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A Study of PageRank in Undirected Graphs
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Abstract

The PageRank (PR) algorithm is the base of Google search engine. In
this paper, we study the PageRank sequence for undirected graphs of order
six by computing their PR vectors. In continuing, we provide an ordering of
graphs by variance of PR vector whose variation is proportional with variance
of degree sequence. Finally, we introduce a relation between domination
number and PR-variance of given graphs.
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1. Introduction

All graphs considerd in this paper are undirected connected graphs without loops
and parallel edges. Graph theory has been increasingly applied to model phenom-
ena by mathematical formulas. One of these usages is to model the web pages as
a directed graph. Sergey Brin and Larry Page in 1998, after discovery of Google,
introduced PageRank to make web pages accessible to web surfers [3, 9]. Since
then, many researches have been conducted on different aspects of this algorithm.
Such studies can be generally classified into PR vector calculations [15–17] and
beyond the web applications of this algorithm, see [5].

In PageRank algorithm, each page of the web considered as a vertex of graph,
and two vertices are adjacent if and only if there is a link from one page to another.
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By defining a Markov process on this graph, we form Google matrix. It has been
proved that the maximum eigenvalue of Google matrix is 1 and the dimension of
corresponding eigenvector is also one [2]. An eigenvector for which each entry is
corresponded to the PageRank of a page is called PR vector.

Today, diverse applications of PR algorithm are in chemistry [12], social net-
work analysis [8], traffic modeling [14], sports [4, 10], biology [18], etc. Recently,
different versions of PR have also been introduced, see [1, 7, 13].

Grolmusz in [6] proved that if the initial vector for power iteration method is
proportional with vertices degree and the power method will converges to initial
vector. Another interesting application of PR is Iso-Rank used for vertex similarity
between two graphs. Let G and H be two graphs. By computing PR on tensor
product of Markov transition matrices P and Q (for G and H), we achieve the
similarity matrix X in which Xij is similarity between vertices i in G and j in H,
for more details see [11].

A subset D ⊆ V of vertices of graph G is called a dominating set if every
vertex not in D is adjacent to at least one vertex in D. The dominating number of
graph G is defined as the minimum cardinality of all dominating sets. The aim of
this paper is to determine the PR vector of simple graphs of order 6. This is the
first attempt to determine the PR vector of connected graphs of this order. Since,
the number of graphs of order n is very huge, here we report our results only on
graphs of order six. The number of such graphs is 112. It is easy to see that the

number of graphs of order 7 is
21∑
i=6

mi

(
21

i

)
, where mi is the number of connected

graphs of order 7 with i edges. We compare our results with dominating number
of given graphs.

2. PageRank Algorithm
The PageRank algorithm is based on link between pages of the web. In this graph,
each node of V corresponds to a web page, and we have (i, j) ∈ E, if there is an
outlink from node i to node j. The adjacency matrix of directed graph G is an
n × n matrix A = (aij), where aij = 1 if (i, j) ∈ E, aij = −1 if (j, i) ∈ E and
zero otherwise. Suppose that li is the out degree of node i, namely the number
of outlinks of node i. If page i has no outlink to other pages, then it is called a
dangling node. We characterize dangling nodes by a vector d ∈ Rn×1 defined as

d = (di), (1)

where di = 1 if i is a dangling node and zero otherwise. Now we present transition
matrix P = (pij) ∈ Rn×n by the following way: if i is dangling node, pij = 0 for
all j = 1, ..., n and otherwise,

pij = aij/li.
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Each entry pij is the probability of jumping from the node i to node j. In per-
sonalization PageRank algorithm, we need an extra probability of jumping from
one node to other nodes. For this purpose, we use a personalization vector v
which is a probability distribution vector. If the web graph has dangling nodes,
then P + duT is the transition matrix where u is a probability distribution vec-
tor, that assigns probability of jumping from these dangling nodes. After these
modifications, we are ready to introduce the Google matrix which is

