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On the Estrada Index of Seidel Matrix
Mardjan Hakimi-Nezhaad and Modjtaba Ghorbani⋆

Abstract

Let G be a simple graph with n vertices and with the Seidel matrix S.
Suppose µ1, µ2, . . . , µn are the Seidel eigenvalues of G. The Estrada index
of the Seidel matrix of G is defined as SEE(G) =

∑n
i=1 e

µi . In this paper,
we compute the Estrada index of the Seidel matrix of some known graphs.
Also, some bounds for the Seidel energy of graphs are given.
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1. Introduction

Here, we recall some definitions that will be used in this paper. Let G be a simple
graph with n vertices, m edges and let A denote the adjacency matrix of G. The
eigenvalues of the graph G are the roots of characteristic polynomial PG(λ) =
det(λI −A), where I is the identity matrix. Suppose that λ1 ≥ λ2 ≥ · · · ≥ λn are
the eigenvalues of G. The rank of the matrix A, denoted by rank(A), is equal to
the maximum number of linearly independent columns of A. For given graph G,
its complement is denoted by G. The graph G− {v} is a graph obtaining from G
by removing the vertex v with all edges connected to v. A complete graph on n
vertices is denoted by Kn.

In 1966, van Lint and Seidel in [19] introduced a symmetric (0,−1, 1)-adjacency
matrix for a graph G, called the Seidel matrix of G, as S(G) = J − I − 2A, where
J is the matrix with entries 1 in every position. Let µ1 ≥ µ2 ≥ · · · ≥ µs be the
distinct Seidel eigenvalues of G with multiplicity t1, t2, . . . , ts, respectively. The
multiset SpecS(G) = {[µ1]

t1 , [µ2]
t2 , . . . , [µs]

ts} is called the Seidel spectrum of G.
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Let U1 and U2 = V (G) \ U1 be the partitioned sets of the vertex set V (G) of
a graph G. Let G′ be the graph obtained from G by deleting all edges between
U1 and U2 and inserting all edges between U1 and U2 that are not presented in G.
Then G′ and G are said to be Seidel switching with respect to U1, see [17]. If G′

and G are Seidel switching, then S(G′) and S(G) are similar and therefore G′ and
G have the same Seidel eigenvalues, see [4].

The Estrada index of a graph G is defined as EE(G) =
∑n

i=1 e
λi , where λi’s are

eigenvalues of G. This graph invariant was introduced by Ernesto Estrada, which
has noteworthy chemical applications, see [6, 7, 8, 9] for details. We encourage
the interested readers to consult papers [1, 5, 10, 11, 15] for the mathematical
properties of Estrada index. Askari et al. [2] proposed the Estrada index of Seidel
matrix of a graph G as SEE(G) =

∑n
i=1 e

µi , where µi’s are the Seidel eigenvalues
of G. From the power-series expansion of ex, we have

SEE(G) =
∑
k≥0

Sk(G)

k!
,

where Sk(G) =
∑n

i=1 µ
k
i .

Lemma 1.1. [4] For any graph G on n ≥ 2 vertices, we have

i)
∑n

i=1 µi = 0,

ii)
∑n

i=1 µ
2
i = n(n− 1),

iii) µ1 ≥ 1.

Lemma 1.2. [12] Let S(G) be a Seidel matrix of order n ≥ 2 with the spectrum
{[µ1(G)]n−t, [µ2(G)]t} for some t, 1 ≤ t ≤ n − 1. Let S(G′) be a principal (n −
1)× (n− 1) submatrix of S(G). Then the spectrum of S(G′) is{

[µ1(G)]n−t−1, [µ2(G)]t−1, [µ1(G) + µ2(G)]1
}
.

Lemma 1.3. [4] Let G be a k-regular graph on n vertices. Then the Seidel spec-
trum of G is {n − 1 − 2k,−1 − 2λ2, . . . ,−1 − 2λn}, where λi’s (2 ≤ i ≤ n) are
eigenvalues of G.

2. Main Results
This section is concerned with the use of algebraic techniques in the study of
Estrada index of S(G).

It is easy to see that the Estrada index of a graph G is equal to Seidel switching
of G. We now present an example of a graph on n vertices with two distinct Seidel
eigenvalues.
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Example 2.1. Let G be a graph on n ≥ 2 vertices with two distinct Seidel spectra
{[µ1]

t1 , [µ2]
t2}. By Lemma 1.1 and Lemma 1.2, we have

SEE(G) = t1e

√
t2
t1

(n−1)
+ t2e

−
√

t1
t2

(n−1)
,

SEE(G− {v}) = e

√
t2
t1

(n−1)−
√

t1
t2

(n−1)
+ (t1 − 1)e

√
t2
t1

(n−1)
+ (t2 − 1)e

−
√

t1
t2

(n−1)
,

where t1 + t2 = n.

