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Abstract

In the present paper, we introduce and investigate three interesting su-
perclasses SD,S∗

D and KD of analytic, normalized, and univalent functions
in the open unit disk D. For functions belonging to the classes SD,S∗

D and
KD, we derive several properties including the coefficient bounds and growth
theorems.Our findings generalize many well-known results. We also obtain
a new univalent criterion and some interesting properties for univalent, star-
like, convex and close-to-convex functions. Many superclasses studied by
various researchers previously are obtained as special cases for our two new
superclasses.
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1. Introduction

One of the basic subjects covered by Geometric Function Theory is the study
of univalent functions. This subject dates back to the early twentieth century
following the works published by Koebe [7], Gromwall [5] and Bieberbach [1].
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There exist many books dedicated to univalent functions, see for instance [2, 3, 4,
6, 8]. In the sequel, we introduce some basic definitions and notations.

Let D be the open unit disc in the complex plan C, i.e. D = {z ∈ C : |z| < 1}. A
complex function f is holomorphic on D, if and only if f is derivative for all z ∈ D.
The set of holomorphic functions on D is denoted by H(D). In addition A ⊂ H(D)
denotes a class of functions f normalized by the conditions f(0) = f ′(0) − 1 = 0
in D. The set of all univalent (one–to–one) functions f in D is denoted by S. Let
S∗ be the subclass of S whose members are starlike in D. Analytically, f ∈ S∗ if
and only if

Re

{
zf ′(z)

f(z)

}
> 0 (z ∈ D).

K denotes a class of convex functions in D. Analytically, f ∈ K if and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0 (z ∈ D).

Then, we have K ⊂ S∗ ⊂ S [2].
Most of the results presented here based on the theory of univalent functions

are classical. However, there are some cases which are relatively new and provide
a viewpoint that is slightly different from older results.

2. Main Results
First, we will introduce superclass SD.

Definition 2.1. The equivalence class SD is defined as follows:

SD :=

{
f ∈ H(D) : 2f

(
z

2− z

)
∈ S

}
.

Lemma 2.2. The class S is a proper subclass of SD.

Proof. It is notable that S is a subset of SD, and thus we omit the details. To show
the class S is a proper subclass of SD, consider the function f1(z) = z− iz2− 1

3z
3.

It is a simple exercise where f1 /∈ S. For more details, see Figure 1a. On the other
hand,

g1(z) := 2f1

(
z

2− z

)
=

2z3(3i+ 2)− 12z2(i+ 2) + 24z

3(2− z)3
.

A simple calculation gives g1 ∈ S as displayed in Figure 1b. This means that
g1 ∈ SD which completes the proof.
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(b) The boundary curve of g1(D)

Figure 1: The boundary curve of fi(D)

Theorem 2.3. If f(z) = z + a2z
2 + a3z

3 + · · · ∈ SD, then

|a2 + 1| ≤ 4.

The above inequality is sharp.

Proof. Since
z

2− z
=

∞∑
n=1

(z
2

)n
,

It follows that

g(z) = 2f

(
z

2− z

)
= 2

(
z

2− z

)
+ 2a2

(
z

2− z

)2

+ · · ·

= 2

(
z

2
+

z2

4
+

z3

8
+ · · ·

)
+ 2a2

(
z

2
+

z2

4
+

z3

8
+ · · ·

)2

+ · · ·

= z +

(
1

2
+

a2
2

)
z2 +

(
1

4
+

a2
2

+
a3
8

)
z3 + · · · .

Since g ∈ S, by the Bieberbach theorem,∣∣∣∣12 +
a2
2

∣∣∣∣ ≤ 2.

Therefore, | a2 + 1 |≤ 4. For the sharpness, we consider the function

f2(z) =
z(1 + z)

(1− z)2
(z ∈ D).
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It can be observed that

g2(z) := 2f2

(
z

2− z

)
=

z

(1− z)2
(z ∈ D),

belongs to the class S. Now, consider Maclaurin series of f2(z) as

f2(z) =
z(1 + z)

(1− z)2
= z + 3z2 + · · · .

This shows that | a2 + 1 |= 4, and the inequality is sharp.

