs of the power graph. We refer the reader to [10] for group theory and to [13] for graph theoretical concepts and notations.

2. Results

In this section, we first state some results that will be kept throughout this paper.

Theorem 2.1. [3] Assume H is a graph with k vertices and G_1, \ldots, G_k are k given graphs. Then the dependence polynomial of the graph $H[G_1, \ldots, G_k]$ is

$$f_{H[G_1, \ldots, G_k]}(z) = \sum_{A \in C_H} (-1)^{|A|} \prod_{i \in A} (1 - f_{G_i}(z)),$$

where C_H is the set of all subsets of vertices of H that corresponds to complete subgraphs of H.

Theorem 2.2. [3] Let Γ_1 and Γ_2 be two graphs. Then

$$f_{\Gamma_1 \cup \Gamma_2}(z) = f_{\Gamma_1}(z) + f_{\Gamma_2}(z) - 1,$$

$$f_{\Gamma_1 + \Gamma_2}(z) = f_{\Gamma_1}(z)f_{\Gamma_2}(z).$$

Theorem 2.3. [12] If Γ_1 and Γ_2 are two graphs, then

$$f_{(\Gamma_1 \Gamma_2)(y,z)}(x) = f_{\Gamma_1}(x) + f_{\Gamma_2}(x) - (1 - x).$$

By using Theorem 2.1 and this fact that $f_{K_n}(z) = (1 - z)^n$, the following result holds:

Corollary 2.4. The dependence polynomials of graphs $P(G) = L_G[K_{b_1}, \ldots, K_{b_k}]$, $S(G) = \Delta_G[K_{\Omega_{a_1}(G)}, \ldots, K_{\Omega_{a_k}(G)}]$ and $\Gamma_G = W_G[K_{b_1}, \ldots, K_{b_k}]$ are as follows:

$$f_{P(G)}(z) = \sum_{A \in C_{L_G}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - z)^{b_i}),$$

$$f_{S(G)}(z) = \sum_{A \in C_{\Delta_G}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - z)^{\Omega_{a_i}(G)}),$$

$$f_{\Gamma_G}(z) = \sum_{A \in C_{W_G}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - z)^{b_i}),$$

where C_{L_G}, C_{Δ_G} and C_{W_G} are the set of all subsets of vertices of L_G, Δ_G and W_G corresponding to complete subgraphs of L_G, Δ_G and W_G, respectively.

By using the relationship between the dependence and independence, the vertex cover and the clique polynomials and also this fact that $f_{K_n}(z) = 1 - nz$, we have the following result for the graph $S(G)$.

Some Graph Polynomials of the Power Graph and its Supergraphs 15
Corollary 2.5. The independence, the vertex cover and the clique polynomials of the graph $S(G)$ are:

\[
D_{S(G)}(z) = \sum_{A \in C_{\Delta G}} (-1)^{|A|} \prod_{i \in A} (1 - (1 + z)\Omega_{a_i}(G)),
\]

\[
I_{S(G)}(z) = \sum_{A \in C_{\Xi G}} (-1)^{|A|} \prod_{i \in A} \Omega_{a_i}(G)z,
\]

\[
\Psi_{S(G)}(z) = z^{|G|} \sum_{A \in C_{\Xi G}} (-1)^{|A|} \prod_{i \in A} \Omega_{a_i}(G)z^{-1},
\]

where $C_{\Delta G}$ and $C_{\Xi G}$ are defined similar to Theorem 2.1.

In the following results, we apply Theorems 2.1, 2.2 and 2.3 in order to compute the polynomials of the dihedral, semi-dihedral and dicyclic groups which can be presented as follows:

\[
D_{2n} = \langle a, b | a^n = b^2 = 1, bab = a^{-1} \rangle,
\]

\[
SD_{8n} = \langle a, b | a^4n = b^2 = 1, bab = a^{2n-1} \rangle,
\]

\[
T_{4n} = \langle a, b | a^2n = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle.
\]

Theorem 2.6. For any $n \geq 0$,

\[
f_{\Gamma D_{2n}}(z) = (1 - z)((1 - z)^{n-1} - nz) - 1.
\]