Theorem 2.2. Let G be a graph of order n ≥ 2. Then SEE(G) > n.

Proof. By Geometric-Arithmetic mean inequality [16], we have

1

n
SEE(G) ≥

(
n∏

i=1

eµi

) 1
n

=

n

√√√√
e

n∑
i=1

µi

=
n
√
e0 = 1,

with equality if and only if for all 1 ≤ i, j ≤ n, eµi = eµj if and only if for all
1 ≤ i, j ≤ n, µi = µj . This implies that all µi’s are zero. This contradicts the fact
that µ1 ≥ 1.

Lemma 2.3. [16] For real positive numbers x1, x2, . . . , xn, we have

i) xn
1 +xn

2 +···+xn
n

nx1x2...xn
+ n(x1x2...xn)

1
n

x1+x2+···+xn
≥ 2,

ii) xn
1 +xn

2 +···+xn
n

x1x2...xn
+ (x1x2...xn)

1
n

x1+x2+···+xn
≥ 1.

Theorem 2.4. Let G be a graph of order n. Then we have

i) SEE(G) ≤ n(2−
∑

k≥0
1
k!n

k−1Sk(G))
−1

,

ii) SEE(G) ≤ (1−
∑

k≥0
1
k!n

kSk(G))−1.

Proof. By Lemma 2.3(i), we yield that

2 ≤ enµ1 + enµ2 + · · ·+ enµn

neµ1eµ2 . . . eµn
+

n(eµ1eµ2 . . . eµn)
1
n

eµ1 + eµ2 + · · ·+ eµn

=
1

n
∏n

i=1 e
µi

n∑
i=1

enµi +
n

SEE(G)

(
n∏

i=1

eµi

) 1
n

=
1

n

n∑
i=1

enµi +
n

SEE(G)
,
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where the last equality holds by applying Lemma 1.1(i). Thus, we get

n2 ≥ SEE(G)
(
2n−

n∑
i=1

enµi

)
.

Since
∑n

i=1 e
nµi =

∑n
i=1

∑
k≥0

(nµi)
k

k! =
∑

k≥0
nk

k! Sk(G), we obtain SEE(G) ≤
n(2−

∑
k≥0

1
k!n

k−1Sk(G))
−1

. Similar to the last case, by applying Lemma 2.3(ii)
we can show that SEE(G) ≤ (1−

∑
k≥0

1
k!n

kSk(G))−1. This yields the proof.

Theorem 2.5. Let G be a graph of order n and a ≥ 2 be an integer. Then

SEE(G) ≤ e
√

n(n−1) −
√
n(n− 1) +

a∑
k=2

1

k!

(
Sk(G)−

(√
n(n− 1)

)k)
.

Proof. We have

SEE(G) =
a∑

k=0

Sk(G)

k!
+
∑

k≥a+1

1

k!

n∑
i=1

µk
i

≤
a∑

k=0

Sk(G)

k!
+
∑

k≥a+1

1

k!

n∑
i=1

|µk
i |

≤
a∑

k=0

Sk(G)

k!
+
∑

k≥a+1

1

k!

n∑
i=1

(µ2
i )

k
2

=
a∑

k=0

Sk(G)

k!
+
∑

k≥a+1

1

k!

√
(n(n− 1))k

= e
√

n(n−1) −
√

n(n− 1) +
a∑

k=2

Sk(G)

k!
−

a∑
k=2

1

k!

√
(n(n− 1))k

= e
√

n(n−1) −
√

n(n− 1) +

a∑
k=2

1

k!

(
Sk(G)−

(√
n(n− 1)

)k)
.

This completes the proof.

Theorem 2.6. If G is a k-regular graph with n vertices, then

SEE(G) ≥ en−1−2k + (n− 1)e
2k

n−1−1,

with equality if and only if G ∼= Kn.
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Proof. By Lemma 1.3, we have SEE(G) = en−1−2k + 1
e

n∑
i=2

e−2λi , where λi’s

(2 ≤ i ≤ n) are eigenvalues of G. By geometric-arithmetic mean inequality, we get

e(SEE(G)− en−1−2k) =
n∑

i=2

e−2λi ≥ (n− 1)

(
n∏

i=2

e−2λi

) 1
n−1

= (n− 1)e

− 2
n−1

n∑
i=2

λi

= (n− 1)e
2k

n−1 ,

where the last inequality follows from this fact that
n∑

i=2

λi = −k. Therefore

SEE(G) ≥ en−1−2k + (n− 1)e
2k

n−1−1,

with equality if and only if λ2 = · · · = λn. Hence, G ∼= Kn.

