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An ECDLP-Based Verifiable Multi-Secret
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Abstract

Secret sharing is an important issue in cryptography which has many
applications. In a secret sharing scheme, a secret is shared by a dealer among
several participants in such a way that any authorized subset of participants
can recover the secret by pooling their shares. Recently, several schemes
based on elliptic curves and bilinear maps have been presented. Some of
these schemes need a secure channel, there are restrictions on the number
of secrets, or the participants or the dealer are unable to verify the validity
of the shares. In this paper, we present a new verifiable (t, n)-threshold
multi-secret sharing scheme based on elliptic curves and pairings that does
not have any of the above restrictions. The hardness of a discrete logarithm
problem on elliptic curves guarantees the security of the proposed scheme.
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1. Introduction

Secret sharing scheme is an important initiative in cryptography, which is a method
of sharing a secret among a set of participants by a dealer in such a way that only
predefined subsets of participants can reconstruct the secret by collecting their
shares. A scheme in which more than one secret is shared is called a multi-secret
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sharing scheme. The person responsible for the recovery of the secret, who can be
one of the participants, is called a combiner.

The scheme in which the dealer distributes a secret between n participants
such that any group of at least t participants can retrieve the secret, but no group
of less than t participants can get anything about it, is called a (t, n)-threshold
secret sharing scheme.

The first secret sharing schemes were independently introduced by Shamir [11]
and Blakley [2] in 1979. Shamir’s scheme is based on the Lagrange interpolating
polynomial, and Blakley’s scheme is based on linear projective geometry.

In Shamir’s scheme, in order to distribute a secret s between participants
U1, · · · , Un, the dealer chooses a large prime number p and a polynomial f(x)
(mod p) of degree t− 1 such that f(0) = s. The dealer sends the value si = f(i)
to the participant Ui in a secure channel. If any t participants gather, they can
compute the polynomial f(x) and s = f(0), using Lagrange’s interpolation tech-
nique, while any number of less than t participants cannot recover the secret at
all.

Blakley’s scheme is also a (t, n)-threshold secret sharing scheme in which the
dealer chooses n nonparallel (t−1)-dimensional hyperplanes H1, . . . , Hn that they
intersect at exactly one point. The secret s can be any single coordinate of the
point of intersection. In order to distribute the secret s, the dealer sends the
hyperplane Hi to the participant Ui in a secure channel. Clearly, any group of
at least t participants can obtain the intersection of the hyperplanes by pooling
their shares and they can reconstruct the secret, whereas any group of less than t
participants gain no information about it.

In secret sharing scheme, it is assumed that the dealer and the participants are
honest, however, a dishonest dealer may send a fake shadow to the participants
or a malicious participant may send a fake share during the reconstruction phase.
Therefore, it is advantageous that each participant can verify the validity of shares
submitted by the dealer during the share allocation phase and shares submitted
by other participants during the reconstruction phase. For this purpose, verifiable
secret sharing (VSS) scheme was suggested by Chore et. al. [4] in 1985 and
verifiable multi-secret sharing (VMSS) scheme was proposed by Harn [5] in 1995.
Also in 2004 an information theoretic secure VSS was proposed by Tang et. al.
[13].

In recent years, several schemes based on elliptic curves and pairing maps have
been presented. However, there are some drawbacks as follows:

• Some of these schemes need a secure channel.

• There are restrictions on the number of secrets in some of these schemes.

• The participants or the dealer are unable to verify the validity of the shares
submitted in the share distribution phase or during the reconstruction phase.

In 2007, a verifiable multi-secret sharing scheme based on elliptic curves was
proposed by Shi et. al. [12]. The need for a secure channel and restrictions on
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the number of shared secrets are some drawbacks of this scheme. Chen et. al.
[3] presented a secret sharing scheme based on bilinear pairings in 2008. In this
scheme only one secret can be distributed among participants. Wang improved
Chen’s scheme and introduced a (t, n)-threshold multi secret sharing scheme [14].
Although a few secrets are shared in this scheme, only t secrets can be shared
during a secret sharing process. In 2008, a multi-point sharing scheme using self-
pairing on elliptic curves was proposed by Liu et. al. [8]. Liu’s scheme needs a
secure channel, there is restriction on the number of secrets and the correctness of
secret shadows cannot be verified. In 2016, Binu presented a verifiable multi-secret
sharing scheme to address some of these problems, while in both schemes [8, 1]
communication between the dealer and participants is done over secure channel.

