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Abstract

In this paper, we introduce the concept of n-A-con-cos groups, n ≥ 2,
mention some properties of them and determine all finite abelian groups
with at most two direct factors. As a consequence, it is proved that dihedral
groups D2m in which m has at most two prime factors are n-A-con-cos.
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1. Introduction

Let Aut(G) denote the automorphism group of a given group G. For any element
g ∈ G and α ∈ Aut(G), the autocommutator of g and α is defined to be [g, α] =
g−1α(g). The absolute centre and autocommutator subgroup of a group G are
defined as follows:

L(G) = {g ∈ G | [g, α] = 1, ∀α ∈ Aut(G)},
K(G) = [G,Aut(G)] = ⟨[g, α] | g ∈ G, α ∈ Aut(G)⟩.
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We define the autocommutator of higher weight inductively as follows:

[g, α1, α2, . . . , αn] = [[g, α1, . . . , αn−1], αn],

for all α1, α2, . . . , αn ∈ Aut(G). The autocommutator subgroup of weight n+1 is
defined in the following way:

Kn(G) = [Kn−1(G), Aut(G)]

= ⟨[g, α1, α2, . . . , αn] | g ∈ G, α1, α2, . . . , αn ∈ Aut(G)⟩.

Clearly, Kn(G) is a characteristic subgroup of G for all n ≥ 1. The following series
of subgroups

G ⊇ K1(G) = K(G) ⊇ K2(G) ⊇ · · · ⊇ Kn(G) ⊇ · · · .

is called the lower autocentral series of G (See also [3, 5, 7] and [8]).
A group G is called A-nilpotent, if the lower autocentral series of G ends in

the identity subgroup after a finite number of steps. (See also [6]).
Let G be a group and a, b ∈ G. Then a and b are said to be fused, if there

exists α ∈ Aut(G) such that α(a) = b. (See [4]). Arora and Karan [1], defined
a fusion relation in G as follows: Two elements a and b are related if they are
fused. One can easily check that fusion relation is an equivalence relation. cl(a) =
{α(a) | α ∈ Aut(G)} denotes the fusion class of a in G. They also defined Auto
con-cos groups. We mention the definition of it:

Let G be a group and K be a proper characteristic subgroup of G, then we
have two partitions of G, one is coset partition and another one is fusion class
partition. If these two partitions coincide in G − K, that is cl(g) = gK, for all
g ∈ G−K, then we call the group G as Auto con-cos group.

In this paper, we introduce the new notion of n-A-con-cos groups for natural
number n, where n ≥ 2 and classify all finite abelian groups with at most two
direct factors. It is also proved that dihedral groups D2m, where m has at most
two prime factors, are n-A-con-cos groups.

2. Main Results
We start this section by definition of n-A-con-cos groups.

Definition 2.1. A group G would be known as n-A-con-cos, if Kn(G) < G and
for all g ∈ G−Kn(G) and α1, . . . , αn−1 ∈ Aut(G), where [g, α1, . . . , αn−1] ̸= 1 we
have

cl([g, α1, . . . , αn−1]) = [g, α1, . . . , αn−1]Kn(G)− 1.

The following theorem is useful in our investigation on con-cos-groups.

Theorem 2.2. Let G be a group and Kn(G) = Kn−1(G) < G and Kn−1(G) be
the union of two fusion classes. Then the group G is n-A-con-cos.
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Proof. Let Kn(G) = Kn−1(G) = 1 ∪ cl(x), where 1 ̸= x ∈ G. Hence for every
g ∈ G −Kn(G) and α1, . . . , αn−1 ∈ Aut(G), where [g, α1, . . . , αn−1] ̸= 1 we have
[g, α1, . . . , αn−1] ∈ Kn−1(G)− 1 = cl(x). Therefore,

cl([g, α1, . . . , αn−1]) = cl(x) = Kn(G)− 1,

and [g, α1, . . . , αn−1]Kn(G)− 1 = Kn(G)− 1, which implies that

cl([g, α1, . . . , αn−1]) = [g, α1, . . . , αn−1]Kn(G)− 1.

