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Abstract

The Laplacian characteristic polynomial of an n-vertex graph G has the
form f(G, x) = xn +

∑n−1
i=1 lix

n−i. In this paper, the fourth and fifth Lapla-
cian coefficients of f(T (k, t), x) will be computed, where T (k, t) is a rooted
tree with degree sequence k, k, . . . , k, 1, 1, . . . , 1.
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1. Introduction

The mathematical structure of graphs have a valuable feature to help us to vi-
sualize, analyze, generalize a situation or problem that we may encounter and,
in many cases, assisting us to understand it better and possibly solve it. In this
paper, we study one of the types of graphs used in computer science.

A rooted tree is a tree in which one vertex has been designated as root. These
trees, often with additional structure such as ordering of the neighbors at each
vertex, are a key data structure in computer science. Let G be a simple graph
with n vertices and m edges. A matching for G is a set of edges without common
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vertices and a k-matching is a matching with k edges. The number of k-matchings
is denoted by M(G, k).

The adjacency matrix of a graph G is a square n×n matrix A such that Aij is 1
when there is an edge from vi to vj and zero otherwise, where V (G) = {v1, ..., vn}.
The Laplacian matrix of G is defined as L(G)= diag(d1, . . . , dn)-A(G), where di
is the degree of vertex vi [2, 3]. The characteristic polynomial of the Laplacian
matrix of G, denoted f (G, x ), is defined as f(G, x) = det(x In − L(G)) = xn +
l1x

n−1+l2x
n−2+· · ·+ln−1x+ln. The coefficient (−1)ili is the sum of the principal

minors of L(G) containing i rows and i columns. It is easy to see that ln = 0 and
l1 = −2m. A graph H without cycles is called a forest. Such a graph is a union
of some components, each of which is a tree. In particular, if H has a unique
connected component, then it is a tree. We shall use the symbol P (H) to denote
the product of the numbers of vertices in the number of components of H. If
H is a tree then P (H) is the number of vertices in H. Our motivation in this
paper is explanation of the relation between the coefficients of the characteristic
polynomial of the Laplacian matrix of a graph and its subforests. The general case
of these relations explained in the following theorem.

Theorem 1.1. [2] The i-th coefficient li of f (G, x ) is given by the formula li =
(−1)i

∑
H P (H), where H is a subforest with i edges.

Theorem 1.2. [8] Let G be a graph with n vertices and m edges. Then the
number of 3-matchings in G is(

m
3

)
− (m− 2)

n∑
i=1

(
di
2

)
+ 3

n∑
i=1

(
di
3

)
+

∑
ij∈E(G)

(di − 1)(dj − 1)−NT ,

where NT is the number of triangles in G.

Theorem 1.3. [10] Let G be a graph with m edges, A be its adjacency matrix,
and d = (d1, . . . , dn) be its non-increasing degree sequence. Then,

l3 =
1

3
(−4m3 + 6m2 + 3m

n∑
i=1

di
2 −

n∑
i=1

di
3 − 3

n∑
i=1

di
2 + tr(A3)).

In this article, our notations are standard and taken mainly from [5–7,9,11,12].

2. Results
The main purpose of this section is to find the coefficients of the Laplacian polyno-
mial of the rooted tree T (k, t) with degree sequence k, k, · · · , k, 1, 1, · · · , 1 in which
t is the distance between the center and a pendent vertex. This tree is depicted in
Figure 1.
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Figure 1: The tree T (4, 2).

Lemma 2.1. The number of vertices of the tree T (k, t) is k(k−1)t−2
k−2 .

Corollary 2.2. ln−1 = (−1)n−1n and

ln−2 = k(−1)n−2

(k−2)3(k2−k−1) [k
2 − k − (k − 1)t+1t+ (k − 1)3t+1k + (k − 1)t+3t2(k − 1)t

+2(k − 1)t+2 − (k − 1)2t+2 + 2(k − 1)2t(k − 1)2t+1 + k(k − 1)t+2 − k(k − 1)3t

+k(k − 1)2t − (k − 1)2t+2k − k(k − 1)t+1 + t(k − 1)t − t(k − 1)t+2,

where n is the number of vertices in T (k, t).