In this paper we propose a new (t, n)-threshold multi secret sharing scheme
based on elliptic curves and bilinear maps. Our scheme is verifiable, doesn’t require
a secure channel and there is no restriction on the number of secrets.

The rest of the paper is organized in the following manner: Section 2, presents
a definition of elliptic curves, discrete logarithm problem and bilinear pairings. In
Section 3, we explain our scheme which is based on the elliptic curves and bilinear
pairings. The security analysis and conclusions of proposed scheme is presented
in Sections 4 and 5. Finally we give an example for our scheme in Section 6.

2. Preliminaries

In this section, we will briefly introduce elliptic curves, discrete logarithm problem
and bilinear pairings.

2.1 Elliptic Curves

Elliptic curves are used in many mathematical fields such as cryptography and
solving Diophantine equations. The elliptic curve cryptography (ECC) was sug-
gested by Neal Koblitz [6] and Victor S. Miller [9] in 1985. The security of the
schemes that use the group of points on elliptic curves, is based on the hardness
of discrete logarithm problem.

Let K be a field. An elliptic curve E defined over K is a smooth plane cubic
curve given by a long Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ K. The homogenization of the curve E is given by

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3.

The only point at infinity on this curve is [0 : 1 : 0], we denote this point by O
from now on. This point is the neutral element in the group structure on E.
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If char(K) ̸= 2, 3 then, by a suitable change of variables, we have the short
Weierstrass equation

y2 = x3 +Ax+B, (1)

where A,B ∈ K. It is well-known that if E is a curve given by the Weierstrass
equation (1), then E is an elliptic curve if and only if its discriminant ∆ = 4A3 +
27B2 is nonzero.

We will now proceed to define the group structure on E. Let E be an elliptic
curve over K, defined by (1). Let P = (x1, y1) and Q = (x2, y2) be two points on
E. The addition R = P +Q = (x3, y3) is defined as the following statements:

• If x1 = x2 and y1 ̸= y2, then R = O.

• If x1 ̸= x2, then x3 = λ2−x1−x2 and y3 = λ(x1−x3)−y1, where λ = y2−y1

x2−x1
.

• If P = Q and y1 = 0, then R = O.

• If P = Q, and y1 ̸= 0, then x3 = λ2 − 2x1 and y3 = λ(x1 − x3)− y1, where
λ =

3x2
1+A
2y1

.

The points on E form an additive abelian group with O as the identity element.

2.2 Discrete Logarithm Problem

Let G be a group, g ∈ G and h ∈ ⟨g⟩. The discrete logarithm problem (DLP)
on G is the problem of finding the integer k such that h = gk. The integer k
is called the discrete logarithm of h to the base g. In the case that E is the
group of points on an elliptic curve, the discrete logarithm problem on E is called
the elliptic curve discrete logarithm problem (ECDLP). The hardness of discrete
logarithm problem on some groups is the base of many cryptosystems such as
Diffie-Hellman key exchange protocol, ElGamal public-key encryption scheme and
the digital signature algorithm (DSA).

2.3 Bilinear Pairings

Let Γ be an additive finite group in which the DLP is hard. A (self) pairing on Γ
is a map e : Γ× Γ → Γ with the following properties:

1. e is bilinear: e(aP, bQ) = ab.e(P,Q) for all a, b ∈ Z, and P,Q ∈ Γ.

2. e is non-degenerate in each variable: If e(P,Q) = 0 for all Q ∈ Γ, then P = 0.
Similarly, if e(P,Q) = 0 for all P ∈ Γ, then Q = 0.

3. e is computable: There exists an efficiently computable (a polynomial time)
algorithm for computing e(P,Q) ∈ Γ, for all P,Q ∈ Γ.
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Here, we give a description of self-pairing which has been proposed in [7]. Let q
be some power of a prime number, E be an elliptic curve defined over Fq and let l
be an integer coprime to q. Therefore, E[l], the set of l-torsion points of E(Fq), is
isomorphic to Zl⊕Zl. Let {P,Q} be a set of generators of E[l]. For any two points
G and H in E[l], there are integers a1, a2, b1, b2 ∈ [0, l−1] such that G = a1P+b1Q
and H = a2P + b2Q. By considering the fixed integers α, β ∈ [0, l − 1], we can
define the following self-pairing map:

eα,β : E[l]× E[l] → E[l]
eα,β(G,H) = (a1b2 − a2b1)(αP + βQ).

