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k-Intersection Graph of a Finite Set

Fahimeh Esmaeeli, Ahmad Erfanian? and Farzaneh Mansoori

Abstract

For any non-empty set Ω and k-subset Λ, the k-intersection graph de-
noted by Γm(Ω,Λ) is undirected simple graph whose vertices are all m-
subsets of Ω and two distinct vertices A and B are adjacent if and only if
A ∩ B * Λ. In this paper, we determine diameter, girth, some numerical
invariants and planarity, hamiltonian and perfect matching of these graphs.
Moreover adjacency matrix is considered at the end.
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1. Introduction

In [3], Csàkèany and Pollàk defined the intersection graph of nontrivial proper
subgroups of groups. This study was continued with definition of intersection
graph of nontrivial proper subsemigroups of semigroups by Bosák (see [2]). Then
Zelinka investigated the intersection graph of subgroups of finite abelian groups [9].
Also, Charabarty et al. studied the intersection graph of ideals of rings [4]. In this
paper, we are going to define the intersection graph on sets which is a generalization
of the intersection graphs as mentioned above.

Let n,m, k be positive integers and let Ω be a non-empty set and Λ be a
subset of Ω with |Ω| = n and |Λ| = k. The k-intersection graph Γm(Ω,Λ) is
the undirected graph with vertex set consisting of all m-subsets of Ω and two
vertices V and W are adjacent, whenever V ∩ W is not contained in Λ. The
importance of this graph comes from various kinds of examples in many fields of
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science such as economics, social system modeling, financial matters and so on.
For example, consider n people who want to invest for some companies. These
people consist of k foreigners and n − k natives. Each company has m investors.
This situation can be modelled with a k-intersection graph with parameters n,m
and k. Each company with m investors is considered as a vertex and two vertices
are connected if the corresponding companies have at least one native investor in
common. The independence number and click number of Γm(Ω,Λ) have important
interpretations in this situation.

Our aim is to study k-intersection graph of finite sets and state some important
graph theoretical properties of them. Sections 2 and 3 deal with basic results
and numerical invariants of Γm(Ω,Λ). In section 4, we find some Hamiltonian
cycles of Γm(Ω,Λ) and determine some conditions under which the graph has a
perfect matching. In section 5 we determine adjacency matrix of the graph and
attempt on the eigenvalues of this matrix. The final section is devoted to the
investigation of planarity and 1-planarity of k-intersection graph. We note that
all the notations and terminologies about the graphs are standard throughout this
paper (for instance see [7]).

2. Some Basic Results

We start with definition of graph Γm(Ω,Λ) as the following.

Definition 2.1. For positive integers n,m, k, let Ω be a non-empty set and Λ be a
subset of Ω with |Ω| = n and |Λ| = k. Then Γm(Ω,Λ) is a graph whose vertices are
the m-subsets of Ω and two vertices V and W are adjacent whenever V ∩W * Λ.

If m = 1, then Γm(Ω,Λ) is an empty graph with
(|Ω|
m

)
vertices and if m = |Ω|,

then Γm(Ω,Λ) is a single vertex. Hence, all over of this paper, we always assume
that m 6= 1, m 6= |Ω| and also |Ω| 6= 1. Hence, we must have |Ω| ≥ 3. For
convenience, we let |Ω| = n and |Λ| = k.

First, let us consider the connectivity of this graph.

Proposition 2.2. The graph Γm(Ω,Λ) is connected if and only if m > k.

Proof. First suppose that m > k and let V and W be two non-adjacent vertices,
then there exists v1 ∈ V \Λ and w1 ∈W \Λ. Let U be a vertex containing v1and
v2. Then V ∼ U ∼W , which implies that Γm(Ω,Λ) is connected. The converse is
obvious.

Theorem 2.3. The graph Γm(Ω,Λ) contains

(i)
(
k
m

)
isolated vertices,
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(ii)
(
n−k
m

)
vertices of the form {x1, . . . , xm}, where xi ∈ Ω \ Λ (1 ≤ i ≤ m) each

of which has degree

m∑
i=1

(−1)i+1

(
n− i
m− i

)(
m

i

)
− 1.