Definition 2.4. Let N ∈ N := {1, 2, 3, . . .}. Consider the equivalence class SN
D as

follows:

SN
D :=

{
f ∈ H(D) :

(
1 +

1

N

)
f

(
z

1 + 1
N − 1

N z

)
∈ S

}
.

Lemma 2.5. For all N ∈ N, S is a subset of SN
D .

Proof. Let f ∈ S. Since z
1+ 1

N − 1
N z

is univalent,
(
1 + 1

N

)
f
(

z
1+ 1

N − 1
N z

)
is univalent

and therefore f ∈ SN
D . Hence the result.

Lemma 2.6. For all N ∈ N, SN
D is a subset of SD.

Proof. Suppose that f ∈ SN
D . Then f

(
z

1+ 1
N − 1

N z

)
is univalent and can be claimed

that
∣∣∣ z
1+ 1

N − 1
N z

∣∣∣ < 1. In fact, if
∣∣∣ z
1+ 1

N − 1
N z

∣∣∣ ≥ 1, then |z| ≥
∣∣1 + 1

N − 1
N z
∣∣ ≥

1 + 1
N − 1

N |z| and so (1 + 1
N )|z| ≥ 1 + 1

N , which implies that |z| ≥ 1 which is a
contradiction. In what follows, is demonstrated that∣∣∣∣ z

1 + 1
N − 1

N z

∣∣∣∣ ≥ ∣∣∣∣ z

2− z

∣∣∣∣ .
Let

z = reiθ (0 ≤ r < 1, 0 ≤ θ ≤ 2π).

Define:

F (r) := r2
(
1 +

1

N

)
− 2r

(
2 +

1

N

)
+

(
3 +

1

N

)
(0 ≤ r < 1, N ∈ N).

As can be seen F is a decreasing function on (0, 1) for all N ∈ N. Thus

F (r) > F (1) = 0 (0 ≤ r < 1).

On the other hand,

3 +
1

N
+ r2(1 +

1

N
)− 2r cos θ(2 +

1

N
) > 3 +

1

N
+ r2(1 +

1

N
)− 2r(2 +

1

N
) > 0,
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which implies

(3 +
1

N
) + r2(1 +

1

N
)− 2r cos θ(2 +

1

N
) > 0.

By multiplying (1− 1
N ) on both sides of the above inequality,

(1− 1

N
)(3 +

1

N
) + r2(1− 1

N
)(1 +

1

N
)− 2r cos θ(1− 1

N
)(2 +

1

N
) ≥ 0.

So,

r2 − r2

N2
+

2r

N
cos θ +

2r

N2
cos θ − 3r cos θ + 3 +

1

N
− 3

N
− 1

N2
≥ 0.

Hence,

4 + r2 − 4r cos θ ≥ 1

N2
+ 1 +

2

N
+

r2

N2
− 2r

N
cos θ − 2r

N2
cos θ.

The last inequality implies that

|(2− r cos θ)− (r sin θ)i| ≥
∣∣∣∣(1 + 1

N
− r

N
cos θ)− (

r

N
sin θ)i

∣∣∣∣ ,
and thus

|2− z| ≥
∣∣∣∣1 + 1

N
− 1

N
z

∣∣∣∣ .
Finally, ∣∣∣∣ z

1 + 1
N − 1

N z

∣∣∣∣ ≥ ∣∣∣∣ z

2− z

∣∣∣∣ .
Now, since f

(
z

1+ 1
N − 1

N z

)
is univalent, thus f

(
z

2−z

)
is also univalent in D. This

means that f ∈ SD.

Theorem 2.7. S =
∩∞

N=1 S
N
D .

Proof. By Lemma 2.5, S ⊂
∩∞

N=1 SN
D . We need to prove

∩∞
N=1 SN

D ⊂ S. Suppose
that h ∈

∩∞
N=1 SN

D , implying h ∈ SN
D for all N ∈ N. Therefore,(

1 +
1

N

)
h

(
z

1 + 1
N − 1

N z

)
∈ S, (1)

and h ∈ H(D). If we let N → ∞, then
(
1 + 1

N

)
h
(

z
1+ 1

N − 1
N z

)
tends to h(z)

uniformly and by Eq. (1), we get h ∈ S. Hence the result.
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Theorem 2.8. Let f ∈ A. Then

f ∈ S ⇔
(
1 +

1

N

)
f

(
z

1 + 1
N − 1

N z

)
∈ S ∀N ∈ N.