Hence the group G is n-A-con-cos.

For instance, the group C3 ⋊C4 = ⟨x, y | x4 = y3 = 1, x−1yx = y2⟩ is 3-A-con-
cos, since

K3(C3 ⋊ C4) = K2(C3 ⋊ C4) =< y >= 1 ∪ cl(y).

Theorem 2.3. Let G be an A-nilpotent group, where |G| > 2 and Kn(G) = 1.
Then the group G is n-A-con-cos.

Proof. For every x ∈ G and α1, . . . , αn ∈ Aut(G), we have [x, α1, . . . , αn] = 1.
Hence [x, α1, . . . , αn−1]

−1αn([x, α1, . . . , αn−1]) = 1, and so

cl([x, α1, . . . , αn−1]) = {[x, α1, . . . , αn−1]}.

Also, for every g ∈ G−Kn(G) and α1, . . . , αn−1 ∈ Aut(G), [g, α1, . . . , αn−1] ̸= 1,
we have

[g, α1, . . . , αn−1]Kn(G)− 1 = {[g, α1, . . . , αn−1]}.

This proves the result.

For instance, the cyclic group C4 is 2-A-con-cos, since C4 is A-nilpotent and
K2(C4) = 1. Furthermore, the dihedral group D8 is 3-A-con-cos, since by Corol-
lary 2.4 of [6], D8 is A-nilpotent and K3(D8) = 1.

Remark 1. Let G be a finite abelian group of odd order. Then by Corollary 2.4
of [6], Kn(G) = G, for any natural number n. Hence G is not n-A-con-cos.

The following theorem is one of the main results of this paper.

Theorem 2.4. Let n ≥ 2 be a natural number. Then the finite n-A-con-cos
abelian groups with at most two direct factors are:

i) C2t for 1 ≤ t ≤ n+ 1,

ii) C2t × Cp for 1 ≤ t ≤ n− 1,

iii) C2t × C2 for 2 ≤ t ≤ n+ 1,

vi) C2t × C2s for t ≤ n+ 1 and 2 ≤ s ≤ t− 2,
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v) C2t × C2s for even number n, where t ≤ n− 1, s ≤ n
2 and t = s+ 1 ≥ 3,

iv) C2t × C2s for odd number n, where t ≤ n− 1, t ≤ n+1
2 and t = s+ 1 ≥ 3,

where p is an odd prime number and t, s are natural numbers.

Proof. By Remark 1, we should investigate finite abelian groups with at most two
direct factors of even order.

Clearly the group C2t is n-A-con-cos, for 1 ≤ t ≤ n − 1. The group C2n is
n-A-con-cos, since it is A-nilpotent and Kn(C2n) = 1.

Let C2n+1 = ⟨x | x2n+1

= 1⟩. By Lemma 2.2 of [5],

Kn(C2n+1) = C2n

2n+1 =< x2n >, Kn−1(C2n+1) = C2n−1

2n+1 =< x2n−1

> .

So for every g ∈ C2n+1−Kn(C2n+1) and α1, . . . , αn−1 ∈ Aut(C2n+1), [g, α1, . . . , αn−1] ̸=
1, we have

[g, α1, . . . , αn−1] ∈ Kn−1(C2n+1)− 1 = {x2n−1

, x2n , x3.2n−1

}.

Clearly

{x2n−1

, x3.2n−1

} = cl(x3.2n−1) = cl(x2n−1) = x2n−1

Kn(C2n+1)− 1,

and
{x2n} = cl(x2n) = x2nKn(C2n+1)− 1.