(iii)
(
k
l

)(
n−k
m−l

)
vertices of the form {x1, . . . , xl, xl+1, . . . , xm}, that x1, . . . , xl ∈ Λ,

xl+1, . . . , xm ∈ Ω \ Λ. The degrees of these vertices are

m−l∑
i=1

(−1)i+1

(
n− i
m− i

)(
m− l
i

)
− 1, 1 ≤ l ≤ k.

Proof. Since any isolated vertex should contain elements which are all belong to
Λ, we have

(
k
m

)
such vertices. Now, assume {x1, . . . , xm} is a vertex such that

xi ∈ Ω \ Λ for 1 ≤ i ≤ m. Using the inclusion-exclusion principle, the degree of
such a vertex equals(

n− 1

m− 1

)(
m

1

)
−
(
n− 2

m− 2

)(
m

2

)
+ · · ·+ (−1)m+1

(
n−m

0

)(
m

m

)
− 1

=

m∑
i=1

(−1)i+1

(
n− i
m− i

)(
m

i

)
− 1.

Now, suppose that {x1, . . . , xl, xl+1, . . . , xm} is an arbitrary vertex of the graph,
where x1, . . . , xl ∈ Λ and xl+1, . . . , xm ∈ Ω \ Λ for some 1 ≤ l ≤ k. Again, by
using the inclusion-exclusion principle, the degree of such a vertex equals(

n− 1

m− 1

)(
m− l

1

)
−
(
n− 2

m− 2

)(
m− l

2

)
+· · ·+(−1)m−l+1

(
n−m+ l

l

)(
m− l
m− l

)
−1

=

m−l∑
i=1

(−1)i+1

(
n− i
m− i

)(
m− l
i

)
− 1.

The above theorem has some important consequences. For the graph Γm(Ω,Λ)
we have

(i) ∆(Γm(Ω,Λ)) =
∑m−1

i=1 (−1)i+1
(
n−i
m−i

)(
m
i

)
.

(ii) δ(Γm(Ω,Λ)) =
∑m−k

i=1 (−1)i+1
(
n−i
m−i

)(
m−k

i

)
− 1 when Γm(Ω,Λ) is connected.
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(iii) |E(Γm(Ω,Λ))| equals

1

2

(
n− k
m

)(m−1∑
i=1

(−1)i+1

(
n− i
m− i

)(
m

i

))

+
1

2

k∑
l=1

[(
k

l

)(
n− k
m− l

)(m−l∑
i=1

(−1)i+1

(
n− i
m− i

)(
m− l
i

)
− 1

)]
.

(iv) Γm(Ω,Λ) is
(∑m

i=1

(
n−i
m−i

)(
m
i

)
(−1)i+1 − 1

)
-regular when Λ = ∅.

(v) Γm(Ω,Λ) is regular if and only if Γm(Ω,Λ) is complete or Λ = ∅.

Figure 1: Γm(Ω,Λ) for |Ω| = 3, |Λ| = 0; |Ω| = 3, |Λ| = 1 and |Ω| = 3, |Λ| = 2.

One can easily check that the graph Γm(Ω,Λ) is not empty (it has at least one
edge) if and only if Ω 6= Λ and 2 ≤ m. Moreover, it would be a cycle if and only
if |Ω| = 3 and |Λ| = 0. We note that if |Ω| = 3, then we have the following cases
according to |Λ| = 0, 1, 2 (see Figure 1). If |Ω| = 4, then one can easily see that
either Γm(Ω,Λ) is disconnected or it has a vertex of degree ≥ 3. If |Ω| ≥ 5, then
there are at least four vertices which are pairwise adjacent. As we have mentioned,
Γm(Ω,Λ) is acyclic when |Ω| = 3 and |Λ| = 1 or |Λ| = 2. Also, Γm(Ω,Λ) ∼= K3

when |Ω| = 3 and |Λ| = 0, hence girth(Γm(Ω,Λ)) = 3 in this case. The following
lemma helps us to show that girth(Γm(Ω,Λ)) = 3 whenever |Ω| ≥ 4.

