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Abstract

In this paper, we introduce the concept of n-A-con-cos groups, n > 2,
mention some properties of them and determine all finite abelian groups
with at most two direct factors. As a consequence, it is proved that dihedral
groups Da,, in which m has at most two prime factors are n-A-con-cos.
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1. Introduction

Let Aut(G) denote the automorphism group of a given group G. For any element
g € G and a € Aut(G), the autocommutator of g and « is defined to be [g,a] =
g ta(g). The absolute centre and autocommutator subgroup of a group G are

defined as follows:

L(G)={g€ G| lg,a] =1, Va € Aut(G)},
K(G) =[G, Aut(@)] = ([g,a] | g € G, a € Aut(G)).
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We define the autocommutator of higher weight inductively as follows:

[gaalaa% e ,an} - Hg?alv .. '7an71]»an},

for all oy, as, ..., a, € Aut(G). The autocommutator subgroup of weight n+ 1 is
defined in the following way:

K, (G) = [K,,-1(GQ), Aut(@)]
= ([g,a1,02,...,a,] | g € G, ai,as,...,a, € Aut(Q)).

Clearly, K,,(G) is a characteristic subgroup of G for all n > 1. The following series
of subgroups

GOKi(G)=K(G)DEs(G) D DK (G) D+ .

is called the lower autocentral series of G (See also [3, 5, 7] and [8]).

A group G is called A-nilpotent, if the lower autocentral series of G ends in
the identity subgroup after a finite number of steps. (See also [6]).

Let G be a group and a,b € G. Then a and b are said to be fused, if there
exists a € Aut(G) such that a(a) = b. (See [4]). Arora and Karan [1], defined
a fusion relation in G as follows: Two elements a and b are related if they are
fused. One can easily check that fusion relation is an equivalence relation. cl(a) =
{a(a) | o € Aut(G)} denotes the fusion class of a in G. They also defined Auto
con-cos groups. We mention the definition of it:

Let G be a group and K be a proper characteristic subgroup of G, then we
have two partitions of G, one is coset partition and another one is fusion class
partition. If these two partitions coincide in G — K, that is cl(g) = gK, for all
g € G — K, then we call the group G as Auto con-cos group.

In this paper, we introduce the new notion of n-A-con-cos groups for natural
number n, where n > 2 and classify all finite abelian groups with at most two
direct factors. It is also proved that dihedral groups Ds,,, where m has at most
two prime factors, are n-A-con-cos groups.

2. Main Results

We start this section by definition of n-A-con-cos groups.

Definition 2.1. A group G would be known as n-A-con-cos, if K, (G) < G and
forall g e G— K, (G) and ay,...,a,—1 € Aut(G), where [g,a1,...,an_1] # 1 we
have

c(lg, a1y .. an-1]) =g, 01, .., an—1]Kn(G) — 1.
The following theorem is useful in our investigation on con-cos-groups.

Theorem 2.2. Let G be a group and K,,(G) = K,,-1(G) < G and K,,_1(G) be
the union of two fusion classes. Then the group G is n-A-con-cos.



On n-A-Con-Cos Groups and Determination of some n-A-Con-Cos Groups 87
- - - -]

Proof. Let K,(G) = K,,—1(G) = 1Ucl(x), where 1 # = € G. Hence for every
g €G—K,(G) and ay,...,a,_1 € Aut(G), where [g,a1,...,a,-1] # 1 we have
[9,a1,...,an_1] € K;,_1(G) — 1 = cl(z). Therefore,

c(lg,a1y...,an-1]) =d(z) = K,(G) — 1,

and [g,a1,...,0,-1]K,(G) — 1 = K,,(G) — 1, which implies that

c(lg, a1y yan-1]) = 19,01, .., an—1]Kn(G) — 1.
Hence the group G is n-A-con-cos. O

For instance, the group Cs x Cy = (x,y | 2* = y3 = 1,27 lyx = y?) is 3-A-con-
cos, since

Kg(Cg X 04) = KQ(Cg X 04) =<y>=1U Cl(y)

Theorem 2.3. Let G be an A-nilpotent group, where |G| > 2 and K,(G) = 1.
Then the group G is n-A-con-cos.