Hence the group C2n+1 is n-A-con-cos.
Suppose that t ≥ n+2 and C2t = ⟨x | x2t = 1⟩. Then Kn(C2t) =< x2n >, and

hence x ∈ C2t −Kn(C2t). Consider α, β ∈ Aut(C2t) with α(x) = x2t−n+1+1 and
β(x) = x3. It is easy to check that [x, α, β, . . . , β︸ ︷︷ ︸

n−2−times

] = x2t−1

. By Theorem 2.2 of [7],

x2t−1 ∈ L(C2t). Hence, cl(x2t−1) = {x2t−1} but x2t−1

Kn(C2t) − 1 = Kn(C2t) − 1
has 2t−n − 1 elements, and so

cl([x, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]) ̸= [x, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]Kn(C2t)− 1.

Thus the group C2t is not n-A-con-cos, for t ≥ n+ 2.
In what follows, we investigate the group C2t × Cps for natural numbers t, s

with the presentation

⟨x, y | x2t = yp
s

= [x, y] = 1⟩.

There are five cases:



On n-A-Con-Cos Groups and Determination of some n-A-Con-Cos Groups 89

Case 1: 1 ≤ t ≤ n− 1 and s = 1. By Lemma 2.1 and Lemma 2.2 of [5],

Kn(C2t × Cp) = Kn(C2t)×Kn(Cp) = 1× Cp = Cp

and Kn−1(C2t × Cp) = Cp. Clearly Cp =< y >= 1 ∪ cl(y). So by Theorem 2.2,
the group C2t × Cp is n-A-con-cos, for 1 ≤ t ≤ n− 1.

Case 2: t = n and s = 1. We know that Kn(C2n × Cp) =< y >. Thus
x ∈ (C2n ×Cp)−Kn(C2n ×Cp). Consider the automorphism α of C2n ×Cp with
α(x) = x3 and α(y) = y. Then

[x, α, . . . , α︸ ︷︷ ︸
n−1−times

] = x2n−1

and cl(x2n−1) = {x2n−1}, but x2n−1

Kn(C2n × Cp) − 1 has p elements. Hence the
group C2n × Cp is not n-A-con-cos.

Case 3: t ≥ n+ 1 and s = 1. In this case Kn(C2t × Cp) =< x2n > × < y >.
So, x ∈ (C2t × Cp)−Kn(C2t × Cp). Consider α, β ∈ Aut(C2t × Cp) with α(x) =

x2t−n+1+1, α(y) = y, β(x) = x3 and β(y) = y. Then

[x, α, β, . . . , β︸ ︷︷ ︸
n−2−times

] = x2t−1

and cl(x2t−1) = {x2t−1} but x2t−1

Kn(C2t ×Cp)− 1 has 2t−np−1 elements. Hence
the group C2t × Cp is not n-A-con-cos, for t ≥ n+ 1.

Case 4: t = 1 and s ≥ 2. Note that Kn(C2 × Cps) =< y >. So, xy ∈
(C2×Cps)−Kn(C2×Cps). Consider α ∈ Aut(C2×Cps) with α(x) = x, α(y) = y2.
Therefore,

[xy, α, . . . , α︸ ︷︷ ︸
n−1−times

] = y.

Clearly cl(y) has ϕ(ps) elements, where ϕ is the Euler’s phi function, but yKn(C2×
Cps)− 1 has ps − 1 elements. Since s ≥ 2 we conclude that the group C2 ×Cps is
not n-A-con-cos, for s ≥ 2.

Case 5: t ≥ 2 and s ≥ 2. In this case we have Kn(C2t × Cps) =< y >
for t ≤ n and Kn(C2t × Cps) =< x2n > × < y > for t ≥ n + 1. Hence xy ∈
(C2t × Cps) − Kn(C2t × Cps). Consider α ∈ Aut(C2t × Cps) with α(x) = x and
α(y) = y2. This shows that

[xy, α, . . . , α︸ ︷︷ ︸
n−1−times

] = y.
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Clearly cl(y) has ϕ(ps) elements but yKn(C2t × Cps) − 1 has ps − 1 elements for
t ≤ n and 2t−nps−1 elements for t ≥ n+1, which implies that the group C2t ×Cps

is not n-A-con-cos, for t, s ≥ 2.
Next we investigate finite abelian 2-groups with two direct factors. Let