Proof. The proof is straightforward by [1, p. 67].

Corollary 2.3. The coefficient l2 is equal to

− k
2(k−2)2 [k

3(k − 1)t−1 − 3k2(k − 1)t−1 − 2k2 − 2k + 4

+2k(k − 1)t−1 − 4k(k − 1)2t − 12k(k − 1)t − 8(k − 1)t].

A B C D

Figure 2: Subforests with 3 edges.

Now we are ready to compute the third coefficient of the characteristic poly-
nomial of T (k, t) tree.

Lemma 2.4. The number of subgraphs of type C and D in T (K, t) which is shown
in Figure 2, is

(
k
3

)
(n− k(k − 1)t−1) and (k − 1)2(n− k(k − 1)t−1), respectively.
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Proof. The first one is the number of star graphs with 4 vertices started from a
vertex. The second one is the number of path P4 in T (k, t).

Lemma 2.5. The number of subgraphs of type B in T (K, t), Figure 2, is

(
k
2

)
(n−k(k−1)t−1)(n−3)−3

(
k
3

)
(n−k(k−1)t−1)−2(k−1)2(n−k(k−1)t−1).

Proof. Straightforwardly from [4, p. 117].

Lemma 2.6. The number of subgraphs of type A in T (K, t) that is depicted in
Figure 2 is(

n− 1
3

)
− (n− 3− 3

(
k
3

)
+ (k − 1)2)(n− k(k − 1)t−1).

Proof. The proof is an easy consequence of Theorem 1.2.

Corollary 2.7. The coefficient l3 is equal to

8 + 20/3n− 8n2 − 8k(−−kn+n+(k−1)t
k−1 )2 − 10k2n+ 61/3kn

+3k2n2 − 3kn2 − 7/3k3n+ 8k(k − 1)t−1 + 10k3(k − 1)t−1 − 61/3k2(k − 1)t−1

+7/3k3(k − 1)t−1 − 3k3n(k − 1)t−1 + 3k2n(k − 1)t−1 − 8n(n− k(k − 1)t−1)

+24

(
k
3

)
(n− k(k − 1)t−1) + 16k(n− k(k − 1)t−1) + 4/3n3.

Proof. The proof is straightforward by Theorem 1.1.

Now, we are ready to compute the fourth coefficient of the characteristic poly-
nomial of T (k, t) tree by above Lemmas.

Lemma 2.8. The number of subgraphs isomorphic to P5 in T (k, t) is

k(k − 1)t−2 − 2

k − 2
× k(k − 1)3

2
.

Proof. The number of vertices that can be the central vertex of a path P5 is
k(k−1)t−2−2

k−2 . By selecting a central vertex, we can choose two neighborhoods of
this vertex by k(k−1)/2 ways and two neighborhoods of them by (k−1)2 ways.

Lemma 2.9. The number of subgraphs isomorphic to the star graph S5 in T (k, t)
is (

k
4

)
(n− k(k − 1)t−1).
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A B C D E

Figure 3: Subforests with 4 edges.

Proof. This goes ahead through the same lines of the proof of Lemma 2.6.

Lemma 2.10. The number of subgraphs of T (k, t) isomorphic to A, Figure 3, is
(k − 1)2(k − 2)(n− k(k − 1)t−1).

Proof. The number of subgraphs of T (k, t) isomorphic to A is N(P4)− (n− 4)−
−2N(P5). It is now enough to apply Lemmas 2.4 and 2.8.

Lemma 2.11. The number of subgraphs isomorphic to B in T (k, t), Figure 3, is
N(P4)(n− 4)− 2N(A)− 2N(P5) in which N(P4 is the number of P4 subgraphs in
T (k, t).

Proof. This goes ahead through the same lines of the proof of Lemma 2.10.