G = α(P + duT ) + (1− α)evT , (2)

where u, v are positive vectors in Rn×1 such that uT e = vT e = 1. There exists a
unique positive eigenvector of GT called PageRank vector defined as follows:{

πT = πTG
πT e = 1

. (3)

In this paper, we consider only simple graphs which means that in Equation (1)
we have d = 0. Here, by substituting d = 0 in Equations (2, 3) and applying
Equation (4), one can see that for the simple graph G with PageRank vector π,
we have

πT = απTP + (1− α)vT . (4)

A list of non-decreasing PageRank of vertices in a graph is called PageRank se-
quence (PR-sequence).

3. Main Results

Let us to explain our method for computing the PageRank vector of a given graph.
Consider the simple graph H depicted in Figure 1. The adjacency matrix of this
graph is

A =


0 1 1 0 1 1
1 0 1 0 0 0
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 0

 .

The degree sequence vector of vertices of H is (4, 2, 4, 3, 2, 3) and thus l1 =
l3 = 4, l2 = l5 = 2 and l4 = l6 = 3. This means that by using Equation (3) the
transition matrix is
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P =



0
1
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1
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1
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1
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.

Hence, the Google matrix of graph H is G = 0.85P + 0.15
6 J , where J = (1)6×6 is

a matrix with entries 1. Now from Equation (4), the PageRank vector of graph H
is

πT = [0.217374, 0.116870, 0.214955, 0.167705, 0.118709, 0.164387].

Figure 1: The graph H on 6 vertices and 9 edges.

In general, there are 112 graphs of order 6, see Figure 2. Here, we compute
variance of PR vector for all graphs as we shown in the Table 1.

Figure 2: All connected graphs on six vertices.
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Figure 2: Continued.
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Figure 2: Continued.



A Study of PageRank in Undirected Graphs 163

Table 1: The PageRank of vertices of connected graphs of order six.
Num PageRank σ2(pr) γ