C2t × C2s = ⟨x, y | x2t = y2
s

= [x, y] = 1⟩,

for natural numbers t, s. There are six cases:

Case 1: t ≥ 2 and s = 1. It is easy to check that the group C4 × C2 is
2-A-con-cos. Also Kn(C4 × C2) = 1, for n ≥ 3. So the group C4 × C2 is n-A-con-
cos. The group C2t × C2 is n-A-con-cos, for 3 ≤ t ≤ n, since Kn(C2t × C2) = 1.
If t = n + 1, then Kn(C2n+1 × C2) =< x2n >. Clearly C8 × C2 is 2-A-con-cos.
For n ≥ 3, Kn−1(C2n+1 × C2) =< x2n−1

>= {1, x2n−1

, x2n , x3.2n−1}. It is easy to
check that {x2n−1

, x3.2n−1} = cl(x3.2n−1) = cl(x2n−1) = x2n−1

Kn(C2n+1 ×C2)− 1,
and {x2n} = cl(x2n) = x2nKn(C2n+1 × C2) − 1. Thus the group C2n+1 × C2 is
n-A-con-cos.

If t ≥ n+2, then Kn(C2t ×C2) =< x2n >. So x ∈ (C2t ×C2)−Kn(C2t ×C2).
Consider α, β ∈ Aut(C2t × C2) with α(x) = x2t−n+1+1, α(y) = y, β(x) = x3 and
β(y) = y. Thus

[x, α, β, . . . , β︸ ︷︷ ︸
n−2−times

] = x2t−1

and cl(x2t−1) = {x2t−1}, but x2t−1

Kn(C2t ×C2)− 1 has 2t−n − 1 elements. Hence
the group C2t × C2 is not n-A-con-cos, for t ≥ n+ 2.

Case 2: t = s. By Theorem 3.1 (ii) of [2], Kn(C2t ×C2t) = C2t ×C2t . Hence
the group C2t × C2t is not n-A-con-cos.

Case 3: t > s ≥ 2 and t ≤ n−1. If t ≥ s+2, then the group C2t ×C2s is n-A-
con-cos, since Kn(C2t×C2s) = 1. If t = s+1 and n is even, then by Corollary 3.2 of
[2], Kn(C2t×C2t−1) =< x2

n
2 > × < y2

n
2 > . If n

2 ≥ t, then the group C2t×C2t−1 is
n-A-con-cos, since Kn(C2t×C2t−1) = 1. For n

2 = t−1, Kn(C2t×C2t−1) =< x2t−1

>

and Kn−1(C2t × C2t−1) =< x2t−1

> × < y2
t−2

>= {1, x2t−1

, y2
t−2

, x2t−1

y2
t−2}.

Clearly {x2t−1} = cl(x2t−1) = x2t−1

Kn(C2t × C2t−1) − 1, and {x2t−1

y2
t−2

, y2
t−2}

= cl(x2t−1y2t−2) = cl(y2t−2) = y2
t−2

Kn(C2t × C2t−1) − 1, which implies that if n
is even and n

2 = t− 1 = s ≥ 2, then the group C2t × C2s is n-A-con-cos.
Next we investigate the group C2t × C2s for n

2 < t − 1 and t = n − 1. Note
that x ∈ (C2n−1 × C2n−2) −Kn(C2n−1 × C2n−2). Consider the automorphisms α,
β, γ of C2n−1 × C2n−2 with α(x) = x3, α(y) = y, β(x) = xy, β(y) = y, γ(x) = x
and γ(y) = x2y. Thus

[x, α, . . . , α︸ ︷︷ ︸
n−3−times

, β, γ] = x2n−2

.
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It is obvious that cl(x2n−2) = {x2n−2} but x2n−2

Kn(C2n−1×C2n−2)−1 =Kn(C2n−1×
C2n−2)−1 has 2n−3−1 elements. Hence this group is not n-A-con-cos. Similarity,
we can show that the group C2t×C2s is not n-A-con-cos, for n

2 < t−1 and t < n−1.