Proof. Based on Lemma 2.5 and Theorem 2.7, the proof is easily obtained.

Definition 2.9. Consider the equivalence class S∗
D as follows:

S∗
D :=

{
f ∈ H(D) : 2f

(
z

2− z

)
∈ S∗

}
.

Lemma 2.10. The class S∗ is a proper subclass of S∗
D.

Proof. Let f ∈ S∗. It can be shown that the function

ϕ(z) := 2f

(
z

2− z

)
(z ∈ D),

is starlike. A simple calculation gives us

zϕ′(z)

ϕ(z)
=

2

2− z

z
2−z f

′
(

z
2−z

)
f
(

z
2−z

) (z ∈ D).

Since f ∈ S∗, | z
2−z | < 1 and Re{ 2

2−z} > 2
3 , then Re{ zϕ′(z)

ϕ(z) } > 0. Thus ϕ is a

starlike function. It can be observed that f3(z) =
4z+4z2

(2−z)2 /∈ S∗ and

g3(z) = 2f3

(
z

2− z

)
=

16z

(4− 3z)2
∈ S∗.

This means that f3 ∈ S∗
D. Hence S∗ is a proper subset of S∗

D.

Theorem 2.11. If f(z) = z + a2z
2 + a3z

3 + · · · ∈ S∗
D, then |a2 + 1| ≤ 4.

Proof. Since z
2−z =

∑∞
n=1

(
z
2

)n,

g(z) = 2f

(
z

2− z

)
= z +

(
1

2
+

a2
2

)
z2 +

(
1

4
+

a2
2

+
a3
8

)
z3 + · · · ,

and since g ∈ S∗, we have
∣∣ 1
2 + a2

2

∣∣ ≤ 2. Therefore, | a2+1 |≤ 4. For the sharpness
consider the function

f(z) =
6z(1 + z)

(2− z)2
(z ∈ D).
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Definition 2.12. The equivalence class S∗N
D has been defined as follows:

S∗N
D :=

{
f ∈ H(D) :

(
1 +

1

N

)
f

(
z

1 + 1
N − 1

N z

)
∈ S∗

}
.

Lemma 2.13. For all N ∈ N, S∗ is a subset of S∗N
D .

Proof. Let f ∈ S∗. Since z
1+ 1

N − 1
N z

is starlike,
(
1 + 1

N

)
f
(

z
1+ 1

N − 1
N z

)
is starlike

and therefore f ∈ S∗N
D .

Lemma 2.14. For all N ∈ N, S∗N
D is a subset of S∗

D.

Proof. Suppose that f ∈ S∗N
D . Then f

(
z

1+ 1
N − 1

N z

)
is starlike. Following the proof

presented for Lemma 2.6, ∣∣∣∣ z

1 + 1
N − 1

N z

∣∣∣∣ ≥ ∣∣∣∣ z

2− z

∣∣∣∣ .
Now, since f

(
z

1+ 1
N − 1

N z

)
is starlike, f

(
z

2−z

)
is also starlike in D. This means that

f ∈ S∗
D.

Theorem 2.15. S∗ =
∩∞

N=1 S∗N
D .

Proof. By Lemma 2.13, S∗ ⊂
∩∞

N=1 S∗N
D . Now suppose that h ∈

∩∞
N=1 S∗N

D ,
implying that h ∈ S∗N

D for all N ∈ N. Therefore,(
1 +

1

N

)
h

(
z

1 + 1
N − 1

N z

)
∈ S∗, (2)

and h ∈ H(D). If we let N → ∞, then
(
1 + 1

N

)
h
(

z
1+ 1

N − 1
N z

)
tends to h(z)

uniformly and by Eq. (2), h ∈ S∗.

Theorem 2.16. Let f ∈ A. Then,

f ∈ S∗ ⇔
(
1 +

1

N

)
f

(
z

1 + 1
N − 1

N z

)
∈ S∗ ∀N ∈ N.

Proof. By Lemma 2.13 and Theorem 2.15, the proof easily obtained.