Proof. For every x € G and ay,...,q, € Aut(G), we have [x,a1,...,a,] = L.
Hence [z, a1, ..., an_1] tan([z,01,...,an_1]) = 1, and so
cd([z,an,...,an-1]) ={[z,a1,. .., n-1]}

Also, for every g € G — K,,(G) and o, ..., an—1 € Aut(G), [g,01,...,n_1] # 1,
we have
[gaah IR anfl]Kn(G) -1= {[97 (PRI Oén,]_]}.

This proves the result. O

For instance, the cyclic group Cy is 2-A-con-cos, since Cy is A-nilpotent and
K5(C4) = 1. Furthermore, the dihedral group Dsg is 3-A-con-cos, since by Corol-
lary 2.4 of [6], Ds is A-nilpotent and K5(Dg) = 1.

Remark 1. Let G be a finite abelian group of odd order. Then by Corollary 2.4
of [6], K,,(G) = G, for any natural number n. Hence G is not n-A-con-cos.

The following theorem is one of the main results of this paper.

Theorem 2.4. Let n > 2 be a natural number. Then the finite n-A-con-cos
abelian groups with at most two direct factors are:

i) Oy for 1 <t <n+1,

ii) Cor x Cp for 1 <t <m—1,

iii) Oyt x Oy for 2 <t <n+1,

V1

)
)
)
)

Cot x Cos fort <m+1land2<s<t-—2,
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v) Cat x Cys for even number n, wheret <n —1,s < 5§ andt =s+12> 3,
iv) Cyt x Cys for odd number n, where t <n —1, ¢t < "TH and t =s+1 > 3,
where p is an odd prime number and ¢, s are natural numbers.

Proof. By Remark 1, we should investigate finite abelian groups with at most two
direct factors of even order.

Clearly the group Cs: is n-A-con-cos, for 1 < t < n — 1. The group Ci» is
n-A-con-cos, since it is A-nilpotent and K, (Can) = 1.

Let Cynin = (z | 22" =1). By Lemma 2.2 of [5],

-1

Kn(0271+1) = 022:;+1 =< I2n >7 K”_l(c’Qn«Fl) = 022:;11 =< .Izn > .

So for every g € Cont1—Kp,(Con+1) and ay, . .. ,ap—1 € Aut(Cont1), [g, 1, ..., 0p—1] #
1, we have

n—1 n n—1
[g,a1,...,an_1] € Ky 1(Coni1) — 1= {z* 22" 232" "}

Clearly

{:102"71,373'2’”71} =cl(z32" ") =cl(z?"7") = x2"71Kn(an+1) -1,

and
{22} = cl(2?") = 2% K, (Cynsr) — 1.

Hence the group Cyn+1 is n-A-con-cos.

Suppose that t > n+2 and Cyr = (z | #2° = 1). Then K, (Cy) =< 22" >, and
hence x € Cyt — K,(Cor). Consider «, 8 € Aut(Cy) with a(z) = 227" and
B(x) = 23. It is easy to check that [z,c, B,...,3 ] =% . By Theorem 2.2 of [7],
22" € L(Cy). Hence, cl(z2 ) = {22 '} but 22 ' K,(Cy) — 1 = K, (Cy) — 1
has 27" — 1 elements, and so

cd(fz,a, By...,0]) # [x,a, By, B Kn(Cot) — 1.
N—— N——

n—2—times n—2—times

Thus the group Cy¢ is not n-A-con-cos, for t > n + 2.
In what follows, we investigate the group Ca: x Cps for natural numbers ¢, s
with the presentation

t s
(wy | o =y =[oy]=1).

There are five cases:
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Case 1: 1 <t<n-—1and s =1. By Lemma 2.1 and Lemma 2.2 of [5],

Kp(Cot x Cp) = K, (Cat) x Kn(Cp) =1 x Cp =C,

and K, _1(Cy x Cp) = C),. Clearly C, =< y >= 1Ucl(y). So by Theorem 2.2,
the group Cy: x Cp, is n-A-con-cos, for 1 <t <n —1.