If t = s + 1 and n is odd, then Kn(C2t × C2t−1) =< x2
n+1
2 > × < y2

n−1
2 >.

For n+1
2 ≥ t, we have n−1

2 ≥ t − 1 and so the group C2t × C2t−1 is n-A-con-
cos, since Kn(C2t × C2t−1) = 1. If n+1

2 < t and t = n − 1, then we have
x ∈ (C2n−1 ×C2n−2)−Kn(C2n−1 ×C2n−2). Consider the automorphisms α, β, γ of
C2n−1 × C2n−2 with

α(x) = x3, α(y) = y, β(x) = xy, β(y) = y, γ(x) = x, γ(y) = x2y.

It is easy to check that

cl([x, α, . . . , α︸ ︷︷ ︸
n−3−times

, β, γ]) ̸= [x, α, . . . , α︸ ︷︷ ︸
n−3−times

, β, γ]Kn(C2n−1 × C2n−2)− 1.

Therefore this group is not n-A-con-cos. By a similar argument it can be shown
that the group C2t × C2t−1 is not n-A-con-cos, for n+1

2 < t and t < n− 1.

Case 4: t > s ≥ 2 and t = n. If t ≥ s + 2, then the group C2n × C2s

is n-A-con-cos, since Kn(C2n × C2s) = 1. If t = s + 1 and n is even, then
C2n × C2n−1 is not n-A-con-cos, since Kn(C2n × C2n−1) =< x2

n
2 > × < y2

n
2 > .

Thus x ∈ (C2n × C2n−1) − Kn(C2n × C2n−1) and for the automorphism α of
C2n × C2n−1 with α(x) = x3 and α(y) = y,

[x, α, . . . , α︸ ︷︷ ︸
n−1−times

] = x2n−1

and cl(x2n−1) = {x2n−1} but x2n−1

Kn(C2n × C2n−1) − 1 has 2n−1 − 1 elements.
If t = s + 1 and n is odd, then C2n × C2n−1 is not n-A-con-cos, since Kn(C2n ×
C2n−1) =< x2

n+1
2 > × < y2

n−1
2 > and x ∈ (C2n × C2n−1) − Kn(C2n × C2n−1).

Consider α ∈ Aut(C2n × C2n−1) with α(x) = x3, α(y) = y. Clearly

cl([x, α, . . . , α︸ ︷︷ ︸
n−1−times

]) ̸= [x, α, . . . , α︸ ︷︷ ︸
n−1−times

]Kn(C2n × C2n−1)− 1.

Case 5: t > s ≥ 2 and t = n+1. If t ≥ s+2, then Kn(C2n+1 ×C2s) =< x2n >.
By assumption n− 2 ≥ s− 1. If n− 2 = s− 1, then

Kn−1(C2n+1 × C2s) =< x2n−1

> × < y2
n−2

>,

and if n − 2 ≥ s, then Kn−1(C2n+1 × C2s) =< x2n−1

> . In two cases for every
a ∈ Kn−1(C2n+1 × C2s) − 1 we have cl(a) = aKn(C2n+1 × C2s) − 1, and it shows
that the group C2t × C2s is n-A-con-cos, for t = n+ 1 and t ≥ s+ 2 ≥ 4.



92 A. Gholami and F. Mahmudi

Next we investigate the group C2n+1 × C2n , for t = s+ 1. We have

Kn(C2n+1 × C2n) =< x2[
n+1
2

]

> × < y2
[n
2

]

> .

Thus x ∈ (C2n+1 × C2n) −Kn(C2n+1 × C2n). Consider α, β ∈ Aut(C2n+1 × C2n)
with α(x) = x5, α(y) = y, β(x) = x3 and β(y) = y. We have

cl([x, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]) ̸= [x, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]Kn(C2n+1 × C2n)− 1,

which implies that this group is not n-A-con-cos.

