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Note on the Sum of Powers of Normalized Signless

Laplacian Eigenvalues of Graphs
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Abstract

In this paper, for a connected graph G and a real @ # 0, we define a
new graph invariant o, (G)-as the sum of the ath powers of the normalized
signless Laplacian eigenvalues of G. Note that oy/5 (G) is equal to Randi¢
(normalized) incidence energy which have been recently studied in the liter-
ature [5,15]. We present some bounds on o4 (G) (e # 0,1) and also consider
the special case o = 1/2.
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1. Introduction

Let G be a simple connected graph with n vertices and m edges and let V (G) =
{v1,v2,...,v,} denote the set of vertices of G. Let d; be the degree of the vertex
v, €V (G), fori=1,2,...,n.

Let A (G) be the (0,1)-adjacency matrix of a graph G. The eigenvalues of G
are the eigenvalues of A (G) [9] and denoted by Ay > A2 > --- > \,,. Let D (G)
be the diagonal matrix of vertex degrees of G. The Laplacian matrix of G is the
matrix L (G) = D (G) — A(G) with eigenvalues g > pg > -+ > p, = 0. The
matrix Q (G) = D (G) + A (G) is called as the signless Laplacian matrix of G. Let
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q1 > g2 > -+ > gy be the eigenvalues of @ (G). The eigenvalues of the matrices
L(G) and Q (@) are said to be the Laplacian and signless Laplacian eigenvalues
of G, respectively. For more details on the spectral theory of L (G) and Q (G),
see [11-13,28,29].

The energy of a graph G is defined as the sum of absolute values of its eigen-
values, i.e., [16]

E=E(G) =Y I\l

This concept is originated from theoretical chemistry where it is closely associated
with the total m-electron energy of a molecule [17,18]. There is an extensive
literature on E (G). For more details see the book [23] and the references cited
therein.

The graph energy concept was extended to energy of any matrix in the following
manner [32]. The singular values of any (real) matrix M are equal to the square
roots of the eigenvalues of M M7, where M7 is the transpose of M. Then the
energy of the matrix M is defined as the sum of its singular values [32]. Evidently,
E(A(@)) = E(G).

The incidence matrix I (G) of a graph G with the vertex set V (G) = {v1,...,vn}
and edge set E (G) = {ey, ..., en} is the matrix whose (i, j)-entry is 1 if the vertex
v; is incident with the edge e; and is 0 otherwise. In the light of the paper [32],
Jooyandeh et al. [22] introduced the incidence energy of G, denoted by IE (G), as
the sum of singular values of I (G). Since Q (G) = I (G) I (G), it was discovered
that [19]

IE=IE(G)=> Vi
i=1
For the basic properties and the details of IF, see [4,19, 20,22, 35].

In [27], Liu and Liu defined the Laplacian energy-like invariant as

LEL = LEL(G) = Ti N

i=1

For survey and more inforation on the quantity LEL, see [21,26]. Since the
Laplacian and signless Laplacian eigenvalues of bipartite graphs coincide [10, 28,
29], LEL is equal to IE for bipartite graphs [19].

The Randi¢ matrix R(G) of a graph G is the matrix whose (i,j)-entry is
1/4/d;d; if the vertices v; and v; are adjacent and is 0 otherwise [2]. Since G
is connected, D (G) is non-singular, then the Randi¢ matrix of G is also defined
as R(G) =D (G)71/2A (G)D (G)fl/2 [9]. The Randi¢ eigenvalues of G are the
eigenvalues of its Randi¢ matrix and denoted by p1 = 1> py > --- > p, [2,9,25].
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The normalized Laplacian and the normalized signless Laplacian matrices of a
connected graph G are defined as [7]

L~ (G)=D (@) *L(@)D(@G)? =1, - R(G) (1)
and
LY (@) =D(@G) Q@) D(G) =1, + R(G) (2)

respectively. In here, I, is the n x n unit matrix. Let vy > v > .- > v, =0 be
the eigenvalues of £~ (G) and 7;” > 75 > -+ > ;& be the eigenvalues of LT (G).
These eigenvalues are called as the normalized Laplacian and normalized signless
Laplacian eigenvalues of G, respectively. For more details, see [7].