Theorem 2.4. If |Ω| ≥ 4 and Ω 6= Λ, then every edge of Γm(Ω,Λ) is contained
in a clique of size

(|Ω|−1
m−1

)
.

Proof. Let V and W be two adjacent vertices. Then V ∩W * Λ and there exists
x ∈ V ∩W such that x /∈ Λ. We have

(|Ω|−1
m−1

)
vertices which they are all adjacent.

Hence, we get a clique of size
(|Ω|−1
m−1

)
.

Thus, if |Ω| ≥ 4 and Ω 6= Λ then girth(Γm(Ω,Λ)) = 3. Also the graph Γm(Ω,Λ)
is a tree if and only if |Ω| = 3 and |Λ| = 1.

Theorem 2.5. Let Γm(Ω,Λ) be connected. Then diam(Γm(Ω,Λ)) ≤ 2.
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Proof. If Γm(Ω,Λ) is either a complete graph or an empty graph, then either
diam(Γm(Ω,Λ)) = 1 or diam(Γm(Ω,Λ)) = 0. Hence, we may assume that V and
W are two nonisolated and nonadjacent vertices of Γm(Ω,Λ). By the same method
as in the proof of Proposition 2.2, we can obtain a vertex U such that U 6= V ,
U 6= W and V ∼ U ∼W which imply that diam(Γm(Ω,Λ)) = 2.

In the following theorem, we obtain some conditions under which the graph
Γm(Ω,Λ) is complete.

Theorem 2.6. The graph Γm(Ω,Λ) is complete if and only if

2(m− |Λ|) > |Ω| − |Λ|.

Proof. Suppose Γm(Ω,Λ) is complete. Let Ω = {x1, . . . , xk, xk+1, . . . , xn} and Λ =
{x1, . . . , xk}. First note that those vertices in Γm(Ω,Λ) that contain all members
of Λ have the smallest degree, such as V = {x1, . . . , xk, v1, . . . , vm−k} and W =
{x1, . . . , xk, w1, . . . , wm−k}. Since Γm(Ω,Λ) is a complete graph, we have 2(m −
k) > |Ω| − |Λ|. Therefore 2(m− |Λ|) > |Ω| − |Λ|. The converse is obvious.

3. Numerical Invariants of Γm(Ω,Λ) and Planarity
We start with the following result on the clique number of the graph Γm(Ω,Λ).

Theorem 3.1. Let m > k, we have

(i) If m− k > n−k
2 , then ω(Γm(Ω,Λ)) =

(
n
m

)
.

(ii) If n−2k
2 < m − k ≤ n−k

2 , then ω(Γm(Ω,Λ)) ≥
(
n−1
m−1

)
+
∑r−1

i=0

(
k
i

)(
n−k−1
m−i

)
,

where r = 2m− n.

(iii) If n−2k
2 ≥ m− k, then ω(Γm(Ω,Λ)) ≥

(
n−1
m−1

)
.

Proof. (i) Since m − k > n−k
2 , we conclude that Γm(Ω,Λ) is a complete graph

and hence ω(Γm(Ω,Λ)) =
(
n
m

)
. (ii) Let Ω = {x1, . . . , xk, xk+1, . . . , xn} and

Λ = {x1, . . . , xk}. The number of vertices containing xk+1 equals
(
n−1
m−1

)
each

of which are adjacent. Let r = 2m − n and for 0 ≤ i ≤ r − 1, consider those
vertices of Γm(Ω,Λ) containing i elements of Λ but do not contain xk+1. The num-
ber of such vertices is equal to

∑r−1
i=0

(
k
i

)(
n−k−1
m−i

)
and they are adjacent to

(
n−1
m−1

)
vertices containing xk+1. Because, if for instance, for some 0 ≤ i ≤ r − 1, V =
{v1, . . . , vi, vi+1, . . . , vm}, where v1, . . . , vi ∈ Λ and U = {x1, . . . , xk, xk+1, . . . , xm}
and they are not adjacent. Then we have |V \Λ|+ |U \Λ| ≤ |Ω\Λ| or equivalently
m − i + m − k ≤ n − k, so r = 2m − n ≤ i which is a contraction. Therefore
Γm(Ω,Λ) has a clique of size