Case 6: t > s ≥ 2 and t ≥ n+ 2. If t ≥ s+ 2, then Kn(C2t × C2s) =< x2n >

× < y2
n−1

> . So x ∈ (C2t ×C2s)−Kn(C2t ×C2s). Consider α, β ∈ Aut(C2t ×C2s)

with α(x) = x2t−n+1+1, α(y) = y, β(x) = x3 and β(y) = y. Then

[x, α, β, . . . , β︸ ︷︷ ︸
n−2−times

] = x2t−1

and cl(x2t−1) = {x2t−1}. On the other hand, x2t−1

Kn(C2t×C2s)−1 bas 2t+s−2n+1−
1 elements if s > n− 1 and has 2t−n − 1 elements if s ≤ n− 1, which implies that

cl([x, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]) ̸= [x, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]Kn(C2t × C2s)− 1.

Hence the group C2t × C2s is not n-A-con-cos, for t ≥ s+ 2 ≥ 4 and t ≥ n+ 2. If
t = s+1, then a similar argument as above shows that the group C2t ×C2s is not
n-A-con-cos. This completes the proof.

In following theorem, we investigate some dihedral groups.

Theorem 2.5. Let m,n be natural numbers, where m has at most two prime
factors and n ≥ 2. Then the dihedral group D2m is n-A-con-cos if m = 2t−1, for
natural number t, 3 ≤ t ≤ n + 1, or m = p or m = 2tp, for odd prime number p
and natural number t, where 1 ≤ t ≤ n− 2.

Proof. Let D2m = ⟨x, y | xm = y2 = (xy)2 = 1⟩ be the dihedral group of order
2m. At first we assume that m = 2t−1, where t is a natural number and t ≥ 2.
Clearly the group D4 = C2 × C2 is not n-A-con-cos. If 3 ≤ t ≤ n − 1, then the
group D2t is n-A-con-cos, since by Theorem 1.1 of [2], Kt(D2t) =< x2t−1

>= 1
and Kn(D2t) ⊆ Kt(D2t). If t = n and n ≥ 3, then D2n is A-nilpotent and
Kn(D2n) = 1. Hence by Theorem 2.3, the group D2n is n-A-con-cos, for n ≥ 3.
If t = n + 1, then Kn(D2n+1) =< x2n−1

>= {1, x2n−1} and Kn−1(D2n+1) =

< x2n−2

> = {1, x2n−2

, x2n−1

, x3.2n−2}. This implies that for every g ∈ D2n+1 −
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Kn(D2n+1) and α1, . . . , αn−1 ∈ Aut(D2n+1), where [g, α1, . . . , αn−1] ̸= 1 we have
[g, α1, . . . , αn−1] ∈ {x2n−2

, x2n−1

, x3.2n−2}. Clearly

{x2n−2

, x3.2n−2

} = cl(x2n−2) = cl(x3.2n−2) = x2n−2

Kn(D2n+1)− 1,

{x2n−1

} = cl(x2n−1) = x2n−1

Kn(D2n+1)− 1,

which implies that the group D2n+1 is n-A-con-cos.
If t ≥ n+ 2, then Kn(D2t) =< x2n−1

>, and so x ∈ D2t −Kn(D2t). Consider
α, β ∈ Aut(D2t) with α(x) = x2t−n+1, α(y) = y, β(x) = x3 and β(y) = y. Then

[x, α, β, . . . , β︸ ︷︷ ︸
n−2−times

] = x2t−2

.