Theorem 2.1. [7, Prop.3.1] The self-pairing eα,β has the following properties:

1. Identity: For all G ∈ E[l], eα,β(G,G) = O.

2. Bilinearity: For all G,H,R ∈ E[l], eα,β(G+H,R) = eα,β(G,R)+eα,β(H,R)
and eα,β(G,H +R) = eα,β(G,H) + eα,β(G,R).

3. Anti-symmetry: For all G,H ∈ E[l], eα,β(G,H) = −eα,β(H,G).

4. Non-degeneracy: For all G ∈ E[l], eα,β(G,O) = O. Moreover, if eα,β(G,H) =
O for all H ∈ E[l], then G = O.

3. Proposed Scheme
In this section, we describe a new verifiable (t, n)−threshold secret sharing scheme
using elliptic curves and bilinear maps. The proposed scheme is divided into
three stages: Initialization phase, Points sharing phase, Reconstruction, and the
Verification phase. During the discussion, we use the following notations:

• D: the dealer, who wants to share the secret among the participants,

• {U1, U2, . . . , Un}: the set of all the participants,

• {K1,K2, . . . ,Km}: the set of all secrets to be shared,

• e: a bilinear self-pairing.

3.1. Initialization Phase
In the initialization phase, dealer D publishes some public information which can
be accessed by every participant.

1. The Dealer D chooses an elliptic curve E over Fq, q = pr, where p is a large
prime such that ECDLP in E(Fq) is hard. The dealer then chooses a large
prime l coprime to p, and he/she selects E[l] ⊆ E(Fqk) for some positive
integer k. Also the dealer chooses a hash function h : E → Z∗

l .
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2. D chooses a point G ∈ E[l] and he/she selects an integer d ∈ Z∗
l as a private

key. Also, D chooses a pairing map e : E[l]× E[l] → E[l].

3. D publishes {E, q, l, G, dG, h, e}.

4. Each participant Ui chooses si ∈ E[l], computes Si = e(si, dG), and pub-
lishes it.

5. The dealer, using his/her own private key d, computes d−1e(si, dG), and
obtains e(si, G).

6. The dealer accepts si, when he/she ensures that e(si, G) ̸= e(sj , G) for all
i ̸= j. (If e(si, G) = e(sj , G) for some i ̸= j, then D should demand these
participants to choose another secret shadow until e(si, G)’s are different for
i = 1, 2, . . . , n.)

3.2. Points Sharing Phase

In this phase, the dealer uses the following steps to distribute the shadows among
the participants such that any group of at least t participants can easily reconstruct
the shared points, while any less than t participants cannot reveal it.

Let K1, . . . ,Km ∈ Zl be all the secrets to be shared. Dealer D considers the
following cases according to the values of m and n.
(i) m ≤ n

In this case, the dealer secretly and randomly chooses n−m values Km+1, . . . ,Kn

in Zl as sharing secrets. Then D publishes

Ri = Ki +
n∑

j=1
j ̸=i

h(e(sj , G)), i = 1, . . . , n,

and he/she performs the following steps:

1. The dealer D considers the matrix

A =


1 1 1 . . . 1
1 2 22 . . . 2n−1

...
...

...
...

1 (n− t) (n− t)2 . . . (n− t)n−1

 .

2. D computes e(si, G) for i = 1, 2, . . . , n, constructs an n-column vector

(e(s1, G)), . . . , h(e(sn, G))]T ,

where T denotes the transpose of a matrix.
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3. The dealer computes

A×X =


1 1 . . . 1
1 2 . . . 2n−1

...
...

...
1 (n− t) . . . (n− t)n−1



h(e(s1, G))
h(e(s2, G))

...
h(e(sn, G))

 =


I1
I2
...

In−t

 ,

(2)

and then D publishes [I1, I2, . . . , In−t]
T .

(ii) m > n
In this case, the dealer D selects random points sn+1, . . . , sm in E[l], then D

publishes

Ri = Ki +

m∑
j=1
j ̸=i

h(e(sj , G)), i = 1, . . . ,m,

then D performs the following steps:

1. The dealer D considers the matrix

A =


1 1 1 . . . 1
1 2 22 . . . 2m−1

...
...