(
n−1
m−1

)
+
∑r−1

i=0

(
k
i

)(
n−k−1
m−i

)
. (iii) Since n−2k

2 ≥ m− k,
therefore there is no other vertex in Γm(Ω,Λ) that is adjacent to all member of the
clique that contains all vertex containing xk+1. Hence ω(Γm(Ω,Λ)) ≥

(
n−1
m−1

)
.
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The independence number of a graph G is the size of largest set of vertices of
G that are pairwise non-adjacent and is shown by α(G).

Theorem 3.2. We have

(i) If m > k, then α(Γm(Ω,Λ)) =
[
n−k
m−k

]
.

(ii) If m ≤ k, then α(Γm(Ω,Λ)) =
(
k
m

)
+ n− k.

Proof. (i) It is enough to consider all vertices containing Λ such that their other
m − k elements are pairwise disjoint. This is an independent set consisting of[
n−k
m−k

]
vertices. (ii) It is enough to consider all isolated vertices along with all

vertices with m− 1 common elements of Λ. This is an independent set consisting
of
(
k
m

)
+ n− k vertices.

Recall that for a graph G a dominating set is a set D of vertices of G, in
which every vertex not in D is adjacent to a vertex in D. The size of the smallest
dominating set is called domination number and is shown by γ(G).

Theorem 3.3. Let m > k, we have

(i) If n− k ≥ m, then γ(Γm(Ω,Λ)) = dn−km e; where d
n−k
m e is ceiling function of

n−k
m .

(ii) If n− k < m, then γ(Γm(Ω,Λ)) = 1.

Proof. (i) Consider those vertices arising from a partition of Ω \Λ into
[
n−k
m

]
sets

of size m along with a vertex containing the r remaining elements (r < m), then
the result follows. (ii) It is clear, since n− k < m and we may consider the vertex
containing all elements of Ω \ Λ.

Clearly, χ(Γm(Ω,Λ)) ≥
(
n−1
m−1

)
. Here we state some more results.

Theorem 3.4. Let m > k, if n−2k
2 < m− k ≤ n−k

2 , then χ(Γm(Ω,Λ)) =
(
n−1
m−1

)
+∑r−1

i=0

(
k
i

)(
n−k−1
m−i

)
, where r = 2m− n.

Proof. Let Ω = {x1, . . . , xk, xk+1, . . . , xn} and Λ = {x1, . . . , xk}. By Theorem
3.1 part (ii), when n−2k

2 < m − k ≤ n−k
2 , then there exists a clique of size(

n−1
m−1

)
+
∑r−1

i=0

(
k
i

)(
n−k−1
m−i

)
in Γm(Ω,Λ) for r = 2m− n. Therefore χ(Γm(Ω,Λ)) ≥(

n−1
m−1

)
+
∑r−1

i=0

(
k
i

)(
n−k−1
m−i

)
. Let V = {v1, . . . , vl, vl+1 . . . , vm} be a vertex outside

of the clique mentioned as above, where v1, . . . , vl ∈ Λ. Thus vi 6= xk+1 and
l ≥ r, hence for each vertex V out of the mentioned clique there exists a ver-
tex V ′ in the clique that V and V ′ are not adjacent. It is enough to take V ′ =
{x1, . . . , xk, xk+1, v

′
1, . . . , v

′
m−k−1} so that {vl+1, . . . , vm}∩{xk+1, v

′
1, . . . , v

′
m−k−1} =

∅ (it is possible, since l ≥ r). Therefore V can have the colour of V ′. Note that
since for any two vertices V and W , vertices V ′ and W ′ inside the clique are
distinct, so there is no problem in the case that V and W are adjacent.
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It is worth noting that when m − k > n−k
2 , then graph Γm(Ω,Λ) is complete

and hence its chromatic number equals the number of its vertices.

Theorem 3.5. Let n−k
2 = m− k, then χ(Γm(Ω,Λ)) =

(
n−1
m−1

)
.