Proof. By the definition of a cyclic graph and also the structure of dihedral groups, we have $\Gamma D_{2n} = P_3[K_{n-1}, K_1, \overline{K_n}]$. Now, applying Theorem 2.1 for the path P_3 with vertex set $V(P_3) = \{1, 2, 3\}$, we deduce that $C_{P_3} = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}\}$. Therefore,

\[
f_{\Gamma D_{2n}}(z) = -(1 - f_{K_{n-1}}(z)) - (1 - f_{K_1}(z)) - (1 - f_{\overline{K_n}}(z))
+ (1 - f_{K_{n-1}}(z))(1 - f_{K_1}(z)) + (1 - f_{K_1}(z))(1 - f_{\overline{K_n}}(z))
- (1 - (1 - z)^{n-1}) - (1 - (1 - z)) - (1 - (1 - nz))
+ (1 - (1 - z)^{n-1})(1 - (1 - z)) + (1 - (1 - z))(1 - (1 - nz))
= (1 - z)((1 - z)^{n-1} - nz) - 1.
\]

Hence the result follows.

The following result is an immediate consequence of the previous theorem.

Corollary 2.7. For any $n \geq 0$,

\[
D_{\Gamma D_{2n}}(z) = (1 + z)((1 + z)^{n-1} + nz) - 1.
\]
Theorem 2.8. For any \(n \geq 0 \),
\[
I_{\Gamma_{2n}}(z) = (1 - z)^n(1 - nz + z) - z - 1.
\]

Proof. It is easy to see that \(\Gamma_{D_{2n}} = \overline{P_3[K_{n-1}, K_1, K_n]} \). Applying Theorem 2.1 for the path \(P_3 \) with vertex set \(V(P_3) = \{1, 2, 3\} \), we have \(C_{\overline{P_3}} = \{\{1\}, \{2\}, \{3\}, \{1, 3\}\} \).

Thus,
\[
I_{\Gamma_{2n}}(z) = -(1 - f_{K_{n-1}}(z)) - (1 - f_{K_1}(z)) - (1 - f_{K_n}(z)) + (1 - f_{K_n-1}(z))(1 - f_{K_1}(z)) + (1 - f_{K_1}(z))(1 - f_{K_n}(z))
\]
\[
= (1 - z)^n(1 - nz + z) - z - 1.
\]

Now the result follows from \(I_{\Gamma_{2n}}(z) = f_{\Gamma_{2n}}(z) \).

By the relationship between the independence polynomial and the vertex cover polynomial, the following result holds.

Corollary 2.9. \(\Psi_{\Gamma_{2n}}(z) = z^{2n}(1 - z^{-1})n(1 - nz^{-1} + z^{-1}) - z^{2n-1} - z^{2n} \).

We now take the dicyclic group \(T_{4n} \) into account.

Theorem 2.10. For any \(n \geq 0 \),
\[
f_{\Gamma_{T_{4n}}}(z) = (1 - z)^n + nz(z - 1)^2(z - 2) - 1.
\]

Proof. Assume that \(W \) is the graph depicted in Figure 1. Then, we can write \(\Gamma_{T_n} = W[K_{2n-2}, K_2, K_2, K_2, \ldots, K_2] \), where there are \(n+1 \) copies of the complete graph \(K_2 \). Therefore, by Theorem 2.1,

Figure 1: The graph \(W \) related to the cyclic graph of \(T_{4n} \).

\(C_W = \{\{1\}, \{2\}, \{3\}, \ldots, \{n + 2\}, \{1, 2\}, \{2, 3\}, \{2, 4\}, \ldots, \{2, n + 2\}\} \),

and so
\[
f_{\Gamma_{T_{4n}}}(z) = -(1 - f_{K_{2n-2}}(z)) - (1 - f_{K_2}(z)) \underbrace{-(1 - f_{K_2}(z)) - \cdots - (1 - f_{K_2}(z))}_{n}
\]
\[
+ (1 - f_{K_2}(z))(1 - f_{K_2}(z)) + \cdots + (1 - f_{K_2}(z))(1 - f_{K_2}(z))
\]
\[
+ (1 - f_{K_{2n-2}}(z))(1 - f_{K_2}(z))
\]
\[
= (1 - z)^n + nz(z - 1)^2(z - 2) - 1.
\]
This completes the proof. \qed

Corollary 2.11. \(D_{\Gamma_{T_{4n}}} (z) = (1 + z)^{2n} - nz(-z - 1)^2(-z - 2) - 1. \)