Theorem 2.17. Let f ∈ H(D) and f(0) = 0. If

Re

{(
zf ′(z)

f(z)

)′
}

> 0 (z ∈ D),

then f is starlike.
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Proof. Suppose that f fails to be starlike. According to Theorem 2.16, there is
sequence {p

N
} ⊆ N such that the function

gp
N
(z) =

(
1 +

1

p
N

)
f

(
z

1 + 1
p
N

− z
p
N

)
,

is not starlike for all N ∈ N. Since f is not starlike on D, there exists a u1 ∈ D
such that

Re

{
u1f

′(u1)

f(u1)

}
≤ 0. (3)

Let r0 be the radius of starlikeness of f . Then for every u2 ∈ {z : |z| ≤ r0} we
have

Re

{
u2f

′(u2)

f(u2)

}
> 0. (4)

Now, consider

φ(t) = Re

{
(tu2 + (1− t)u1)f

′(tu2 + (1− t)u1)

f(tu2 + (1− t)u1)

}
(0 ≤ t ≤ 1).

As can be seen, φ is a continuous function on [0, 1] and according to Eqs. (3) and
(4), φ(0) ≤ 0 and φ(1) > 0. By the intermediate theorem, there is u ∈ D such
that

Re

{
uf ′(u)

f(u)

}
= 0. (5)

Similarly, since gp
N
(z) is not starlike for all p

N
∈ {pN}, there exists upN

∈ D such
that

Re

{
up

N
g′pN

(upN
)

gpN
(upN

)

}
= 0. (6)

Besides, according to Eqs. (5) and (6) there exist real numbers c = c(u) and
d = d(upN ) such that

uf ′(u)

f(u)
= ci, and

upN f ′
(

upN

1+ 1
pN

−
upN
p
N

)
(
1 + 1

p
N

− upN

p
N

)2
f

(
upN

1+ 1
p
N

−
upN
p
N

) = di.

Therefore,

uf ′(u)

f(u)
−

vpN

(
1 + 1

pN

)
f ′(vpN )(

1 + 1
p
N

− vpN

p
N

)
f(vpN

)
= (c− d)i, (7)
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where vpN =
upN

1+ 1
pN

−
upN
pN

. Also by Eq. (7) we have

Re

uf ′(u)

f(u)
−

vpN

(
1 + 1

pN

)
f ′(vpN )(

1 + 1
p
N

− vpN

p
N

)
f(vpN )

 = 0.

Thus,

arg

uf ′(u)

f(u)
−

vpN

(
1 + 1

pN

)
f ′(vpN

)(
1 + 1

p
N

− vpN

p
N

)
f(vpN

)

 = ±π

2
,

and

arg{(u− vpN
)}+ arg


uf ′(u)
f(u) −

vpN

(
1+ 1

pN

)
f ′(vpN

)(
1+ 1

p
N

−
vpN
p
N

)
f(vpN )

u− vpN

 = ±π

2
.

But vpN → u when pN → ∞ and
vpN

(
1+ 1

pN

)
1+ 1

pN
−

vpN
pN

→ u. So

arg

{
(
uf ′(u)

f(u)
)′
}

= ±π

2
,

and

Re

{(
uf ′(u)

f(u)

)′
}

= 0,

which is a contradiction. This completes the proof.

Example 2.18. The function f4(z) = ze(z+
1
8 z

2) is starlike, since

Re

{(
zf ′

4(z)

f4(z)

)′
}

= Re{1 + 1

2
z} >

1

2
> 0 (z ∈ D).

The Figure 2 shows the image of D under the function f4.

Definition 2.19. Let f ∈ H(D). It can be said that the function f belongs to
the equivalence class KD, if

g(z) := 2f

(
z

2− z

)
∈ K.

Lemma 2.20. K is a proper subset of KD.

Proof. It can be seen that K is a subset of KD. We prove that K is a proper subset
of KD. A simple calculation gives that f5(z) := −1 + (1 + z)2 /∈ K. On the other
hand, g5(z) := 2f5(

z
2−z ) = −2+ 8

(2−z)2 ∈ K. This means that f5 ∈ KD. Therefore,
K is a proper subset of KD. Now, Figure 3 shows the image of the unit disk under
the functions f5 and g5.
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(b) The boundary curve of g5(D)

Figure 3: The boundary curve of fi(D)

Theorem 2.21. If f(z) = z + a2z
2 + a3z

3 + · · · ∈ KD, then |a2 + 1| ≤ 2.