Case 2: t = n and s = 1. We know that K,(Con x C,) =< y >. Thus
z € (Can x Cp) — Ky (Can x Cp). Consider the automorphism « of Can x C), with
a(z) = 2* and a(y) = y. Then

n—1—times

and cl(z2" ") = {22}, but 22" K, (Can x Cp) — 1 has p elements. Hence the
group Con x ()}, is not n-A-con-cos.

Case 3: t >n+1 and s = 1. In this case K, (Cyt x Cp) =< 22" > x <y >.
So, z € (Cyt x Cp) — K, (Cat x Cp). Consider a, B € Aut(Cyt x Cp) with a(z) =
22" a(y) =y, B(2) = 2% and B(y) = y. Then

—1

[.’L‘,Oé, 67"-76]:1;?
——

n—2—times

and cl(z2 ") = {22 "} but 22" K, (Cy x C,) — 1 has 2="p— 1 elements. Hence
the group Cy: x C}, is not n-A-con-cos, for t > n + 1.

Case 4: t = 1 and s > 2. Note that K, (Cy x Cps) =< y >. So, zy €
(Cyx Cps) — K, (Cz X Cps). Consider v € Aut(Cy x Cps) with a(x) = z, a(y) = y*.
Therefore,

2y, a,...,a]=y.
——

n—1—times

Clearly cl(y) has ¢(p®) elements, where ¢ is the Euler’s phi function, but y K, (Cs X
Cpe) — 1 has p* — 1 elements. Since s > 2 we conclude that the group Cy x Cp- is
not n-A-con-cos, for s > 2.

Case 5: t > 2 and s > 2. In this case we have K,(Cat x Cps) =< y >
for t < n and K,(Cat x Cps) =< 22" > x <y > fort > n+1. Hence zy €
(Cat x Cps) — K, (Cot x Cpe). Consider o € Aut(Cqt x Cps) with a(x) = x and
a(y) = y?. This shows that

[zy, o,...,a]=1y.

n—1—times
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Clearly cl(y) has ¢(p®) elements but yK,, (Cot x Cps) — 1 has p* — 1 elements for
t < nand 27 "p* —1 elements for ¢ > n+ 1, which implies that the group Cat x Cps
is not n-A-con-cos, for t,s > 2.

Next we investigate finite abelian 2-groups with two direct factors. Let

9

Cgf,ngs=<x,y|£U2t:y :[x,y]=1>,

for natural numbers ¢, s. There are six cases:

Case 1: t > 2 and s = 1. It is easy to check that the group Cy x Cs is
2-A-con-cos. Also K,,(Cy x Cg) =1, for n > 3. So the group Cy x Cy is n-A-con-
cos. The group Co: x Cs is n-A-con-cos, for 3 <t < n, since K,(Cot x C5) = 1.
If t = n+1, then K,(Con+1 x C3) =< 2" >. Clearly Cg x Cs is 2-A-con-cos.
For n >3, Ky_1(Coni1 x Co) =< 2" >={1,2%" ", 2%", 232" ' }. It is easy to
check that {z2" 232" '} = (232" ) = (22" ") = 2% K,,(Conir x Co) — 1,
and {22} = cl(2?") = 22" K, (Con+1 x Cy) — 1. Thus the group Coni1 x Cy is
n-A-con-cos.

If t > n+2, then K,,(Cy x Cy) =< 22" >. So x € (Cat x Ca) — K,,(Cyt x Cy).
Consider a, 8 € Aut(Caye x Cs) with a(z) = 22 "+ a(y) =y, B(x) = 2° and
B(y) = y. Thus

-1

2t
[z, B,...,0] ==
——
n—2—times

and cl(z2 ") = {22 '}, but 22" K,,(Cy x C3) — 1 has 2=" — 1 elements. Hence
the group Cy: x Cy is not n-A-con-cos, for t > n + 2.

Case 2: t = s. By Theorem 3.1 (ii) of [2], K,,(Cat x Cat) = Cat x Cye. Hence
the group Cot x Coy: is not n-A-con-cos.