1 (0.166667,0.166667,0.166667,0.166667,0.166667,0.166667) 0.000000 1
2 (0.177239,0.145523,0.177239,0.177239,0.177239,0.145523) 0.000268 1
3 (0.155379,0.189243,0.155379,0.155379,0.189243,0.155379) 0.000306 1
4 (0.121743,0.189690,0.154593,0.189690,0.154593,0.189690) 0.000780 1
5 (0.166667,0.166667,0.166667,0.166667,0.166667,0.166667) 0.000000 2
6 (0.130609,0.167090,0.165853,0.165853,0.167090,0.203506) 0.000532 1
7 (0.203882,0.129687,0.203882,0.129687,0.166431,0.166431) 0.001101 1
8 (0.094801,0.205295,0.164870,0.164870,0.164870,0.205295) 0.001632 1
9 (0.204195,0.129139,0.204195,0.129139,0.204195,0.129139) 0.001690 1
10 (0.179372,0.141256,0.179372,0.179372,0.141256,0.179372) 0.000387 2
11 (0.180574,0.139895,0.180574,0.139895,0.179531,0.179531) 0.000430 2
12 (0.102318,0.181924,0.177945,0.177945,0.181924,0.177945) 0.000998 2
13 (0.140494,0.140494,0.179851,0.179851,0.138905,0.220406) 0.001075 1
14 (0.139321,0.180872,0.139321,0.220293,0.139321,0.180872) 0.001105 1
15 (0.181575,0.178448,0.221719,0.101277,0.178448,0.138532) 0.001720 1
16 (0.220764,0.139618,0.220764,0.139618,0.139618,0.139618) 0.001756 1
17 (0.221879,0.138454,0.221879,0.100438,0.138454,0.178896) 0.002445 1
18 (0.064021,0.229538,0.176610,0.176610,0.176610,0.176610) 0.002977 1
19 (0.153942,0.151698,0.195482,0.151698,0.195482,0.151698) 0.000499 2
20 (0.152803,0.151476,0.195721,0.195721,0.151476,0.152803) 0.000507 2
21 (0.196809,0.151595,0.196809,0.151595,0.151595,0.151595) 0.000545 2
22 (0.194244,0.154574,0.194244,0.149396,0.196903,0.110639) 0.001204 2
23 (0.197307,0.108855,0.197307,0.151043,0.151043,0.194446) 0.001296 2
24 (0.151948,0.151948,0.151948,0.151948,0.151948,0.240261) 0.001300 1
25 (0.197889,0.109102,0.197889,0.150396,0.194327,0.150396) 0.001312 2
26 (0.108248,0.195876,0.195876,0.108248,0.195876,0.195876) 0.002048 2
27 (0.194695,0.149929,0.241627,0.109735,0.154085,0.149929) 0.002073 1
28 (0.241282,0.150903,0.197415,0.107969,0.150903,0.151529) 0.002137 1
29 (0.192444,0.206174,0.068812,0.192444,0.147683,0.192444) 0.002698 2
30 (0.242429,0.107888,0.196116,0.196116,0.107888,0.149563) 0.002935 1
31 (0.067276,0.248683,0.149217,0.192803,0.149217,0.192803) 0.003716 1
32 (0.242567,0.107472,0.242567,0.149961,0.149961,0.107472) 0.003818 1
33 (0.166667,0.166667,0.166667,0.166667,0.166667,0.166667) 0.000000 2
34 (0.166667,0.166667,0.166667,0.166667,0.166667,0.166667) 0.000000 2
35 (0.120330,0.168232,0.164756,0.164756,0.168232,0.213692) 0.000874 2
36 (0.165543,0.169332,0.165543,0.164708,0.215999,0.118876) 0.000946 2
37 (0.168632,0.118825,0.216687,0.164835,0.166186,0.164835) 0.000960 2
38 (0.214838,0.162287,0.214838,0.122876,0.122876,0.162287) 0.001703 2
39 (0.214807,0.167179,0.214807,0.116292,0.167179,0.119736) 0.001875 2
40 (0.117984,0.166667,0.215349,0.117984,0.166667,0.215349) 0.001896 2
41 (0.217374,0.116870,0.214955,0.167705,0.118709,0.164387) 0.001938 2
42 (0.218094,0.117689,0.218094,0.117689,0.164217,0.164217) 0.002020 2
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Table 1: Continued.
Num PageRank σ2(pr) γ