Theorem 2.12. Let \(n \geq 0. \) Then

\[
I_{\Gamma_{T_{4n}}} (z) = -4nz + (-1)^{n+1}(2nz - 2z)(2z)^n \\
+ \sum_{i=2}^{n} (-1)^i \frac{n(n-1) \ldots (n-(i-2))}{(i-1)!} (2nz - 2z)(2z)^{i-1} \\
+ \sum_{i=2}^{n} (-1)^i \frac{n(n-1) \ldots (n-(i-1))}{i!} (2z)^i.
\]

Proof. According to the structure of \(W, \ \overline{W} \) is the graph union of a single vertex at node 2 and the graph \(K_{n+1}. \) Therefore, the set \(C_{\overline{W}} \) can be decomposed into singleton subsets, two-element subsets, ..., \((n+1) \)-element subsets. We have

\[
\Gamma_{T_{4n}} = W[K_{2n-2}, K_2, K_2, \ldots, K_2].
\]

By applying Theorem 2.1 for singleton subsets and also for \((n+1) \)-element subsets, the first and the second terms of the formula are obtained. Since the graph corresponding to the vertex 1 is different from those corresponding to the other vertices, we consider two different categories of subsets: subsets containing vertex 1, and those which do not contain vertex 1. We know that the number of subsets with \(i \) elements, \(1 \leq i \leq n+1, \) is \(\binom{n+1}{i}. \) Moreover, the number of subsets containing vertex 1 is \(\frac{n(n-1) \ldots (n-(i-2))}{(i-1)!} \) and the number of subsets which do not contain vertex 1 is \(\frac{n(n-1) \ldots (n-(i-1))}{i!} \). Now, the result follows from Theorem 2.1 and so \(I_{\Gamma_{T_{4n}}} (z) = f_{\Gamma_{T_{4n}}} (z). \)

The following result is an immediate consequence of the previous theorem.

Corollary 2.13. Let \(n \geq 0. \) Then

\[
\Psi_{\Gamma_{T_{4n}}} (z) = z^{2n} [-4nz^{-1} + (-1)^{n+1}(2nz^{-1} - 2z^{-1})(2z^{-1})^n \\
+ \sum_{i=2}^{n} (-1)^i \frac{n(n-1) \ldots (n-(i-2))}{(i-1)!} (2nz^{-1} - 2z^{-1})(2z^{-1})^{i-1} \\
+ \sum_{i=2}^{n} (-1)^i \frac{n(n-1) \ldots (n-(i-1))}{i!} (2z^{-1})^i].
\]

We now consider cyclic groups. Suppose \(d_i, 1 \leq i \leq t, \) are all divisors of \(n \) different from \(n. \) Then \(P(Z_n) = K_{\phi(n)+1} + \Delta_n[K_{\phi(d_1)}, K_{\phi(d_2)}, \ldots, K_{\phi(d_t)}], \) where \(\Delta_n \) is the graph with vertex and edge sets \(V(\Delta_n) = \{d_i \mid 1, n \neq d_i, 1 \leq i \leq t\} \) and \(E(\Delta_n) = \{d_id_j \mid d_id_j, 1 \leq i < j \leq t\}, \) respectively [9].
Theorem 2.14. Let \(n \geq 0 \). Then

\[
 f_{P(Z_n)}(x) = (1 - x)^{\phi(n)+1} \sum_{A \in C_{\Delta n}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - x)^{\phi(d_i)}),
\]

where \(C_{\Delta n} \) is defined similar to Theorem 2.1.

Proof. The proof follows from Theorem 2.1 and Theorem 2.2. \(\square \)

In what follows, we compute all polynomials for the power graph of groups \(D_{2n}, T_{4n} \) and \(SD_{8n} \).

Theorem 2.15. Let \(n \geq 0 \). Then

\[
 f_{P(D_{2n})}(x) = (1 - x)[-x(n - 1) + (1 - x)^{\phi(n)} \sum_{A \in C_{\Delta n}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - x)^{\phi(d_i)})],
\]

where \(C_{\Delta n} \) is defined similar to Theorem 2.1.