Corollary 2.7. If G is a k-regular graph with n vertices, then

SEE(G) ≥ e1+2k−n + (n− 1)e1+
−2k
n−1 ,

with equality if and only if G ∼= Kn.

Theorem 2.8. Let G be a k-regular bipartite graph of order n. Then

SEE(G) < en−1−2k +
1

e
(EE(G)− e−k)2.

Proof. By Lemma 1.3, we have

SEE(G) = en−1−2k +
1

e

n∑
i=2

(e−λi)2

≤ en−1−2k +
1

e

( n∑
i=2

e−λi

)2
= en−1−2k +

1

e
(EE(G)− e−k)2,

where the last equality follows from
∑n

i=1 e
λi =

∑n
i=1 e

−λi . Since G is bipartite,
by [3] the eigenvalues of G are symmetric around zero. The inequality is attained
if and only if λ1 = · · · = λn and this is equivalent to G ∼= Kn, which is impossible.
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The first Zagreb index, one of the oldest vertex degree based structure descrip-
tors, is defined as [18]

M1 = M1(G) =
∑

u∈V (G)

d2u,

where du denotes the degree (number of first neighbors) of vertex u in G. Let
T = [tij ] ∈ Mn(R). We recall that tr(T ) =

∑n
i=1 tii.

For any real x, one can see that ex ≥ 1+ x+ x2

2! +
x3

3! and equality holds if and
only if x = 0.

Lemma 2.9. Let G be a graph of order n with m edges and t triangles. Then
n∑

i=1

µ3
i (G) = n(n− 1)(n− 2) + 12(M1 − nm− 4t).

Proof. Suppose that A = A(G), S = S(G) and µ1, . . . , µn are the Seidel eigenval-
ues of G. We know that S = A(Kn)− 2A and tr(S3) =

∑n
i=1 µ

3
i . Then

tr(S3) = tr(A(Kn)− 2A)3

= tr(A3(Kn))− 8 tr(A3) + 12 tr(A2 ·A(Kn))− 6 tr(A ·A2(Kn)).

By [3, Proposition 2.3], we have tr(A3) = 6t. Also we have tr(A3(Kn)) = n(n−
1)(n−2), tr(A2 ·A(Kn)) =

∑
u∈V (G) d

2
u−2m and tr(A ·A2(Kn)) = 2m(n−2).

Theorem 2.10. Let G be graph of order n ≥ 2 with m edges and t triangles.
Then

SEE(G) >

√
n

3

(
n3 − n+ 12

(
M1 + 4t−mn+

1

2

))
.

Proof. Suppose that µ1, . . . , µn are the Seidel eigenvalues of G. Then we have

SEE(G)2 =
n∑

i=1

n∑
j=1

eµi+µj

≥
n∑

i=1

n∑
j=1

(
1 + µi + µj +

1

2
(µi + µj)

2 +
1

6
(µi + µj)

3
)

=

n∑
i=1

n∑
j=1

(
1 + µi + µj + µiµj +

1

2
(µ2

i + µ2
j + µ2

iµj + µiµ
2
j ) +

1

6
(µ3

i + µ3
j )
)
.

By Lemma 2.9, we get

1

6

n∑
i=1

n∑
j=1

(µ3
i + µ3

j ) =
n

6
(µ3

i + µ3
j ) =

n

3

(
n(n− 1)(n− 2) + 12(M1 − nm− 4t)

)
.
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By Lemma 1.1(i), it follows that

n∑
i=1

n∑
j=1

(
µi + µj + µiµj +

1

2
(µ2

iµj + µiµ
2
j )
)
= 0. (1)

Also, by Lemma 1.1(ii) we have

1

2

n∑
i=1

n∑
j=1

(µ2
i + µ2

j ) =
n

2
(µ2

i + µ2
j ) = n2(n− 1). (2)

By applying Eq.(1) and Eq.(2), we get

SEE(G) ≥

√
n

3

(
n3 − n+ 12

(
M1 + 4t−mn+

1

2

))
.

Equality holds if and only if all µi’s are zero which is impossible.

In [14] Haemers defined the Seidel energy of a graph G as ES(G) =
∑n

i=1 |µi|,
where µi’s are the Seidel eigenvalues of G. Two graphs G and G′ are said to
be Seidel equienergetic if ES(G) = ES(G

′), see [17]. In a trivial manner, co-
spectral graphs are equienergetic. If the Seidel eigenvalues of a graph G are µi’s,
(1 ≤ i ≤ n), then the Seidel eigenvalues of G are −µi’s, (1 ≤ i ≤ n) and so
ES(G) = ES(G), see [14].