43 (0.211821,0.179503,0.075860,0.211821,0.160498,0.160498) 0.002513 2
44 (0.122510,0.122510,0.267308,0.162557,0.162557,0.162557) 0.002816 1
45 (0.163914,0.224732,0.072756,0.163914,0.162890,0.211793) 0.002851 2
46 (0.164845,0.166920,0.117551,0.266212,0.117551,0.166920) 0.002947 1
47 (0.116959,0.216374,0.116959,0.216374,0.116959,0.216374) 0.002965 2
48 (0.212942,0.223238,0.072439,0.212942,0.115500,0.162939) 0.003799 2
49 (0.116379,0.216431,0.166321,0.117511,0.266979,0.116379) 0.004003 1
50 (0.071188,0.271692,0.164280,0.164280,0.164280,0.164280) 0.004034 1
51 (0.071392,0.272895,0.162858,0.213282,0.116715,0.162858) 0.005012 1
52 (0.267856,0.116072,0.267856,0.116072,0.116072,0.116072) 0.006144 1
53 (0.184649,0.134465,0.134465,0.184649,0.180886,0.180886) 0.000625 2
54 (0.187611,0.130415,0.184443,0.184443,0.130415,0.182673) 0.000791 2
55 (0.185065,0.185065,0.129870,0.185065,0.185065,0.129870) 0.000812 2
56 (0.185065,0.185065,0.129870,0.185065,0.185065,0.129870) 0.000812 2
57 (0.182196,0.196921,0.080793,0.182196,0.178947,0.178947) 0.001815 2
58 (0.127550,0.239487,0.132678,0.133618,0.184337,0.182329) 0.001928 2
59 (0.182573,0.241177,0.132610,0.132610,0.182573,0.128458) 0.001968 2
60 (0.130470,0.186122,0.128707,0.239871,0.128707,0.186122) 0.002062 2
61 (0.129370,0.241701,0.128488,0.183978,0.187093,0.129370) 0.002117 2
62 (0.174034,0.237245,0.151335,0.089316,0.174034,0.174034) 0.002272 2
63 (0.236499,0.194896,0.080220,0.181594,0.180417,0.126374) 0.003036 2
64 (0.236499,0.194896,0.080220,0.181594,0.180417,0.126374) 0.003036 2
65 (0.240461,0.132344,0.132344,0.240461,0.127195,0.127195) 0.003273 2
66 (0.183374,0.245912,0.077256,0.183374,0.128913,0.181169) 0.003294 2
67 (0.129538,0.248642,0.077836,0.180752,0.182481,0.180752) 0.003327 2
68 (0.243244,0.128378,0.243244,0.128378,0.128378,0.128378) 0.003518 2
69 (0.237306,0.193773,0.079902,0.237306,0.125856,0.125856) 0.004315 2
70 (0.127750,0.297482,0.131429,0.131429,0.127750,0.184160) 0.004586 1
71 (0.179439,0.076799,0.243761,0.243761,0.076799,0.179439) 0.005673 2
72 (0.076386,0.302275,0.128111,0.182559,0.182559,0.128111) 0.006004 1
73 (0.077475,0.077475,0.308681,0.178789,0.178789,0.178789) 0.007304 1
74 (0.076511,0.303007,0.127245,0.238749,0.127245,0.127245) 0.007315 1
75 (0.150262,0.147369,0.206493,0.142013,0.206493,0.147369) 0.000959 2
76 (0.145985,0.208029,0.208029,0.145985,0.145985,0.145985) 0.001027 2
77 (0.145985,0.208029,0.145985,0.145985,0.208029,0.145985) 0.001027 2
78 (0.143736,0.209536,0.143736,0.209536,0.146727,0.146727) 0.001104 2
79 (0.161121,0.237500,0.177757,0.100546,0.161121,0.161954) 0.001919 2
80 (0.085695,0.214216,0.205370,0.144675,0.144675,0.205370) 0.002556 2
81 (0.140905,0.204669,0.086869,0.218363,0.144784,0.204409) 0.002610 2
82 (0.146033,0.271314,0.143746,0.143746,0.146033,0.149129) 0.002632 2
83 (0.206982,0.215421,0.086036,0.206982,0.142289,0.142289) 0.002664 2
84 (0.138533,0.268000,0.161567,0.093665,0.138533,0.199703) 0.003660 2
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Table 1: Continued.
Num PageRank σ2(pr) γ