Lemma 2.12. The number of subgraphs isomorphic to C in T (k, t), Figure 3, is

(n−k(k−1)t−1)k(k−1)/2− (n−k(k−1)t−1)(k−1)(k−2)/2−k(k−2)(k−1)t/2.

Proof. It is enough to note that the number of subgraphs isomorphic to C is equal
to the number of 2−matchings in the line graph of L(k, t).

Lemma 2.13. The number of subgraphs isomorphic to D in T (k, t), Figure 3, is

(n− k(k − 1)t−1)

(
k
3

)
(n− 4)−N(S5)− 3N(A).

Proof. The number of subgraphs isomorphic to D is N (S4)(n-4 ) -N (S5) -3N (A).
Now by using Lemma 2.4, the proof is completed.

Lemma 2.14. The number of subgraphs isomorphic to E in T (k, t), Figure 3, is

N(P3

⋃
P2)(n− 4)− 2N(B)−N(D)− 2N(C)− 2N(P5)− 2N(A).

Proof. The proof is similar to the proof of Lemma 2.13.
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Lemma 2.15. Suppose A = (k−1)t−1, B = (k−1)t−2 and C = (k−1)t−3. Then
the number of 4−matching in T (k, t) is

1 − 73/12n+ 4kA+ 2kB − 2/3n2k3 + 59/24n2 + 7/4n2k2 − 7/3n2k

− 55/8nk2 + 37/4nk − 5/8nk4 + 9/4nk3 + 1/4k4n2 − 7/4nk3A

+ 7/3nK2A− 3/4BnK4 + 3/4Bnk3 − 1/4k5nA+ 2/3k4nA− 1/4k6Bn

+ k5Bn− nkA+ 9/2k3B + 1/4k4A2 − 9k2A+ 77/12K3A+ 1/4k6A2

+ 7/12k5A− 1/2k5A2 − 4k2B1/2k
4Cn2 − 1/4k3Cn2 + 3k3Cn− 3k4Cn

− 1/4k5V n2 + 1/4k4Bn2n− 1/2k5B2/(k − 1) + 1/4k4B2/(k − 1)

+ 1/2k6B2n+ k3B2/(k − 1) + k3B2 − k6B2/(k − 1)− k6B2

+ 1/4k2Bn2 − 3/4Bnk2 − 5/12n3 + 1/24n4 − 1/4k4B2(k − 1)

+ 1/2k5B2(k − 1)− 1/4k6B2(k − 1)− 1/4k3Bn2 − k2Cn+ k5Cn

− k5B2n− 2k4A− 5/2k4B − 1/4k7B3 + 1/4k6B2/(k − 1)− 1/4k5B3(k − 1)

+ 3k5B2/(k − 1)− 1/4k5B3 − 1/4k7B3(k − 1) + 1/2k6B3 + 3k5B2

− 3k4B2/(k − 1) + 1/2k6B3/(k − 1)− 3k4B2.

Proof. By Theorem 3.1 in [2] the proof is straightforward.

Ashrafi et al. [1] found the forth coefficient of the Laplacian coefficient of all
trees. They proved that:

Theorem 2.16. The forth coefficient of the Laplacian polynomial of T (k, t) is
5N(P5) + 8N(A) + 8N(B) + 9N(C) + 8N(D) + 12N(E) + 16N(F ), where F is a
4−matching in T (k, t).

Proof. The subforests with four edges are isomorphic to P5, A,B,C,D,E or F .
If H = P5, then P (H) = 5, if H is isomorphic to A, then P (H) = 5, if H is
isomorphic to B, then P (H) = 8, if H is isomorphic to C, then P (H) = 9, if H
is isomorphic to D, then P (H) = 8, if H is isomorphic to E, then P (H) = 12,
and finally if H is isomorphic to F , then P (H) = 16. Therefore, by Theorem 1.1,
5N(P5) + 8N(A) + 8N(B) + 9N(C) + 8N(D) + 12N(E) + 16N(F ).