In the following theorem, the relationship between the Estrada index of Seidel
matrix and the Seidel energy of graphs is investigated.

Theorem 2.11. Suppose G is a graph of order n. Let t1, t2 and t3 be respectively
the numbers of Seidel eigenvalues which are greater than, equal with or less than
zero. Then

SEE(G) ≥ t1e
ES(G)

2t1 + t2 + t3e
−ES(G)

2t3 .

Equality holds if and only if G is either

i) a strong graph or

ii) a graph of order odd n with Seidel spectrum{[
−

√
t1t3n

t1

]t1
, [0]1,

[√t1t3n

t3

]t3}
,

where t1 + t3 = n− 1.
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Proof. Let µ1, . . . , µt1 be the Seidel eigenvalues of G greater than zero, and µn−t3+1,
. . . , µn be the Seidel eigenvalues less than zero. Since the sum of Seidel eigenvalues
of a graph G is zero and

ES(G) = 2

t1∑
i=1

µi = −2

n∑
i=n−t3+1

µi,

by the geometric-arithmetic mean inequality, we have

t1∑
i=1

eµi ≥ t1

(
t1∏
i=1

eµi

) 1
t1

= t1e
1
t1

(µ1+···+µt1 ) = t1e
ES(G)

2t1 ,

n∑
i=n−t3+1

eµi ≥ t3

(
n∏

i=n−t3+1

eµi

) 1
t3

= t3e
1
t3

(µn−t3+1+···+µn) = t3e
−ES(G)

2t3 .

On the other hand,
∑n−t3

i=t1+1 e
µi = t2. The equality hold if and only if

SpecS(G) = {[µ1]
t1 , [0]t2 , [µn]

t3}. By [14], every Seidel matrix S of order n satisfies
det(S) ≡ det(J − I) ≡ n − 1 (mod 2). If n is even, then rank(S) = n and if n is
odd, then rank(S) ≥ n− 1. This implies that the multiplicity of the eigenvalue 0
is at most 1. If 0 ̸∈ SpecS(G), then by Lemma 1.1, we have

SpecS(G) =

{[√ t3
t1
(n− 1)

]t1
,
[
−
√

t1
t3
(n− 1)

]t3}
,

where t1+ t3 = n. Therefore, by [13, Proposition 2], the graph G is a strong graph.
On the other hand, if n is odd and 0 ∈ SpecS(G), then it is not difficult to see
that

SpecS(G) =

{[
−

√
t1t3n

t1

]t1
, [0]1,

[√t1t3n

t3

]t3}
,

where t1 + t3 = n− 1. This completes the proof.

3. The Estrada index of Seidel matrix of composite graphs

Here, we find two upper bounds for the Estrada index of Seidel matrix of product
graphs. Given two graphs G and H with vertex sets V and W , respectively, their
Kronecker product G ⊗ H is a graph with vertex set V × W , where (v, w) and
(v′, w′) are adjacent if and only if v is adjacent with v′ and w is adjacent with w′.
The adjacency matrix of G ⊗ H is the Kronecker product of adjacency matrices
of G and H, namely A(G ⊗ H) = A(G) ⊗ A(H), see [4]. Given two graphs G
and H with vertex sets V and W , respectively, their Cartesian product G□H is
the graph with vertex set V ×W , where (v, w) ∼ (v′, w′) when either v = v′ and
w ∼ w′ or w = w′ and v ∼ v′ [4].
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Lemma 3.1. Let be G1 and G2 two graphs on n1 and n2 vertices, respectively.
Then S(G1□G2) = (−2A(G1)⊗ In2)−

(
In1 ⊗

(
In2 + 2A(G2)

))
+ Jn1n2 .

Proof. By [4], if A(G1) and A(G2) are the adjacency matrices of G1 and G2, then
A(G□H) = A(G1)⊗ In2 + In1 ⊗A(G2). Thus

S(G1□G2) = Jn1n2 − In1n2 − 2
(
A(G1)⊗ In1 + In2 ⊗A(G2)

)
= (Jn1 ⊗ Jn2)− (In1 ⊗ In2)− (2A(G1)⊗ In2)− (In1 ⊗ 2A(G2))

=
(
Jn1 − In1 − 2A(G1)

)
⊗ In2 − (Jn1 ⊗ In2)

+ (Jn2 ⊗ Jn1)− (In1 ⊗ 2A(G2))

=
(
Jn1 − In1 − 2A(G1)

)
⊗ In2 + In1 ⊗

(
Jn2 − In2 − 2A(G2)

)
+ (Jn1 ⊗ In2) + (Jn1 ⊗ Jn2) + (In1 ⊗ In2)− (In1 ⊗ Jn2)

= (−2A(G1)⊗ In2)−
(
In1 ⊗

(
In2 + 2A(G2)

))
+ Jn1n2 .