Proof. Since

z

2− z
=

∞∑
n=1

(z
2

)n
,
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It follows that

g(z) = 2f

(
z

2− z

)
= z +

(
1

2
+

a2
2

)
z2 +

(
1

4
+

a2
2

+
a3
8

)
z3 + · · · .

and since g ∈ K, we have
∣∣1
2 + a2

2

∣∣ ≤ 1. Therefore, | a2+1 |≤ 2. For the sharpness
consider the function

f(z) =
z

1− z
(z ∈ D).

It is obvious that:

g(z) := 2f

(
z

2− z

)
=

z

1− z
(z ∈ D),

belongs to the class K. However

f(z) =
z

1− z
= z + z2 + · · · .

This shows that | a2 + 1 |= 2, and the inequality is sharp.

Definition 2.22. Consider the equivalence class KN
D as follows:

KN
D :=

{
f ∈ H(D);

(
1 +

1

N

)
f

(
z

1 + 1
N − 1

N z

)
∈ K

}
.

Lemma 2.23. For all N ∈ N, K is a subset of KN
D .

Proof. Let f ∈ K. Since z
1+ 1

N − 1
N z

is convex,
(
1 + 1

N

)
f
(

z
1+ 1

N − 1
N z

)
is convex and

therefore f ∈ KN
D .

Lemma 2.24. For all N ∈ N, KN
D is a subset of KD.

Proof. Suppose that f ∈ KN
D . Then f

(
z

1+ 1
N − 1

N z

)
is convex. Following the proof

presented for Lemma 2.6, ∣∣∣∣ z

1 + 1
N − 1

N z

∣∣∣∣ ≥ ∣∣∣∣ z

2− z

∣∣∣∣ .
Now, since f

(
z

1+ 1
N − 1

N z

)
is convex, f

(
z

2−z

)
is also convex in D. This means that

f ∈ KD.

Theorem 2.25. K =
∩∞

N=1 KN
D .
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Proof. By Lemma 2.23, K ⊂
∩∞

N=1 KN
D . Now suppose that h ∈

∩∞
N=1 KN

D , imply-
ing that h ∈ KN

D for all N ∈ N. Therefore,(
1 +

1

N

)
h

(
z

1 + 1
N − 1

N z

)
∈ K, (8)

and h ∈ H(D). If we let N → ∞, then
(
1 + 1

N

)
h
(

z
1+ 1

N − 1
N z

)
tends to h(z)

uniformly and by Eq. (8), h ∈ K.

Theorem 2.26. Let f ∈ H(D) and f(0) = f ′(0)− 1 = 0. Then

f ∈ K ⇔
(
1 +

1

N

)
f

(
z

1 + 1
N − 1

N z

)
∈ K, ∀N ∈ N.

Proof. By Lemma 2.23 and Theorem 2.25, the proof is easily obtained.

Theorem 2.27. Let f ∈ H(D) and f(0) = 0. If F (z) = z(1 − z)f ′(z) is convex
on D, then, f is convex on D.

Proof. By contradiction, we suppose that f is not convex. Thus, there exist the
number 0 < r < 1 and real numbers θ, φ and γ such that

f(eiθ) = rf(eiφ) + (1− r)f(eiγ). (9)

Since f is not convex, by Theorem 2.26, there exists {pn} for which gpn(z) =
(1 + 1

pn
)f( z

1+ 1
pn

− z
pn

) is not convex on D. Hence, there exist 0 < r < 1 and real
numbers θn, φn and γn such that

gpn
(eiθn) = rngpn

(eiφn) + (1− rn)gpn
(eiγn). (10)

According to Eqs. (9) and (10),

gpn(e
iθn)− f(eiθ) = [rngpn(e

iφn)− rf(eiφ)] + [(1− rn)gpn(e
iγn)− (1− r)f(eiγ)].