Proof. Since n−k
2 = m − k, so n = 2m and we have

(
n

m−1

)
=
(
n−1
m−1

)
. Therefore

the number of vertices out of the clique containing xk+1 is equal to the number of
vertices in the clique, hence χ(Γm(Ω,Λ)) =

(
n−1
m−1

)
.

A graph is called planar if it can be drawn without crossing edges. Also, a
graph is 1-planar if it can be drawn on the plan so that each edge is crossed by no
more than one other edge. In this section, we discuss conditions under which the
graph Γm(Ω,Λ) is planar and then we investigate 1-planarity of Γm(Ω,Λ) (see [6]
and [8] for more details).

Theorem 3.6. The graph Γm(Ω,Λ) is planar if and only if one of the following
conditions hold:

(i) |Ω| = 3,

(ii) |Ω| = 4,

(iii) |Ω| = 5, m = 2 and |Λ| = 1, 2, 3 or 4,

(iv) |Ω| = 5, m = 4 and |Λ| = 3 or 4.

Proof. Let xi ∈ Ω \ Λ. Then number of vertices of Γm(Ω,Λ) containing xi equals(|Ω|−1
m−1

)
. If |Ω| ≥ 6, then (

|Ω| − 1

m− 1

)
≥ 5.

Hence, there exist 5 vertices containing xi, which induces a graph isomorphic to
K5 so that Γm(Ω,Λ) is not planar in this case.

If |Ω| = 3, the number of vertices of Γm(Ω,Λ) is 3 and it is a planar graph. If
|Ω| = 4 and m = 3, then the number of vertices of Γm(Ω,Λ) is 4 and it is planar.
Also, if m = 2 and |Λ| 6= 0, then Γm(Ω,Λ) has 6 vertices two of which have degree
2. Hence, Γm(Ω,Λ) has no subgraphs isomorphic to K3,3 or K5, that is, Γm(Ω,Λ)
is planar. If m = 2 and |Λ| = 0, then Γm(Ω,Λ) has no subgraphs isomorphic to
K3,3 or K5 so that it is planar in this case. Now, consider the case |Ω| = 5. If
m = 2 and |Λ| = 0, then Γm(Ω,Λ) is not planar for the number of its vertices
and edges equal 10 and 30, respectively, and 30 6≤ 3× 10− 6. So, Γm(Ω,Λ) is not
planar. If m = 2 and |Λ| 6= 0, then Γm(Ω,Λ) is planar for it does not have any
subgraph isomorphic to K5 or K3,3. If m = 3, the graph Γm(Ω,Λ) has a subgraph
isomorphic to K5 so that it is not planar. If m = 4, then Γm(Ω,Λ) is isomorphic
to K5 when |Λ| = 0, 1 or 2, that is, Γm(Ω,Λ) is not planar. If |Λ| = 3 or 4, then
we have a vertex of degree 3, which implies that Γm(Ω,Λ) is planar.
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Now, we investigate 1-planarity of the graph Γm(Ω,Λ).

Theorem 3.7. The graph Γm(Ω,Λ) is 1-planar if and only if one of the following
conditions hold:

(i) |Ω| = 5, |Λ| = 3, 4 and m = 3,

(ii) |Ω| = 5, |Λ| = 0, 1, 2 and m = 4,

(iii) |Ω| = 6, |Λ| = 2, 3, 4, 5 and m = 2,

(iv) |Ω| = 6 and m = 5,

(v) |Ω| = 7, |Λ| = 3, 4, 5, 6 and m = 2,

(vi) |Ω| = 7, |Λ| = 6 and m = 6.

Proof. The method of the proof is very similar to the proof of Theorem 3.6 and
we omit hear. But one has to consider all cases (i) to (vi) and make sure that
there is no subgraph isomorphic to K7, K4,5, K3,7 and other forbidden subgraphs
(see [6], [8]).

4. Hamiltonian and Perfect Matching
In this section, we determine conditions such that the graphs Γm(Ω,Λ) have Hamil-
tonian cycles or matching. If |Ω| = 3 and |Λ| = 0 one can easily see that Γm(Ω,Λ)
is Hamiltonian. Now in the following theorem, we show that Γm(Ω,Λ) is Hamil-
tonian whenever |Ω| ≥ 4.