Case 3: t >s>2andt <n—1. Ift > s+ 2, then the group Cy: x Cas is n-A-
con-cos, since K, (Cayt xCys) = 1. If t = s+1 and n is even, then by Corollary 3.2 of
[2], K, (Cat x Coi—1) =< 2% > % < yﬁ > . If § > t, then the group Cy: X Cye-1 is
n-A-con-cos, since K, (Cat xCoi-1) = 1. For § = t—1, K,,(Cy: xCgi-1) =< 22 >
and K,_1(Cy x Cam1) =< 227 > x < 2" >= {1,222 7" 22 2 7}
Clearly {2 '} = cl(22") = 22" 'K, (Cot x Cae-1) — 1, and {22 52 " 92"}
= (2?2 ?) = cl(y? ?) = 42 "K,(Cyt x Cyi-1) — 1, which implies that if n
is even and § =t — 1= s > 2, then the group Cy: x Cys is n-A-con-cos.

Next we investigate the group Cy: x Cs for § <t —1and t =n — 1. Note
that © € (Can-1 X Cyn—2) — K,;;(Cyn—1 X Cyn-2). Consider the automorphisms «,

B,y of Con—1 x Con— with a(z) = 2%, aly) =y, f(z) = vy, Bly) =y, 7(z) ==

and 7(y) = 2%y. Thus

n—2
[.’E, Q, ..., 7ﬁ7’ﬂ :‘%2
N——

n—3—times
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It is obvious that cl(22" %) = {z2" "} but 22" K,,(Can-1 X Con—2)—1 = K, (Con-1 x
Con—2)—1 has 23 — 1 elements. Hence this group is not n-A-con-cos. Similarity,

we can show that the group Ca: x Cys is not n-A-con-cos, for 5 <t—1landt <n—1.
ntl n—1

If t = s+ 1 and n is odd, then K, (Cy x Cor1) =< 22 > > x < y? > >.
For ”T“ > t, we have "51 >t — 1 and so the group Cy x Cyi-1 is n-A-con-
cos, since K, (Cot x Coi—1) = 1. If "7“ < tand t = n — 1, then we have
x € (Con—1 X Can—2) — K,,(Can—1 X Cyn—2). Consider the automorphisms «, 3, v of
CQn—l X 0271—2 with

It is easy to check that

cd(lz, a,...,a,8,79]) # [z, a,...,a 8,7 Kp(Con-1 x Cyn-2) — 1.
—— ————

n—3—times n—3—times

Therefore this group is not n-A-con-cos. By a similar argument it can be shown

that the group Cyt x Cyi—1 is not n-A-con-cos, for ”T'H <tandt<n-—1.

Case 4: t > s >2andt =n. Ift > s+ 2, then the group Con x Cas
is n-A-con-cos, since K,(Con x Cas) = 1. If t = s +1 and n is even, then
Con x Cyn—1 is not n-A-con-cos, since K, (Cyn X Con—1) =< 22 > x < y?* > .
Thus z € (Con X Cyn—1) — K, (Con X Cyn—1) and for the automorphism « of
Con x Cyn—1 with a(r) = 2% and a(y) = v,

n—1—times

and cl(z2" ") = {z®" '} but 22" K, (Can x Cyu-1) — 1 has 21 — 1 elements.
If t = s+ 1 and n is odd, then Con X Cyn-1 is not n-A-con-cos, since K, (Con X

ntl n—1
Con1) =< 227 >x<y?>? >andz € (Can X Cgn-1) — K,(Can x Cyn-1).

Consider a € Aut(Con x Con—1) with a(z) = 22, a(y) = y. Clearly

Az, a,...,a]) # [z, ..., [Kp(Can x Con-1) — 1.
~—— ——

n—1—times n—1—times

Case 5: t >s>2andt =n+1. Ift > 542, then K,,(Cont1 x Cos) =< 22" >,
By assumption n —2 > s —1. If n —2=s—1, then