From the Equations (1) and (2), it follows that [15,25]
Y =1—=pp_iz1and v;f =1+ p;, fori=1,2,... n. (3)

Considering Randi¢ matrix and incidence matrix, Gu et al. [15] defined the n x m
Randi¢ incidence matrix I (G) of G whose (i, j)-entry is 1/+/d; if the vertex v;
is incident with the edge e; and is 0 otherwise. The Randi¢ incidence energy of
G, denoted by IgrFE (G), is defined as the sum of singular values of its Randié¢
incidence matrix [15]. In [15], It was shown that £ (G) = I (G) Ir (G)". Then,
by full analogy with the incidence energy [19], the authors also defined the Randié
incidence energy as [15]

IRE = IzE (G) = Z \/yT
=1

This quantity is studied under the name normalized incidence energy in [5].

By analogy to Laplacian energy-like invariant [27], the Laplacian incidence
energy of G is defined as [33]

n—1
LIE =LIE(G) =) \F
i=1

For a connected graph G and a real number a # 0, the sum of the ath powers of
the non-zero normalized Laplacian eigenvalues of G is defined as the following [3]

n—1

sa:sa(G):Z('yi_)a.

i=1

The case a = 1 is trivial as s; = n. In [1,3,8,24], some bounds on s, was given and
the case @ = —1 was discussed since 2ms_; is equal to the degree Kirchoff index [6].
Furher note that, s;,2 = LIE which was recently studied in the literature [30,33].
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For a connected graph G and a real number « # 0, we now introduced the
sum of the ath powers of the normalized signless Laplacian eigenvalues of G as
the following

UQZUQ(G):Z('ﬁ)a.

i=1

Note that the case o = 1 is trivial as oy = n. Furthermore, for a = 1/2, 01/ =
IRE.

In this paper, we present some upper and lower bounds on o, (G) (o #0,1)
and also consider the special case o = 1/2.

2. Lemmas

Let G and t = t(G) denote the complement and the number of spanning tress of
a graph G, respectively. Let G1 x G5 be the cartesian product of the graphs Gy
and G [9]. Throughout this paper, for a graph G, we use the following auxiliary

quantity,
2t (G X KQ)
th =t (G) = ———=. 4
Lemma 2.1. If G is a bipartite graph, then the eigenvalues of £~ (G) and LT (G)
coincide.

Proof. From the Equation (3), we have v, = 1 — p,_;41 and 7" = 1 + p;, for
1 <4 < n|[15,25]. Note that Randié¢ eigenvalues of a bipartite graph are symmetric
with respect to the zero point of the real axis, i.e., p; = —pn—it1, for 1 <i < n [9]
(p. 109). Then, we get the required result. O

By Lemma 2.1, we directly have:

Lemma 2.2. If G is a bipartite graph, then o, coincide with s,. Especially, for
bipartite graphs, 01/ = IrE = LIE = s1/5.

Lemma 2.3. [9] Let G be a connected graph with n vertices, m edges and ¢
2mt
i di”

spanning trees. Then, H?:_ll v, =

Lemma 2.4. [12] Let G be a connected non-bipartite graph with n vertices. Then,
det Q (G) =iz, @i = ta-

Lemma 2.5. If G is a connected bipartite graph with n vertices, m edges and
t spanning trees, then H?:_ll v = H?:_ll v = 2. If G is a connected non-

=1 "

bipartite graph with n vertices, then []/_, 7" = ﬁ
i=1 i
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Proof. By Lemmas 2.1 and 2.3, for connected bipartite graphs, one can directly

get that
n—1 n—1 9

- _ TF:Lt.
E% l;[lv o d

i=1%i

Since L1 (G) =D (G)_l/2 Q(G)D (G)_1/2, taking the determinant of both of two
sides, we obtain that

- det Q (G)
det £ (G) = [[Hf =22 &),
(@) i];[lv T d

Considering this with Lemma 2.4, we get the required result for connected non-
bipartite graphs. O

Lemma 2.6. [14] Let G be a connected graph with n > 2 vertices. Then v, =
V3 ==, ifandonlyif G =K, or G=K,, (p+q=n).