...
...

1 (m− t) (m− t)2 . . . (m− t)m−1

 .

2. The dealer computes e(si, G) for i = 1, . . . , n, and he/she constructs the
m-column vector [h(e(s1, G)), . . . , h(e(sm, G))]T .

3. D computes

A×X =


1 1 . . . 1
1 2 . . . 2m−1

...
...

...
1 (m− t) . . . (m− t)m−1



h(e(s1, G))
h(e(s2, G))

...
h(e(sm, G))

 =


I1
I2
...

Im−t


(3)

and then he/she publishes [I1, I2, . . . , Im−t]
T .

3.3. Secrets Reconstruction and Verification Phase
In the case that m ≤ n, the equation (2) is a system of (n−t) linear equations in n
unknowns. Suppose that t distinct participants want to reconstruct all the secrets.
Without loss of generality, let participants Ui for i = 1, 2, . . . , t, provide their
shares. When the combiner receives si for i = 1, 2, . . . , t, he/she first computes
e(si, dG). If e(si, dG) = Si, then verification of the shares is confirmed. Next, the
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combiner computes h(e(si, G)) for i = 1, 2, . . . , t. Therefore, t unknowns of the
equation (2) are determined and the other (n − t) variables can be obtained by
solving the system of equations in (2). Now,

∑n
j=1,j ̸=i h(e(si, G)) will be computed

by combiner. Finally, all the secrets can be reconstructed by Ri.
In the case that m > n, as in the previous state, the shares are confirmed and

the secrets are obtained.

4. Security Analysis
Here, we present security analysis of the proposed scheme by proving the following
theorems.

Theorem 4.1. Any t−out−of−n participants can reconstruct all secrets and any
group of fewer than t participants cannot compute any secrets.

Proof. We consider m ≤ n. Without loss of generality, suppose that the combiner
receives si for i = 1, 2, . . . , t. Then, the equation (2) is reduced to a system of
(n− t) equations and (n− t) unknowns and it could be represented as

A′ ×X ′ =


1 . . . 1
2t . . . 2n−1

...
...

(n− t)t . . . (n− t)(n−1)


h(e(st+1, G))

...
h(e(sn, G))

 =

 I ′1
...

I ′n−t

 .

The square matrix A′ is a Vandermonde matrix on distinct elements. Therefore,
det(A′) ̸= 0 and (A′)−1 can be computed to obtain h(e(st+1, G)), . . . , h(e(sn, G)).
If fewer than t participants pool their secrets, the number of unknowns in (3) is
more than the number of equations. Therefore, the secrets cannot be computed.
The case m > n is similar.

Theorem 4.2. In the proposed scheme, we could distinguish cheater from honest
participant.

Proof. According the initialization phase, point Si can be calculated using the
private key si. When the combiner receives si, he/she computes e(si, dG). If
e(si, dG) = Si, the verification passes and the combiner accepts the si. Because if
a cheater sends a fake si to the combiner, then e(si, dG) ̸= Si, therefore si will be
rejected and the cheater will be distinguished.

Theorem 4.3. Adversary cannot obtain the dealer’s secret information from pub-
lic information.

Proof. If an adversary wants to compute d from dG, he/she must solve a discrete
logarithm problem in E[l], but there is no known efficient algorithm to solve it in
polynomial time. Therefore, the dealer’s secret information cannot be obtained
from public information.
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Theorem 4.4. There is no need to a secure channel for the proposed scheme.

Proof. According to properties of bilinear maps, e(si, dG) = de(si, G). Therefore,
if an attacker wants to compute e(si, G) from e(si, dG), he/she needs to obtain
d from G and dG, which is a discrete logarithm problem in E[l] and it is hard
according to our assumption.

Theorem 4.5. The dealer cannot become a cheater.

Proof. Since each participant chooses his/her share, the dealer has no role in
selection of participant’s secret share. Therefore, the dealer cannot become a
cheater.