-2

1 on
> X<y >,

Kn_1(02n+1 X Ogs) =< I’2

and if n — 2 > s, then K,,_1(Cont1 X Cas) =< 22" > . In two cases for every
a € Kp_1(Con+1 X Cas) — 1 we have cl(a) = aK,(Cant1 x Cas) — 1, and it shows
that the group Co: x Cas is n-A-con-cos, fort =n+1and t > s+ 2 > 4.
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Next we investigate the group Cont1 X Can, for t = s + 1. We have

ntl

Kn(an+1 X an) =< .’,CQ[T] > X < yz[%] > .
Thus z € (Cyn+1 X Can) — K (Contr X Can). Consider «, 8 € Aut(Con+1 X Can)
with a(x) = 25, a(y) =y, B(x) = 23 and B(y) = y. We have

Cl([Jf,Oé, 67"'7/6 D 7é [Jf,Oé, 67"'7/6 }K’n(OZ"*l X 02") - 17
S—— S——

n—2—times n—2—times
which implies that this group is not n-A-con-cos.
Case 6: t >s>2andt>n+2. If t > s+ 2, then K,,(Cot x Cas) =< 2" >

X < y2"71 > . Sox € (Cot x Czs) — K, (Cot x Czs). Consider a, f € Aut(Cae X Cas)
with a(z) = 22"+ a(y) =y, B(z) = 23 and B(y) = y. Then

-1

[xaa7 Bv---aﬂ]:th
——

n—2—times

and cl(22 ") = {#2"}. On the other hand, 22" K, (Ca xCys)—1 bas 2ts-2n+1_
1 elements if s > n — 1 and has 28=™ — 1 elements if s < n — 1, which implies that

cd(lz,a, By...,8]) £ [z e, By..., B Kn(Cat x Cas) — 1.
~—— ~——

n—2—times n—2—times

Hence the group Cot X Cas is not n-A-con-cos, for t > s+2 >4 andt >n+ 2. If
t = s+ 1, then a similar argument as above shows that the group Cot x Cas is not
n-A-con-cos. This completes the proof. O

In following theorem, we investigate some dihedral groups.

Theorem 2.5. Let m,n be natural numbers, where m has at most two prime
factors and n > 2. Then the dihedral group Ds,, is n-A-con-cos if m = 2¢=1, for
natural number ¢, 3 <t < n+ 1, or m = p or m = 2p, for odd prime number p
and natural number ¢, where 1 <t <n — 2.

Proof. Let Da,, = (xz,y | 2™ = y? = (2y)? = 1) be the dihedral group of order
2m. At first we assume that m = 2¢~!, where ¢ is a natural number and ¢t > 2.
Clearly the group Dy = C5 x C5 is not n-A-con-cos. If 3 <t < n — 1, then the
group Dy is n-A-con-cos, since by Theorem 1.1 of [2], K;(Dy:) =< 22 >=1
and K, (Dst) C K¢(Dsot). If t = n and n > 3, then Dyn is A-nilpotent and
K, (Dsn) = 1. Hence by Theorem 2.3, the group Dan is n-A-con-cos, for n > 3.
If t = n+1, then K,(Dyuin) =< 22 >= {1,22" '} and K, _1(Dyns1) =
<27 > ={1,22"", 2", 232" "}, This implies that for every g € Daoni1 —
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K, (Dgn+1) and aq,...,0n—1 € Aut(Dgn+1), where [g,a1,...,an—1] # 1 we have
(9,01, o] € {227 22" 232" 7). Clearly

(2222 = d@? ) = d(@32 ) = 27 Ky (Dgnin) — 1,
{ Y = (@) =2 Kp(Daanr) — 1,
which implies that the group Dgn+1 is n-A-con-cos.

If t >n+2, then K, (Dyt) =< 22" > and so z € Do — K, (D). Consider
o, B € Aut(Dy) with a(z) = 22 "1, a(y) =y, B(z) = 23 and B(y) = y. Then

t—2

[.13,0(, Bv"')ﬁ ] =
——
n—2—times
Clearly cl(22 %) = {22 "}. On the other hand, 22" K, (Da:)—1 =< 22" > —1
has 27" — 1 elements. Therefore,

CZ([Z7Q7 ﬂa"'aﬁ ]) 7é [Z‘,O{, ﬂa"'aﬁ ]K?’L(DQt) - 13
—— ——

n—2—times n—2—times

which implies that the group D¢ is not n-A-con-cos, for t > n + 2.