Theorem 4.1. If |Ω| ≥ 4 and m > k, then Γm(Ω,Λ) is Hamiltonian.

Proof. Let Ω = {x1, . . . , xk, xk+1, . . . , xn} and Λ = {x1, . . . , xk}. Consider the
most difficult case where m = k + 1. Since m > k, the graph has no isolated
vertex. Partition the vertices of the graph into n − k sets Ai in such a way
that Ai is the set of all vertices containing xk+i and excluding xk+i+1, . . . , xn, for
i = 1, . . . , n − k. Now begin with Ak+1 with a single vertex. There is a vertex of
Ak+1 adjacent to some vertex of Ak+2. Clearly, all vertices of Ak+2 are adjacent.
Also, there exists a vertex of Ak+2 adjacent to some vertex of Ak+3. Again, all
vertices of Ak+3 are adjacent. Continuing this way, we observe that all vertices
of An are adjacent and there is a vertex of An which is adjacent to a vertex of
A1.

For a graph G a matching is a set of edges of G such that no two edges have
a vertex common. A matching is called perfect matching if all vertices of G are
an end point of one of the edges in the matching. A matching that just leaves a
single vertex unmatched is called near perfect matching.
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Theorem 4.2. Suppose Γm(Ω,Λ) has no isolated vertex, if the number of vertices
of Γm(Ω,Λ) is odd, then Γm(Ω,Λ) has a near perfect matching, and if the number
of vertices of Γm(Ω,Λ) is even then Γm(Ω,Λ) has a perfect matching.

Proof. Let Ω = {x1, . . . , xk, xk+1, . . . , xn} and Λ = {x1, . . . , xk}. Since the graph
has no isolated vertex, we havem > k. Partition the vertices of the graph into n−k
sets Ai, k+1 ≤ i ≤ n, so that Ai is the set of all vertices including xi and excluding
xi+1, · · · , xn. Consider Ae with even members. Since the induced sub-graph of
Γm(Ω,Λ) with Ae as the set of vertices, is a clique with even vertices, so Ae has
a perfect matching. Now if Γm(Ω,Λ) has odd number of vertices, so there are
odd numbers of Ais with odd members, let say Ai1 , · · · , Aio ; |Ai1 | ≤ · · · ≤ |Aio |.
Begin with Ai1 . Since the induced sub-graph with Ai1 as the set of vertices is a
clique with odd number of vertices so there exists a matching M1 that matches
all vertices of Ai1 except one vertex say V = {v1, · · · , vm−1, xi1}. There exists a
vertex in Ai2 that is adjacent to V , say V ′ = {v2, · · · , vm−1, xi1 , xi2}. There is a
matching M2 for Ai2 that matches all vertices of Ai2 except V ′. M1∪M2 with the
edge that joins V and V ′ is a perfect matching for Ai1 ∪ Ai2 . Similarly one can
consider the remain Ais tow by tow. So there exists a perfect matching for all Ais
except for the last one, namely Aio that has a near perfect matching. Therefore
the union of these matchings is a near perfect matching for Γm(Ω,Λ).

By a similar argument, one can show that in the case that the graph has even
number of vertices, the graph has perfect matching.

Theorem 4.3. If |Λ| = 1, then the graph Γ2(Ω,Λ) has a perfect matching if and
only if |Ω| = 4s+ 1 or |Ω| = 4s.

Proof. First suppose that Γ2(Ω,Λ) has a perfect matching. Then the number of
vertices of Γ2(Ω,Λ) is even, which implies that n(n−1)

2 is even, in which n = |Ω|.
Since n and n− 1 are consecutive numbers, it follows that one of them is odd and
the other is even. Hence, we have the following cases:

Case 1. n is even. Then n = 2r for some r ∈ N and so(
n

2

)
=

2r(2r − 1)

2
= r(2r − 1).