5. Comparison

In this section, we compare the efficiency of our proposed scheme with schemes
[1, 10, 12, 14] based on elliptic curves and bilinear maps in terms of performance
and security. In this paper, a (t, n)-threshold verifiable multi-secret sharing scheme
based on elliptic curve discrete logarithm problem is proposed. In distribution
phase we presented two different algorithms for the cases m ≤ n and m > n.
Considering r = max{n,m}, we need to solve r − t simultaneous equations to
reconstruct m secrets. It is found that in [12, 14], the number of secrets that
can be shared are atmost the threshold t and this number in [1] is atmost n.
So, these schemes are not suitable to share more than t secrets, while in the
proposed scheme and [10] there is no restriction on the number of secrets. The
number of public parameters in our scheme is n+ 2r − t+ 7, which is fewer than
the number of public parameters in [10]. Distributing the shares between the
dealer and participants in [1, 12] needs a secure channel, while in our scheme it is
provided by a public channel in such a way that each participant generates their
own share. Furthermore, in our scheme combiner is able to verify the validity of
the shares submitted by participants during the reconstruction phase. In table 1
we summarize the comparison of our, Shi, Wang, Binu and Patel’s schemes. This
comparison includes:
(1): The number of shared secrets,
(2): The number of public parameters for sharing m secrets among n participants
for a (t, n)-threshold scheme,
(3): The verifiability of secret shadows,
(4): The need for a secure channel during share distribution.

Now, we analyze the computational cost of the efficiency of the proposed
scheme. The performance analysis and comparison with mentained schemes can
be viewed from the following notions in table 2.

In the initialization and distribution phases the dealer and each participant
choose their secret key and they compute public keys. So, the computational
cost for computing the common keys e(si, G) and h(e(si, G)) is (n+ 1)TM + nTP
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Table 1: Comparison of the efficiency

Schemes (1) (2) (3) (4)
Binu [1] ≤ n 9 + n+m Yes Yes

Patel [10] unrestricted 2n+m+ 2t+ 7 Yes No
Shi [12] ≤ t ≤ 6 + 3n+ t Yes Yes

Wang [14] ≤ t 2n+ 7 Yes No
Proposed unrestricted n+ 2r − t+ 7 Yes No

n: The total number of participants
m: The total number of secrets
t: The number of participants in reconstruction phase

TM : The time for scalar multiplication on elliptic curve
TS : The time for addition on elliptic curve
TP : The time for computing pairing operation on elliptic curve
TH : The time for computing one way hash function

TDK : The time for executing a double knapsack algorithm
TL(t): The time for evaluating a Lagrange polynomial interpolation of

degree t− 1
TE(t): The time to solve a system of t equations

and rTH respectively. Thus, the total computational cost in these two phases is
(n+1)TM +nTP +rTH . Note that addition and multiplication in finite fields have
lower computational cost than other operations, therefore, we do not count them.

In the verification phase combiner to verify the honesty of the participant Ui

just needs to compute e(si, dG), which the total computational cost is tTP .
In the reconstruction phase, combiner computes h(e(si, G)) and solves a system

of (n − t) linear equations. The total computational cost in this phase is tTP +
tTH + TE(n− t).

Table 2: Computational cost analysis
Schemes Distribution Verification Reconstruction

Binu [1] 6TM + (m + 3)TS + (m + n + 1)TP tTP TL(t) + 2TM + (m + 1)TS + mTP
Patel [10] (2n + 1)TM + TDK 2nTM + nTDK TL(m)

Shi [12] 2nTM + nTS t(t + 2)TM + tTS TE(t)

Wang [14] 2nTM + nTH 2tTP tTM + tTH + TE(t)

Proposed (n + 1)TM + nTP + rTH tTP tTP + tTH + TE(n − t)

6. An Example
We describe our proposed scheme by presenting an example. In this example, we
would like to say that how a dealer D distributes two secrets among five partici-
pants U1, U2, U3, U4, and U5, in such a way that any group with three participants
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can recover the secrets by pooling their shares. We use GP/PARI software for im-
plementing the scheme.

6.1. Initialization Phase

1. Suppose that the dealer chooses q = 295 and elliptic curve E : y2 = x3+5x+1
over the Field Fq = F29(z), where z is a root of the polynomial x5 + x4 +
25x3 + 26x2 + 3x+ 1 ∈ F29[x]. The order of E(Fq) is 25 × 11× 71× 821.

2. The dealer selects l = 821. We have E[l] ∼= Zl ⊕ Zl. Let P , Q and G be the
points that are randomly selected by the dealer, such that {P,Q} is a set of
generators for E[l] and G ∈ E[l]. In this example, let

P = [19z4 + 17z3 + 19z2 + 14z + 26, 27z4 + 24z3 + z2 + z + 3],
Q = [11z4 + 12z3 + 5z2 + 18z + 19, 4z4 + 15z3 + 3z2 + 26z + 10],
G = [15z4 + 16z3 + 13z2 + z + 22, 9z4 + 16z2 + 24z + 25].