The proof of the following lemma can be found in the proof of Theorem 2.2
in [15].

Lemma 2.7. [15] Let G be a graph of order n > 2 without isolated vertices. Then

Yy =75 ==, if and only if G = K,,.
Lemma 2.8. [34] Let aj,as,...,ay be non-negative real numbers. Then
| N 1/N N N 2

1 N N 1/N
< N(-1) Nzai_<Hai>
=1 =1

Moreover, the equality holds on both sides of (5) if and only if a; = ag = -+ = an.

Lemma 2.9. [31] Let a; >0,i=1,2,...,p be p real numbers. Then

p(Aprp) >(p-1) (Ap—l *Gp—l)v (6)

SP L a; P 1p
where A, = === and G = | [[ w .

i=1

3. Main Results

In this section, we present some bounds on o, (G) (o # 0, 1) and also discuss the
special case a = 1/2.
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Theorem 3.1. Let G be a connected non-bipartite graph with n > 3 vertices and
let ¢; be given by (4) and a # 0,1 be a real number. Then

t 2a/(n—1)
i=1 "

and

2a/(n—1)
aa(G)§2a+\/(ﬂ—?)(aga—4a)+(n—1) (2Ht”ild) ®)

Moreover, equalities in (7) and (8) hold if and only if G & K.

Proof. By replacing N with n—1 and taking a; = (7{")20‘, i=2,3,...,n, in Lemma
2.8, we get

T< -1 ()™ - (z w)&) S

i=2 i=2
1 n + 2 n + 2 1/(n—=1) +
where T'= (n—1) | A5 >0, (7)™ — (Hi:2 (v;h) ) . Note that " =
2 [15] and "), (717")20‘ = 024, then we obtain
T<(n—1) (020 —4%) = (04 —2°)° < (n—2)T (9)

and

T = (n-1) [n i 1 Zj;g (%-&-)Qa - (H:;Q (,Y;&-)Qa)l/(”—l)}

= (n—1) [n i 1 (020 —4%) — (szz ﬁr)m/(nl)]

t )2(1/(71—1)
2110, di

,by Lemma 2.5.  (10)

(o2~ 4% = (0 1)

Combining (9) and (10), we arrive at the inequalities (7) and (8). Now we
assume that the equalities hold in (7) and (8). Then, by Lemma 2.8, 75 =74 =
-+ =", From Lemma 2.7, this implies that G & K,,.

Conversely, one can easily see that the equalities in (7) and (8) hold for G &
K,. O

For @ = 1/2 in Theorem 3.1, we have the following result on Randi¢ incidence
energy of connected non-bipartite graphs.
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Corollary 3.2. Let G be a connected non-bipartite graph with n > 3 vertices
and let ¢; be given by (4). Then

t 1/(n=1)
IRE(G) > V2 + n2+(n1)(n2)<w) (11)

and

f 1/(n—1)
) . (12)

IRE(G) < V2 —2% 4+ (1) s=m—r
R (G)f+\/(n )"+ (n )(QH?_1di
Moreover, equalities in (11) and (12) hold if and only if G = K.

Remark 1. For a graph G of order n > 2 without isolated vertices, Gu et al.

obtained that [15]
IRE(G) <V2++/(n—1)(n—2). (13)

The equality holds in (13) if and only if G = K,,. By using arithmetic-geometric
mean inequality, one can conclude that the upper bound (12) is better than the
upper bound (13) for connected non-bipartite graphs.

Considering 7;{” = 2 [15] and similar arguments in Theorem 3.1 and using
Lemmas 2.1, 2.5, 2.6 and 2.8, we have:

Theorem 3.3. Let G be a connected bipartite graph with n > 3 vertices, m edges
and ¢ spanning trees and let  # 0, 1 be a real number. Then

mt 2a/(n—2)
50 (G) = 00 (G) > 2% + {090 — 4% + (n — 2) (n — 3) <H”1d) (14)

and

mit 2a/(n—2)
$a (G) =04 (G) <244/ (n—3) (020 —4%) + (n — 2) (W) . (15)

Moreover, equalities in (14) and (15) hold if and only if G = K, , (p + ¢ = n).
For @ = 1/2 in Theorem 3.3, we obtain the following result.