Proof. Note that \(P(Z_n) \) can be written as \(P(Z_n) \) and \(S_n \), where \(S_n \) is the star graph with root vertex of degree \(n - 1 \) and \(P(Z_n) \) is an induced subgraph of \(P(D_{2n}) \) obtained from \(\langle a \rangle \). Hence, by Theorems 2.3 and 2.14,

\[
 f_{P(D_{2n})}(x) = f_{S_n}(x) + f_{P(Z_n)}(x) - (1 - x)
 = (1 - x)(1 + (n - 1)(-x)) - (1 - x)
 + (1 - x)^{\phi(n) + 1} \sum_{A \in C_{\Delta n}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - x)^{\phi(d_i)})
 = (1 - x)[-x(n - 1) + (1 - x)^{\phi(n)} \sum_{A \in C_{\Delta n}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - x)^{\phi(d_i)})],
\]

which completes the proof. \(\square \)

The dependence polynomial of \(P^*(T_{4n}) \) is the subject of our next result.

Theorem 2.16. For any \(n \geq 0 \),

\[
 f_{P^*(T_{4n})}(x) = (1 - x)[nx^2 - 2nx + (1 - x)^{\phi(2n) - 1} \sum_{A \in C_{\Delta 2n}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - x)^{\phi(d_i)})].
\]
Proof. Following Hamzeh and Ashrafi [6], we define the rooted graph B to be $B = K_1 + (\cup_{i=1}^n K_2)$ with root vertex at node r, where $V(K_1) = \{r\}$. We consider $P^*(Z_{2n})$ as a rooted graph with root vertex at node a such that a is adjacent to all vertices of this graph. Moreover, we construct $P^*(T_{4n})$ by identifying the vertex a in $P^*(Z_{2n})$ and the vertex r in B, i.e. $P^*(T_{4n}) = P^*(Z_{2n})B$. By the graph structure of B, $\omega(B) = 3$ and so $f_B(z) = 1 - (2n + 1)z + 3nz^2 - nz^3$. Now by Theorems 2.3 and 2.14 and the dependence polynomial of the graph B,

$$f_{P^*(T_{4n})}(x) = f_{P^*(Z_{2n})}(x) + f_{B}(x) - (1 - x)$$

$$= (1 - x)[nx^2 - 2nx$$

$$+ (1 - x)^{\phi(2n)-1} \sum_{A \in C_{2n}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - x)^{\phi(d_i)})].$$

Consequently, the proof is completed. \qed

We now compute the dependence polynomial of $P^*(SD_{8n})$.

Theorem 2.17. Let $n \geq 0$. Then

$$f_{P^*(SD_{8n})}(x) = -nx^3 + 3nx^2 - 4nx$$

$$+ (1 - x)^{\phi(4n)} \sum_{A \in C_{2n}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - x)^{\phi(d_i)}).$$

Proof. Similar to the proof of Theorem 2.16, we define the rooted graph B to be $B = K_1 + (\cup_{i=1}^n K_2)$ with root vertex at node r, where $V(K_1) = \{r\}$. We also consider $P^*(Z_{4n})$ as a rooted graph with root vertex at node a such that a is connected to all other vertices of $P^*(Z_{4n})$. Moreover, we construct another graph A by identifying the vertex a in $P^*(Z_{4n})$ and the vertex r in B, i.e. $A = P^*(Z_{4n})B$. By the graph structure of $P^*(SD_{8n})$, it can be seen that $P^*(SD_{8n}) = A \cup K_{2n}$. Thus by Theorem 2.2,

$$f_{P^*(SD_{8n})}(x) = f_{A}(x) + f_{K_{2n}}(x) - 1$$

$$= f_{A}(x) + 1 - (2n)x - 1$$

$$= f_{A}(x) - 2n.$$

Next, we compute the dependence polynomial of the graph A. By Theorem 2.3 and the dependence polynomial of B,

$$f_{A}(x) = f_{P^*(Z_{4n})}(x) + f_{B}(x) - (1 - x)$$

$$= (1 - x)^{\phi(4n)} \sum_{A \in C_{2n}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - x)^{\phi(d_i)})$$

$$+ 1 - (2n + 1)x + 3nx^2 - nx^3 - (1 - x).$$
As a consequence,
\[
f_{P^*(SD_{16})}(x) = -nx^3 + 3nx^2 - 4nx \\
+ (1 - x)^{\phi(4n)} \sum_{A \in C_{2^k}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - x)^{\phi(d_i)}).
\]

The proof is completed. \[\square\]

Conflicts of Interest. The author declares that there are no conflicts of interest regarding the publication of this article.

References

Asma Hamzeh
Property and Casualty (Non-life) Insurance Research Group, Insurance Research Center, Tehran, Iran
E-mail: hamze2006@yahoo.com, hamzeh@irc.ac.ir