85 (0.202673,0.212203,0.085125,0.202673,0.212203,0.085125) 0.004008 2
86 (0.142722,0.268543,0.216348,0.086300,0.143365,0.142722) 0.004199 2
87 (0.142242,0.276992,0.083861,0.145597,0.145258,0.206049) 0.004416 2
88 (0.143070,0.279073,0.084302,0.143070,0.207415,0.143070) 0.004550 2
89 (0.203469,0.213456,0.085480,0.273647,0.083149,0.140799) 0.005845 2
90 (0.202152,0.285012,0.085566,0.085566,0.202152,0.139552) 0.006083 2
91 (0.141794,0.274808,0.083397,0.141794,0.083397,0.274808) 0.007699 2
92 (0.082887,0.144151,0.144151,0.340509,0.144151,0.144151) 0.007854 1
93 (0.141534,0.345449,0.083726,0.083726,0.141534,0.204031) 0.009676 1
94 (0.166667,0.166667,0.166667,0.166667,0.166667,0.166667) 0.000000 2
95 (0.156757,0.229889,0.168580,0.184572,0.103444,0.156757) 0.001703 2
96 (0.161121,0.237500,0.177757,0.100546,0.161121,0.161954) 0.001919 2
97 (0.094532,0.245403,0.164769,0.165263,0.165263,0.164769) 0.002283 2
98 (0.158816,0.234820,0.176569,0.100041,0.237471,0.092283) 0.003958 2
99 (0.157746,0.231898,0.256984,0.097813,0.097813,0.157746) 0.004411 2
100 (0.163199,0.242961,0.093840,0.093840,0.242961,0.163199) 0.004455 2
101 (0.162837,0.243244,0.093919,0.162837,0.243244,0.093919) 0.004468 2
102 (0.159247,0.313254,0.176622,0.100063,0.091567,0.159247) 0.006355 2
103 (0.093074,0.240259,0.240259,0.093074,0.240259,0.093074) 0.006499 3
104 (0.163161,0.322800,0.093594,0.093594,0.163161,0.163688) 0.007018 2
105 (0.161041,0.092896,0.092896,0.319512,0.240511,0.093145) 0.009027 2
106 (0.161390,0.398822,0.092799,0.092799,0.092799,0.161390) 0.014064 1
107 (0.109743,0.199398,0.190859,0.190859,0.199398,0.109743) 0.001959 2
108 (0.108953,0.197537,0.282093,0.104927,0.197537,0.108953) 0.005141 3
109 (0.106294,0.286924,0.191109,0.199565,0.109814,0.106294) 0.005333 2
110 (0.106383,0.287235,0.287235,0.106383,0.106383,0.106383) 0.008722 2
111 (0.105188,0.377361,0.197946,0.109128,0.105188,0.105188) 0.012004 2
112 (0.472975,0.105405,0.105405,0.105405,0.105405,0.105405) 0.022518 1

Then we sort all graphs with 6 vertices and m edges by var(PR). We have
applied this technique for ordering all graphs on six vertices. These graphs can be
classified in 11 classes based on the number of edges as reported in Table 2.

Table 2: Graphs on 6 vertices together with edge classes.
Graphs 1 2 3,4 5-9 10-18 19-32 33-52 53-74 75-93 94-106 107-112
Edges 15 14 13 12 11 10 9 8 7 6 5

In Figures 3 and 4, we have drawn the diagrams of V ar(PR) and V ar(deg) of
each class in Table 2.
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Figure 3: A diagram for Var(pr).

Figure 4: A diagram for Var(degree).

By comparing these diagrams, the following results can be derived:

a) V ar(PR) of r-regular graphs (r = 5, 4, 3, 2) is zero.

b) As we can see in the diagrams, the trend of changes in V ar(deg) is propor-
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tional to the V ar(PR) of the graphs.

c) There are non-isomorphic graphs with the same PR sequence. We call them
as Co-PR graphs, depicted in Figure 5.

Figure 5: Co-PR graphs on 6-vertices.

In general, there are four Co-PR graphs G55, G56, G76 and G77 of order 6 as
given in Figure 5. In other words, we have

PR55 = PR56 = (0.208029, 0.208029, 0.145985, 0.145985, 0.145985, 0.145985),

PR76 = PR77 = (0.185065, 0.185065, 0.185065, 0.185065, 0.129870, 0.129870).

This yields the following theorem.

Theorem 3.1. There are no Co-PR graphs on 3, 4 and 5 vertices.

Note that the graphs G76 and G77 can be obtained from G55 and G56 after
removing an edge, respectively. This yields the following conjecture.

Conjecture 3.2. Let G and H be two Co-PR graphs on n ≥ 6 vertices. There
are two edges e ∈ E(G) and f ∈ E(H) such that G/e and H/f are Co-PR.
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regarding the publication of this article.
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