Corollary 3.4. Let G be a connected bipartite graph with n > 3 vertices, m
edges and t spanning trees. Then

N\ V(2)
LIE(G)=IzE(G) > V2 + n—2+(n—2)(n—3)(1_”> (16)

and

o\ (2)
LIE(G) = IgE(G) < V24 (/(n—2) (n—3) + (n — 2) (H"d> . (17)

Moreover, equalities in (16) and (17) hold if and only if G = K, 4 (p+ g = n).
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Theorem 3.5. [3] Let G be a connected bipartite graph of order n > 3. If
0 < a <1, then

50 (G) =00 (G) <n+2(2°71 —1). (18)
The equality holds in (18) if and only if G 2 K, , (p + ¢ = n).

Remark 2. For a bipartite graph G of order n without isolated vertices, Gu et al.
obtained that [15]

IRE(G) <n—2+V2. (19)

The equality holds in (19) if and only if G is a complete bipartite graph. In
fact, for connected bipartite graphs, (19) is a special case of (18) when o = 1/2.
Furthermore,by arithmetic-geometric mean inequality, we conclude that (17) is
better than (19) for connected bipartite graphs.

As well known in graph theory every tree is bipartite. Furthermore, for a tree

T,m=mn—1andt=1. Then, from Theorem 3.3, we have:

Corollary 3.6. Let T be a tree with n > 3 vertices and let a # 0,1 be a real
number. Then

o 2a/(n—2)
50 (T) = 04 (T)22a+\/02a—4a+(n—2) (n—3) (”1> (20)

and

n—1 2a/(n—2)
50 (T) = 00 (T) < 2% + 1/ (n = 3) (020 — 49) + (n — 2) <H"_1d> L (21)

Moreover, equalities in (20) and (21) hold if and only if G = K1 ,,_1.
Setting o = 1/2 in Corollary 3.6, we obtain:

Corollary 3.7. Let T be a tree with n > 3 vertices. Then

n—1 1/(n—2)
LIE(T) = IgE(T) > V2 + n—2+(n—2)(n—3)<l_m> (22)

and

n—1 1/(n—2)
LIE(T) =IrE(T) < V2+4/(n—2)(n—3)+ (n—2) <Hd> . (23)

Moreover, equalities in (22) and (23) hold if and only if G = K ,,_1.
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Theorem 3.8. Let G be a connected graph with n > 3 vertices, m edges and ¢
spanning trees and let ¢; be given by (4) and «a # 0,1 be a real number.
(i) If G is bipartite, then there exists a real number € > 0 such that [24]

e\ o/n2)
50 (G) = 00 (G) > 2% + (n—2) (and) +e (24)

(ii) If G is non-bipartite, then there exists a real number € > 0 such that

/(n—1)
0o (G)>2%+ (n—1) (21{,}@) +e. (25)

Proof. The lower bound (24) has been obtained in [24]. So, we omit its proof. We
now only prove the lower bound (25).

Let p=n—1,a; = (7;)(1, az = ()" and a; = ('y;r)a fori=3,....,mn—11in
Equation (6). Then, from Lemma 2.9, we have

(n—1) (M -(IT_, (ﬁ)a)l/(n_l)> >z () - (%T)Q/Q)z

n—1

ie.,

n )a/<n—1>

70 (@)= () + =) ([T, (6= 6H™) . (@)

2
Let say € = ((’y;')a/2 - (fy*)a/Q) . Considering Equation (26) with 7" = 2 [15]

n

and Lemma 2.5, we obtain
. t a/(n—1)
00 (G) > 2% 4+ (n—1) (W) +e.
Hence the result holds. O
Taking o = 1/2 in Theorem 3.8, we have:

Corollary 3.9. Let G be a connected graph with n > 3 vertices, m edges and ¢
spanning trees and let ¢; be given by (4).
(i) If G is bipartite, then there exists a real number € > 0 such that [24]

mit 1/2(n—2)
LIE(G) = IgE(G) > V2 + (n—2) (H”d) te.

(ii) If G is non-bipartite, then there exists a real number € > 0 such that

¢ 1/2(n—1)
=1
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