Clearly cl(x2t−2) = {x2t−2}. On the other hand, x2t−2

Kn(D2t)−1 =< x2n−1

> −1
has 2t−n − 1 elements. Therefore,

cl([x, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]) ̸= [x, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]Kn(D2t)− 1,

which implies that the group D2t is not n-A-con-cos, for t ≥ n+ 2.
Next we investigate the case that m = pt, for odd prime number p and natural

number t. The group D2p is n-A-con-cos, since by Theorem 1.1 of [2], Kn−1(D2p) =

Kn(D2p). Also < x >= 1 ∪ cl(x), and hence the claim follows from Theorem 2.2.
If t ≥ 2, then Kn(D2pt) =< x >, and therefore y ∈ D2pt − Kn(D2pt). Consider
α, β ∈ Aut(D2pt) with α(x) = x, α(y) = xpt−1y, β(x) = x2 and β(y) = y. Then

[y, α, β, . . . , β︸ ︷︷ ︸
n−2−times

] = x

and cl(x) has ϕ(pt) elements. On the other hand, xKn(D2pt)− 1 =< x > −1 has
pt − 1 elements, since t ≥ 2 and we have

cl([y, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]) ̸= [y, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]Kn(D2pt)− 1.

Thus the group D2pt is not n-A-con-cos, for t ≥ 2.
We now assume that m has two distinct prime factors. Let m = ptqs, where p, q

are distinct odd prime numbers and t, s are natural numbers. Since Kn(D2ptqs) =<

x >, xptqs−1y ∈ D2ptqs − Kn(D2ptqs). Consider the automorphisms α and β of
D2ptqs with α(x) = x, α(y) = xptqs−1y, β(x) = x2 and β(y) = y. It is easy to
check that

cl([xptqs−1y, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]) ̸= [xptqs−1y, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]Kn(D2ptqs)− 1.
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Hence the group D2ptqs is not n-A-con-cos.
Finally we investigate the group D2t+1ps , where p is an odd prime number and

t, s are natural numbers. We have the following three cases:

Case 1: 2 ≤ t+1 ≤ n−1 and s = 1. In this case Kn−1(D2t+1p) = Kn(D2t+1p)

= < x2n−1

>= 1∪cl(x2n−1). So, by Theorem 2.2, the group D2t+1p is n-A-con-cos,
for 2 ≤ t+ 1 ≤ n− 1.

Case 2: 2 ≤ t + 1 ≤ n − 1 and s ≥ 2. Since Kn(D2t+1ps) =< x2n−1

>, y ∈
D2t+1ps −Kn(D2t+1ps). Consider α, β ∈ Aut(D2t+1ps) with α(x) = x, α(y) = xy,
β(x) = x2tps−1 and β(y) = y. Thus

[y, α, β, . . . , β︸ ︷︷ ︸
n−2−times

] = x(−1)n−12n−2

.

If n is odd, then
[y, α, β, . . . , β︸ ︷︷ ︸

n−2−times

] = x2n−2

and cl(x2n−2) has ps − ps−1 elements but x2n−2

Kn(D2t+1ps) − 1 =< x2n−1

> −1
has ps − 1 elements. If n is even, then

[y, α, β, . . . , β︸ ︷︷ ︸
n−2−times

] = x−2n−2

and cl(x−2n−2) = cl(x2n−2) has ps−ps−1 elements but x−2n−2

Kn(D2t+1ps)−1 has
ps − 1 elements. Thus the group D2t+1ps is not n-A-con-cos, for 2 ≤ t+ 1 ≤ n− 1
and s ≥ 2.

Case 3: t+ 1 ≥ n and s ≥ 1. Since Kn(D2t+1ps) =< x2n−1

>, y ∈ D2t+1ps −
Kn(D2t+1ps). Consider the automorphisms α and β of D2t+1ps with α(x) = x,
α(y) = xy, β(x) = x2tps−1 and β(y) = y. It is easy to check that

cl([y, α, β, . . . , β︸ ︷︷ ︸
n−2−times

])

has 2t−n+1ps−1(p− 1) elements but

[y, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]Kn(D2t+1ps)− 1

has 2t−n+1ps elements. Therefore,

cl([y, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]) ̸= [y, α, β, . . . , β︸ ︷︷ ︸
n−2−times

]Kn(D2t+1ps)− 1.
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Hence the group D2t+1ps is not n-A-con-cos, for t + 1 ≥ n and s ≥ 1. This
completes the proof.
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