Then,

(1 +
1

pn
)f

(
eiθn

1 + 1
pn

− eiθn
pn

)
− f(eiθ) =

[
(1 +

1

pn
)rnf

(
eiφn

1 + 1
pn

− eiφn

pn

)
− rf(eiφ)

]

+

[
(1 +

1

pn
)(1− rn)f

(
eiγn

1 + 1
pn

− eiγn
pn

)
− (1− r)f(eiγ)

]
.

So,

f

(
eiθn

1 + 1
pn

− eiθn
pn

)
− 1

(1 + 1
pn

)
f(eiθ) =

[
rnf

(
eiφn

1 + 1
pn

− eiφn

pn

)
− r

1

(1 + 1
pn

)
f(eiφ)

]

+

[
(1− rn)f

(
eiγn

1 + 1
pn

− eiγn
pn

)
− (1− r)

1

(1 + 1
pn

)
f(eiγ)

]
.



New Criteria for Univalent, Starlike, Convex and Close-to-Convex Functions 219

Hence,

(
eiθn

1 + 1
pn

− eiθn
pn

− eiθ

) f

(
eiθn

1+ 1
pn

− eiθn
pn

)
− 1

(1+ 1
pn

)
f(eiθ)

eiθn

1+ 1
pn

− eiθn
pn

− eiθ

=

(
eiφn

1 + 1
pn

− eiφn

pn

− eiφ

) rnf

(
eiφn

1+ 1
pn

− eiφn
pn

)
− r 1

(1+ 1
pn

)
f(eiφ)

eiφn

1+ 1
pn

− eiφn
pn

− eiφ

+

(
eiγn

1 + 1
pn

− eiγn
pn

− eiγ

) (1− rn)f

(
eiγn

1+ 1
pn

− eiγn
pn

)
− (1− r) 1

(1+ 1
pn

)
f(eiγ)

eiγn

1+ 1
pn

− eiγn
pn

− eiγ
.

If pn → ∞, then

(
eiθn

1 + 1
pn

− eiθn
pn

− eiθn

) f

(
eiθn

1+ 1
pn

− eiθn
pn

)
− 1

(1+ 1
pn

)
f(eiθ)

eiθn

1+ 1
pn

− eiθn
pn

− eiθ

=

(
eiφn

1 + 1
pn

− eiφn

pn

− eiφn

) rnf

(
eiφn

1+ 1
pn

− eiφn
pn

)
− r 1

(1+ 1
pn

)
f(eiφ)

eiφn

1+ 1
pn

− eiφn
pn

− eiφ

+

(
eiγn

1 + 1
pn

− eiγn
pn

− eiγn

) (1− rn)f

(
eiγn

1+ 1
pn

− eiγn
pn

)
− (1− r) 1

(1+ 1
pn

)
f(eiγ)

eiγn

1+ 1
pn

− eiγn
pn

− eiγ
.

Since θn → θ, φn → φ, γn → γ and rn → r, a simple calculation gives us

eiθ(1− eiθ)f ′(eiθ) = reiφ(1− eiφ)f ′(eiφ) + (1− r)eiγ(1− eiγ)f ′(eiγ).

Thus F (z) = z(1− z)f ′(z) is not a convex function on D, which is a contradiction.

Corollary 2.28. Consider the integral operator G(z) given by

G(z) =

∫ z

0

g(t)

t(1− t)
dt (z ∈ D). (11)

If g is a convex function, then G is a convex function, too.

Example 2.29. If we put the convex function g(z) = z
1−z in Eq. (11), then

G(z) =
1

1− z
− 1 (z ∈ D),

is a convex function.
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Definition 2.30. Let f ∈ H(D) and f(0) = 0. Consider the integral operator
g(z) as follows,

g(z) :=

∫ z

0

(
f(t)

t(1− t)

)α

dt (z ∈ D), (12)

where α is a real number.

Theorem 2.31. Suppose that f ∈ H(D), f(0) = 0 and f(1) ̸= 0. If f is starlike
of order β on D, then

• if β ≥ 3
2 and α ≥ 0, then g is close-to-convex,

• if β < 3
2 and 0 ≤ α ≤ 1

3
2−β

, then g is close-to-convex.

The result is sharp for every α.