Lemma 2.17. The number of subgraphs in T (k, t) isomorphic to (b), (c), (d), (e),
(f) and (o), Figure 4, are respectively as follows:
1. (n− 1− k(k − 1)t−1 − k(k − 1)t−2)(k − 1)4,
2. (n− 1− k(k − 1)t−1 − k(k − 1)t−2)

(
k
2

)(
k−1
2

)
,

3. (n− 1− k(k − 1)t−1)
(
k−1
2

)2
,

4. 2(n− 1− k(k − 1)t−1)
(
k−1
3

)
,

5. (n− k(k − 1)t−1)
(
k
5

)
,

6. 3(n− 1− k(k − 1)t−1 − k(k − 1)t−2)
(
k
3

)
(k − 1)2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o) (p)

Figure 4: Subforests with 5 edges.
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Proof. To count the number of subgraphs isomorphic to (b), we first count the
number of middle edges. Since this graph has no cycle, we choose the neighbor
of a middle edge with (k − 1)2 ways. Thus the number of subgraphs isomorphic
to (b) is (n− 1− k(k − 1)t−1 − k(k − 1)t−2)(k − 1)4. Other cases are proven in a
similar argument as the first one.

Lemma 2.18. The number of subgraphs in T (k, t) isomorphic to (a), (g), (h),
(i), (j), (k), (l), (m) and (n), Figure 4, are respectively as follows: M(T (k, t), 5),
N(H)(n− 5)− 2N(j)− 2N(n)− 2N(m)− 4N(b)− 4N(o) where H is a union of
P4 and an edge, N(H)(n− 5)− 2N(k)−N(l)− 3N(e), where H is a union of S4

and an edge,

k(k − 1)t−2(k − 1)[(2k − 3)

(
k − 1

2

)
+ (n− 3k + 1− (k − 1)t−1)

(
k

2

)
]

+ k(k − 1)t−2(k − 1)(k − 2)(k − 2)

. [

(
k − 1

2

)
+ n− k − k(k − 1)t−1

(
k

2

)
]

+ (n− k(k − 1)t−1 − k(k − 1)t−2)(k − 1)2

[(4k − 6)

(
k − 1

2

)
+ (n− 4k + 6− k(k − 1)t−1)

(
k

2

)
](

k

3

)
(k(k − 1)t−2((k − 1)

(
k − 1

2

)
+ (n− 1− k(k − 1)t−1 − k + 1))

(
k

2

)
+ (n− k(k − 1)t−1 − k(k − 1)t−2)(k

(
k

2

)
+ (n− k(k − 1)t−1 − k)

(
k

2

)
))

2(n− 1− k(k − 1)t−1)

(
k − 1

2

)
(n− 5)

− 2N(o)−N(d)−N(c)N(P4)(n− 5)

− 2N(P5)− 2N(c)−N(o)N(H)(n− 5)

− 4N(2P3 ∪ P2)− 4(N(J)−N(i)

− 2N(h)− 8N(n).

Proof. The proof is similar to Lemma 2.15.
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Theorem 2.19. The fifth Laplacian coefficient of T (k, t) is

32N(a) + 6N(b) + 6N(c) + 6N(d) + 6n(e) + 6N(f) + 24N(g) + 16N(h)

+ 16N(i) + 12N(j) + 12N(k) + 10N(l) + 10N(m) + 10N(n) + 6N(o)

+ 18N(p),

where F is a 4−matching in T (k, t).

Proof. All subforests with five edges are depicted in Figure 4. If H = P6 then
P (H) = 6, if H is isomorphic to (a), then P (H) = 32 and so on. Therefore, by
Theorem 1.1,

l5 = 32N(a) + 6N(b) + 6N(c) + 6N(d) + 6n(e) + 6N(f) + 24N(g) + 16N(h)

+ 16N(i) + 12N(j) + 12N(k) + 10N(l) + 10N(m) + 10N(n) + 6N(o)

+ 18N(p),

proving the result.
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