The dealer selects the integer d = 500 as a private key, and he/she computes:
dG = [16z4 + 13z3 + 3z2 + 23z + 28, 24z4 + 17z3 + 27z2 + 25z].
The dealer selects α = 341 and β = 875, computes

W = αP + βQ

= [8z4 + 8z3 + 4z2 + 7z + 16, 14z4 + 8z3 + 14z2 + 6z + 17]

and he/she considers the pairing map

e : E[l]× E[l] → E[l]
e(H1, H2) = (a1b2 − a2b1)(αP + βQ)

for any H1 = a1P + b1Q and H2 = a2P + b2Q.

3. The dealer considers a hash function h : E[l] → Z∗
l .

4. D publishes {E, q, l, G, dG, e, h}.

5. The participant Ui (1 ≤ i ≤ 5) chooses si ∈ E[l], computes Si = e(si, dG)
and then he/she publishes it. Here,

S1 = [27z4 + 2z2 + 7z + 22, 21z4 + z3 + 22z2 + 10z + 25],
S2 = [10z4 + 20z3 + 28z2 + 14z + 6, 26z4 + 2z3 + 6z2 + 16z + 19],
S3 = [26z4 + 22z3 + 11z2 + 11z + 22, 7z4 + 19z3 + 19z2 + 17z + 8],
S4 = [2z4 + 27z3 + 19z2 + 27z + 21, 26z4 + 6z3 + 21z2 + 24z + 22],
S5 = [12z4 + 10z3 + 19z2 + 26z + 15, 4z4 + 7z3 + 17z2 + 25z + 27].
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6. In this step the dealer computes d−1e(si, dG) and then he/she obtains:

e(s1, G) = [15z4 + 16z3 + 3z2 + 24z + 25, 10z4 + 17z3 + 6z2 + 13z + 10],
e(s2, G) = [25z4 + 13z3 + 13z2 + 22z + 20, 4z4 + 13z3 + 18z2 + 26z + 19],
e(s3, G) = [9z4 + z3 + 28z + 23, 27z4 + 9z3 + 19z2 + 19z + 24],
e(s4, G) = [3z4 + 5z3 + 16z2 + 8z + 14, 22z4 + 2z3 + 2z2 + 24z],
e(s5, G) = [12z4 + 20z3 + 3z2 + 17z, 15z4 + 2z3 + 16z2 + 3z + 10].

Since e(si, G) ̸= e(sj , G) for all i ̸= j, then the dealer accepts si for 1 ≤ i ≤ 5.

6.2. Points Sharing Phase
Suppose that K1 = 25 and K2 = 764 are two secrets that will be shared and let
h(e(s1, G)) = 212, h(e(s2, G)) = 97, h(e(s3, G)) = 370, h(e(s4, G)) = 200 and
h(e(s5, G)) = 54. The dealer secretly and randomly chooses K3 = 20, K4 = 500
and K5 = 320.

1. The dealer computes and publishes: R1 = 746, R2 = 779, R3 = 583, R4 =
412, R5 = 378.

2. The dealer computes

A×X =

[
1 1 1 1 1
1 2 22 23 24

]
h(e(s1, G))
h(e(s2, G))
h(e(s3, G))
h(e(s4, G))
h(e(s5, G))

 =

[
I1
I2

]
, (4)

and then D publishes I1 = 112 and I2 = 245.

6.3. Secrets Reconstruction and Verification Phase
Let participants U1, U2 and U3 want to pool their shares together and reconstruct
all the secrets. When the combiner receives s1, s2 and s3, he/she firstly computes
e(si, dG). If e(si, dG) = Si for i = 1, 2, 3, then verification of the shares is con-
firmed. Next, the combiner computes h(e(si, G)) for i = 1, 2, 3. Therefore, three
unknowns in (4) are determined and the other two variables can be obtained by
solving the system of two equations and two unknowns. Finally, the secrets can
be reconstructed as follows:

K1 = R1 −
∑5

j=1,j ̸=1 h(e(sj , G) = 25,

K2 = R2 −
∑5

j=1,j ̸=2 h(e(sj , G) = 764.
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