Since
(
n
2

)
is even it follows that r is even so that r = 2s for some s ∈ N. Hence,

|Ω| = n = 4s.

Case 2. n is odd. Then n = 2r − 1 for some r ∈ N and so(
n

2

)
=

(2r + 1)2r

2
= r(2r + 1).

Since
(
n
2

)
is even, it follows that r is even so that r = 2s for some s ∈ N. Hence,

|Ω| = n = 4s+ 1.
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Clearly, we must have |Λ| = 1, if not |Λ| > 1 and Γ2(Ω,Λ) has isolated vertices
contradicting the fact that Γ2(Ω,Λ) has a perfect matching.

Conversely, since |Ω| = 4s or 4s+ 1, the number of vertices of Γ2(Ω,Λ) is even,
from which by the previous theorem, Γ2(Ω,Λ) has a perfect matching.

Corollary 4.4. If n = 2r, r > 1 andm > k, then Γm(Ω,Λ) has a perfect matching.

Proof. It is enough to show that for 0 < m < 2r,
(

2r

m

)
is even. We have(

2r

m

)
=

2r!

m!(r2 −m)!
=

2r(2r − 1) · · · (2r − (m− 1))(2r −m)!

1× 2× · · · ×m× (2r −m)!

=
2r(2r − 1) · · · (2r − (m− 1))

1× 2× · · · ×m
.

Each even factor like e in the denominator (except when m if even) can simplify
with 2r − e in numerator. If m is even, say m = 2sm1, then since m < 2r and so
s < r. Therefore m will simplify by even factor of 2r. Since s < r there is still
an even factor in numerator, so

(
2r

m

)
is even and hence, Γm(Ω,Λ) has a perfect

matching.

By a similar proof, one can show that for n = 2r + 1 and r ∈ N we have
(
n
m

)
is even when m 6= 1 and m 6= 2r. Hence, we have the following result.

Corollary 4.5. If n = 2r +1 and m > k, when m 6= 1 and m 6= 2r, then Γm(Ω,Λ)
has a perfect matching.

Corollary 4.6. If n = 2r − 1, then Γm(Ω,Λ) has no perfect matchings.

Proof. We have:(
2r − 1

m

)
=

(2r − 1)!

m!(2r − 1−m)!

=
(2r − 1)(2r − 2)(2r − 3) · · · (2r − 1− (m− 1))(2r − 1−m)!

m!(2r − 1−m)!

=
(2r − 1)(2r − 2)(2r − 3) · · · (2r −m)

1× 2× · · · ×m
.

Since for each 2 ≤ a ≤ m, all even factors in (2r−a) in the numerator will simplify
with even factors of a in denominator. So

(
2r−1
m

)
in odd.

For the last assertion in this section, we remind that by Lucas Theorem [5] in
the number theory, for each nonnegative integers n,m and prime p we have,(

n

m

)
≡

k∏
i=0

(
ni
mi

)
(mod p),
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where n = nkp
k + · · ·+ n1p+ n0 and m = mkp

k + · · ·+m1p+m0. Since
(
n
m

)
= 0

when n < m, one can easily see that
(

2r+2s

m

)
is even when m 6= 2s and m 6= 2r and

so we can state the following corollary.

Corollary 4.7. If n = 2r + 2s, m > k, m 6= 2s and m 6= 2r, then
(

2r+2s

m

)
is even

and Γm(Ω,Λ) has a perfect matching.

5. Adjacency Matrix

For a graph G with n vertices, the adjacency matrix denoted by A(G) is an n× n
matrix whose rows and columns are indexed by V (G). For i 6= j, aij = 1 iff vi
and vj are adjacent and aij = 0 iff vi and vj are nonadjacent. The adjacency
matrix of each graph is a symmetric matrix with 0 on it’s main diagonal. In this
section we state some facts on adjacency matrix and eigenvalues of Γm(Ω,Λ). Here
A(Γm(Ω,Λ)) is a square matrix of order

(
n
m

)
.

Proposition 5.1. For non empty sets Ω′,Λ′ that Λ′ ⊆ Ω′ and |Ω′| ≤ |Ω| and
|Λ′| = |Λ|, then Γm(Ω′,Λ′) is an induced subgraph of Γm(Ω,Λ).