Proof. Since f is starlike of order β on D,

Re

{
zf ′(z)

f(z)

}
> β (z ∈ D). (13)

However,

Re

{
1 +

zg′′(z)

g′(z)

}
= Re

{
1 + αz

z(1− z)f ′(z)− (1− 2z)f(z)

z2(1− z)2
.
z(1− z)

f(z)

}
= Re

{
1 + α

zf ′(z)

f(z)
− α

1− 2z

1− z

}
= αRe

{
zf ′(z)

f(z)

}
+ (1− 2α) + αRe

{
1

1− z

}
. (14)

Since Re
{

1
1−z

}
> 1

2 , by Eqs. (13) and (14),

Re

{
1 +

zg′′(z)

g′(z)

}
> αβ + (1− 2α) +

1

2
α = 1 + αβ − 3

2
α. (15)

Hence,∫ θ2

θ1

Re

{
1 +

zg′′(z)

g′(z)

}
dθ >

∫ θ2

θ1

(
1 + αβ − 3

2
α

)
dθ =

(
1 + αβ − 3

2
α

)
(θ2 − θ1).

If β ≥ 3
2 and α ≥ 0, then(

1 + αβ − 3

2
α

)
(θ2 − θ1) > 0.

Therefore, ∫ θ2

θ1

Re

{
1 +

zg′′(z)

g′(z)

}
dθ > −π.
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By Kaplan theorem, it can be concluded that g is close-to-convex. By the same
argument, if β < 3

2 , then 0 ≤ α ≤ 1
3
2−β

and therefore g is close-to-convex.
In order to prove the sharpness, if α < 0, then according to Eq. (14),

Re

{
1 +

zg′′(z)

g′(z)

}
= αRe

{
zf ′(z)

f(z)

}
+ 1− 2α+ αRe

{
1

1− z

}
.

Since f(1) ̸= 0 and limz→1̄ Re
{

1
1−z

}
= +∞, limz→1̄ Re

{
1 + zg′′(z)

g′(z)

}
= −∞.

Moreover, based on the Kaplan theorem, we conclude that g is not close-to-convex.

Example 2.32. Since f(z) = 1
2z −

1
16z

4 is starlike function,

F (z) =

∫ z

0

( 1
2 − 1

16 t
3

1− t

)α

dt,

is close-to-convex when 0 ≤ α ≤ 2
3 .

Corollary 2.33. Consider the integral operator g(z) =
∫ z

0
f(t)

t(1−t)dt. If f is starlike
of order β, β ≥ 3

2 , then g is convex of order (β − 1
2 ).

Proof. By Eq. (15),

Re

{
1 +

zg′′(z)

g′(z)

}
> 1 + αβ − 3

2
α.

If we let α = 1, then

Re

{
1 +

zg′′(z)

g′(z)

}
> β − 1

2
.

Hence the function g is convex of order (β − 1
2 ).

Corollary 2.34. Let f ∈ H(D) and f ′(1) ̸= 0. Then

• if Re
{
1 + zf ′′(z)

f ′(z)

}
> β, β < 3

2 and 0 ≤ α ≤ 1
3
2−β

, then g(z) =
∫ z

0

(
f ′(t)
1−t

)α
dt

is close-to-convex. The result is sharp,

• if Re
{
1 + zf ′′(z)

f ′(z)

}
> β, β ≥ 3

2 and α ≥ 0, then g(z) =
∫ z

0

(
f ′(t)
1−t

)α
dt is

close-to-convex. The result is sharp.

Proof. Let h(z) = zf ′(z). Then

Re

{
zh′(z)

h(z)

}
= Re

{
1 +

zf ′′(z)

f ′(z)

}
.
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So Re
{

zh′(z)
h(z)

}
> β. Consequently, h is starlike of order β. On the other hand,

h(0) = 0, h(1) = f ′(1) ̸= 0 and∫ z

0

(
h(t)

t(1− t)

)α

dt =

∫ z

0

(
f ′(t)

1− t

)α

dt.

By Theorem 2.31, we demonstrate that g(z) =
∫ z

0

(
f ′(t)
1−t

)α
dt is close-to-convex on

D.

Example 2.35. The function f(z) = − ln(1 − z) is convex of order 1
2 . Thus

g(z) =
∫ z

0
(1− t)−2αdt is close-to-convex function when 0 ≤ α ≤ 1.
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