This completes the proof.

Theorem 3.2. Let G1 be a k1-regular and G2 be a k2-regular graph on respectively
n1 and n2 vertices. Then

SEE(G1□G2) ≥
1

e
EE(G1)

−2EE(G2)
−2 − 1 + en1n2

e2(k1+k2)+1
.

Proof. Suppose λ1(G1) ≥ λ2(G1) ≥ · · · ≥ λn1(G1) are the eigenvalues of G1 and
λ1(G2) ≥ λ2(G2) ≥ · · · ≥ λn2(G2) are the eigenvalues of G2. Then by Lemma 3.1,
the Seidel eigenvalues of G1□G2 are [n1n2−2(k1+k2)−1]1, [−2(k1+λj(G2))−1]1

for (2 ≤ j ≤ n2) and [−2(λi(G1)+λj(G2))−1]1 for (2 ≤ i ≤ n1) and (1 ≤ j ≤ n2).
Hence,

SEE(G1□G2) =

n1∑
i=1

n2∑
j=1

e−2(λi(G1)+λj(G2))−1 + en1n2−2(k1+k2)−1 − e−1−2(k1+k2)

≥ 1

e
EE(G1)

−2EE(G2)
−2 − 1− en1n2

e2(k1+k2)+1
,

where the last non-equality follows from
∑nj

i=1 e
−2λi(Gj) ≥

(∑nj

i=1 e
λi(Gj)

)−2

, (j =
1, 2).

The line graph L(G) of a graph G is the graph whose vertices correspond to the
edges of G. Two vertices of L(G) are adjacent if and only if the corresponding edges
of G have a common vertex. Define L0(G) = G, Lr(G) = L(Lr−1(G)), r ≥ 1. A
well-known result in graph theory states that the line graph Lr(G) of an k-regular
n-vertex graph G is a (2rk−2r+1+2)-regular n

∏r−1
i=0 (2

i−1k−2i+1)-vertex graph
with exactly n

∏r
i=0(2

i−1k − 2i + 1) edges, see [3].
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Theorem 3.3. Let G be a k-regular graph with n ≥ 2 vertices, then

SEE(L(G)) ≥ e3
(n
2
(k − 2) + ek(

n
2 −4) +

1

e2k
(EE(G)− ek)−2

)
,

with equality holds if and only if G ∼= K2.

Proof. By [3, Theorem 3.8], the eigenvalues of L(G) are [−2]
n
2 (k−2) and [λi+k−2]1,

(1 ≤ i ≤ n). Since the line graph of G is (2k − 2)-regular with nk
2 vertices,

then by Lemma 1.3, the Seidel eigenvalues of G are [3]
n
2 (k−2), [nk2 − 4k + 3]1 and

[3− 2(λi + k)]1, (2 ≤ i ≤ n). Thus, we have

SEE(L(G)) =
n

2
(k − 2)e3 + e

nk
2 −4k+3 +

n∑
i=2

e3−2(λi+k)

≥ e3
(n
2
(k − 2) + ek(

n
2 −4) +

1

e2k

( n∑
i=2

eλi

)−2)
= e3

(n
2
(k − 2) + ek(

n
2 −4) +

1

e2k
(EE(G)− ek)−2

)
.

Equality holds if and only if G ∼= K2.

Corollary 3.4. Let L(G) = L1(G) and Lr+1(G) = L(Lr(G)). If G is k-regular
then

SEE(Lr+1(G)) ≥ e3
(nr

2
(kr − 2) + ekr(

nr
2 −4) +

1

e2kr
(EE(Lr(G))− ekr )−2

)
,

where Lr(G) is kr-regular with nr vertices, kr = (k − 2)2r + 2 and

nr =
n

2r

r−1∏
i=0

(2ik − 2i−1 + 2).

Conjecture 3.5. Among all graphs on n vertices, the graphs Kn and Ki ∪ Kj,
(i+ j = n) has the minimum Estrada index of Seidel matrix.

Conjecture 3.6. Among all graphs on n vertices, the graphs Kn and Ki,j, (i+j =
n) has the maximum Estrada index of Seidel matrix.

Conjecture 3.7. Among trees T on n vertices, the path Pn has the minimum and
the star Sn has the maximum Estrada index of Seidel matrix. In other words,

SEE(Pn) ≤ SEE(T ) ≤ SEE(Sn).
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