Proof. The assertion is clear since the adjacency matrix of the graph Γm(Ω′,Λ′)
is a submatrix of the adjacency matrix of Γm(Ω,Λ).

As a consequence of 5.1 one can easily see that the complement of all Kneser
graphs Kn−k,r that m − k ≤ r ≤ m, or equivalently all Johnson graphs with
parameters J(n− k, r) with m− k ≤ r ≤ m are induced subgraph of Γm(Ω,Λ).

When m ≤ k, then Γm(Ω,Λ) has at least one single vertex and therefore
Det(A(Γm(Ω,Λ))) = 0. Note that Det(B) is stand for the determinant of matrix
B.

Theorem 5.2. If m− k =
n− k

2
, then Det(A(Γm(Ω,Λ))) = 0.

Proof. Let Ω = {x1, . . . , xk, xk+1, . . . , xm, xm+1, . . . , xn} and Λ = {x1, . . . , xk}.
Consider two vertices V = {x1, . . . , xk, xk+1, . . . , xm} andW = {x1, . . . , xk, xm+1,
. . . , xn}.

Now let U = {y1, . . . , yr, yr+1, . . . , ym} be an arbitrary vertex of Γm(Ω,Λ)
other than V and W , that {y1, . . . , yr} ∈ Λ and {yr+1, . . . , ym} ∈ Ω \ Λ. Then
one can see that {yr+1, . . . , ym} ∩ {xk+1, . . . , xm} 6= ∅ since r ≤ k. Similarly
{yr+1, . . . , ym} ∩ {xm+1, . . . , xn} 6= ∅ and so U is adjacent to both V and W .
Moreover, V and W are not adjacent and so the two rows of A(Γm(Ω,Λ)) indexed
by V and W are the same. Hence Det(A(Γm(Ω,Λ))) = 0.

Hear we have some statements about eigenvalues of Γm(Ω,Λ).
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Theorem 5.3. -1 is an eigenvalue of A(Γm(Ω,Λ)) with multiplicity
∑k

i=1(
(
k
i

)
−

1)
(
n−k
m−i

)
.

Proof. Let Ω = {x1, . . . , xk, xk+1, . . . , xn} and Λ = {x1, . . . , xk}. Consider two
vertices V and W so that V ∩ Ω \ Λ = W ∩ Ω \ Λ. Then for each vertex U ∈
V (Γm(Ω,Λ)), U is adjacent to V iff U is adjacent to W . Since V and W are
adjacent, the two rows assigned to V and W in the adjacency matrix are the same
except entries aV,V , aV,W and aW,V , aW,W . Therefore the two corresponding rows
in matrix A+I are the same and therefore Det(A+I) = 0. So −1 is an eigenvalue
of A(Γm(Ω,Λ)). Now, let U be a vertex of Γm(Ω,Λ) such that |U ∩ Λ| = r. Then
there are

(
k
r

)
vertices of Γm(Ω,Λ) that have the same behavior as U . Thus the

multiplicity of −1 is
∑k

i=1(
(
k
i

)
− 1)

(
n−k
m−i

)
.

Theorem 5.4. Let λ1 ≥ λ2 . . . ≥ λ(n
m) be all eigenvalues of Γm(Ω,Λ). Then

λ1 ≥
(
n− 1

m− 1

)
− 1.

.

Proof. For any induced subgraph H of Γm(Ω,Λ), the adjacency matrix of H is a
principal submatrix of A(Γm(Ω,Λ)). If γ1 ≥ . . . ≥ γp are all eigenvalues of H,
then by Cauchy interlacing theorem (see page 7 of [1]), we have λ1 ≥ γ1 ≥ . . . ≥
γp ≥ λ(n

m). By Theorem 3.1, Γm(Ω,Λ) has a clique of size
(
n−1
m−1

)
. Since the largest

eigenvalue of K(n−1
m−1)

is
(
n−1
m−1

)
− 1, we have λ1 ≥

(
n−1
m−1

)
− 1 as required.
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