Next we investigate the case that m = p', for odd prime number p and natural
number ¢. The group Dy, is n-A-con-cos, since by Theorem 1.1 of [2], K,,—1(Dap) =
K,(Dsp,). Also < x >= 1Ucl(z), and hence the claim follows from Theorem 2.2.
If t > 2, then K,,(Dgyt) =< x >, and therefore y € Dyt — K,,(Dgyt). Consider
a, B € Aut(Daoy) with a(z) = z, a(y) = 2P 'y, f(z) = 22 and B(y) = y. Then

[Zl>057 /8776}:
——

n—2—times

and cl(z) has ¢(p') elements. On the other hand, 2K,,(Dgpt) — 1 =< z > —1 has
pt — 1 elements, since t > 2 and we have

cz([yaaa /87"'56 ]) 7& [yaaa /87"'76 ]KTL(Dth) —1.
S—— S——

n—2—times n—2—times

Thus the group Dgyt is not n-A-con-cos, for ¢ > 2.

We now assume that m has two distinct prime factors. Let m = p'q®, where p, q
are distinct odd prime numbers and ¢, s are natural numbers. Since K, (Daptqs) =<
T >, ;vptqs_ly € Doytgs — Kp(Daptgs). Consider the automorphisms « and 5 of
Doy with a(z) = 2, aly) = 2?1y B(z) = 2% and B(y) = y. It is easy to
check that

d([xptq871y7 o B,....p ]) # [fptqs_ly»a» By B ]Kn(DQP*qS) -1
N—— ~——

n—2—times n—2—times




94 A. Gholami and F. Mahmudi
e

Hence the group Dapgs is not n-A-con-cos.
Finally we investigate the group Dj:+1,s, where p is an odd prime number and
t, s are natural numbers. We have the following three cases:

Case 1: 2 <t+1<n—1and s = 1. In this case K, _1(Dgr+1,) = Ky (Dar+1,)
=<z >=1 Ucl(z2"™"). So, by Theorem 2.2, the group Dae+1,, is n-A-con-cos,
for2<t+1<n-—1.

Case 2: 2<t+1<n—1ands > 2. Since K,(Dyt+1p:) =< 22 >,y €
Dyit1y: — Kp(Dgtt1p:). Consider a, 8 € Aut(Datt1ps) with a(z) = z, a(y) = zy,
B(z) = 227" ~! and B(y) = y. Thus

[yaaa Bw")ﬁ]:x(il
————

n—2—times

)n712n—2

If n is odd, then

—2

[yaav 6’”.75]:1,2"
——

n—2—times

-2 2n71

and cl(x2" ") has p* — p*~! elements but 22" Ky (Dat1p:) =1 =<z
has p® — 1 elements. If n is even, then

[%047 /Baaﬂ]:x
———

n—2—times

> —1

72n—2

and cl(z—2""%) = (2" ) has p* —p*~ ! elements but 272"~ K,,(Dar11,:) — 1 has
p® — 1 elements. Thus the group Dyt+1,s is not n-A-con-cos, for 2 <t+1<n—1
and s > 2.

p

Case 3: t +1>n and s > 1. Since Ky (Datt1,:) =< 22" >, Y € Dotrrps —
Ky (Dagt+1,). Considter the automorphisms o and 8 of Dyit1,: with a(z) = x,
a(y) = zy, B(xz) =22 P ~1 and B(y) = y. It is easy to check that

cd(ly, e, B,-..,81)

n—2—times

has 2t~ +1ps=1(p — 1) elements but

[y,()(, ﬁ, . ,ﬁ ]Kn(D2t+1ps) -1
——

n—2—times
has 2¢="*1p* elements. Therefore,

cd(ly, o, B,....8]) #y, o, B,..., 0 |Kn(Dae1ps) — 1.
——— —_———

n—2—times n—2—times
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Hence the group Dat+1,s is not n-A-con-cos, for t +1 > n and s > 1. This
completes the proof. O
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