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A New Efficient High Order Four-Step

Multiderivative Method for the Numerical
Solution of Second-Order IVPs with

Oscillating Solutions
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Abstract

In this paper, we present a new high order explicit four-step method of
eighth algebraic order for solving second-order linear periodic and oscillatory
initial value problems of ordinary differential equations such as undamped
Duffing’s equation. Numerical stability and phase properties of the new
method is analyzed. The main structure of the method is multiderivative,
and the combined phases were applied to expand the stability interval and
to achieve P-stability. The advantage of the method in comparison with
similar methods in terms of efficiency, accuracy, and stability is shown by its
implementation in some well-known problems.
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1. Introduction
In this paper, the symmetric multiderivative methods for solving special class of
initial value problems associated with second-order ordinary differential equations
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of the type
y′′ = f(x, y), y(x0) = y0, y′(x0) = y′0, (1)

in which the first order derivatives do not occur explicitly, are discussed. Such
problems are usually encountered in much scientific research, many engineering
applications, and so on [9, 11, 18]. If the exact solutions of these equations are
not available, the numerical solutions are very important and interesting. The
methods for the numerical solution of (1) can be divided into two main categories:

1. Methods with constant coefficients.

2. Methods with coefficients depending on the frequency of the problem.

Moreover, the second class of methods can also be divided into two classes of
problems: problems where the frequency ω is given (even approximately) and
problems where the frequency ω is not known [34]. Our method in this article
was designed for the numerical solution of problems where the frequency ω is
given (even approximately). To solve problems with unknown frequency ω, the
determination of ω is a critical issue, as was shown by Ramos and Vigo-Aguiar
[17]. Knowledge of the estimation of the unknown frequency ω is needed to apply
the numerical method efficiently, since its coefficients depend on the value of this
parameter.

During the recent decades, on the basis of these classes, varietal methods pre-
sented by different people, that we ensign some important types of them. Using
higher order derivatives to improve the accuracy and extend the stability region,
and finding a highly accurate and highly efficient Obrechkoff method has become
an important research field in numerical methods, as in [13,26,27] and other pa-
pers, in [12,16,19,29]. Numerical methods for fractional differential equations are
obtained in [1, 3, 15, 32]. The methods based on vanishing of phase-lag and some
of its derivatives [23,24,25], Runge-Kutta methods [17,20,21], multistep methods
[5,6,10], and hybrid methods [14,22,31] are some of the approaches that can be
used for solving a second-order differential equation.

In [6], Lambert and Watson claimed that the P-stable methods must be im-
plicit; explicit methods can not be P-stable and all of the linear multistep P-stable
methods are implicit. Of course, we know that the implicit methods are not ap-
plicable alone and to compute the implicit terms, it is required to use another
suitable explicit method. In 2003, Li and Wu [7] designed a explicit P-stable
method that had nonlinear form. Following that, some modified explicit P-stable
methods were presented but all of them had the same nonlinear structures [8].
But in this paper, we generate a new explicit linear four-step singularly P-stable
method. Since the new method is explicit, we do not need the other predictor
method; thus it has less computational complexity in the numerical implementa-
tions. Moreover, this method can be recognized as a suitable predictor method
for other predictor-corrector methods. The other important point about the new
method is that, with regard to its linear structure, it can be used directly in the
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vector form for solving differential equations systems and there is no need for the
vector product and quotient that was highly necessary to implement the nonlinear
P-stable method of Li and Wu [7] etc.

This paper is arranged at four sections: In Section 2, we discuss about the
phase-lag analysis of symmetric multistep methods. The presentation, production,
and analysis of the new method (local truncation error, Schrödinger error and
stability region of periodicity analysis) is presented in Section 3. Numerical tests
which are obtained by the application of the new method to some problems such
as the radial time independent Schrödinger equation are presented in Section 4.

2. Basic Theory
For the numerical solution of the initial value problem (1), multistep methods of
the form

k∑
i=1

ci (yn+i + yn−i) + c0yn = h2

[
k∑

i=1

bi (fn+i + fn−i) + b0fn

]
, (2)

with 2k steps can be used over the equally spaced intervals {xn+i}ki=−k ∈ [a, b]
and h = |xi+1 − xi|, i = −k(1)k − 1. When the symmetric 2k-step method (2) is
applied to the scalar test equation

y
′′
(x) = −ω2y(x), (3)

a difference equation A0(v)yn +
∑k

i=1 Ai(v) (yn−i + yn+i) = 0 is obtained, where
v = ωh, h is the step length and A0(v), A1(v), . . . , Ak(v) are polynomials of v and
hence the characteristic equation of (2) will be

A0(v) +
k∑

i=1

Ai(v)
(
s−i + si

)
= 0.

Now, we need the following definitions ([30]).

Definition 2.1. The interval (0, v20) is called the periodicity interval of method
(2) if the roots τj , j = 1, 2, . . . , 2k, satisfy

τ1,2 = exp(±iθ(v)), |τj | ⩽ 1, j = 3, 4, . . . , 2k. (4)

where θ(v) is a real function of v. A method is called P-stable if its interval of
periodicity is equal to (0,∞).

Definition 2.2. A multistep method is called singularly almost P-stable if its
interval of periodicity is equal to (0,∞)− S where S is a set of distinct points

Definition 2.3. The phase-lag error of method (2) is defined by PL = v − θ(v).
Then if the quantity PL = O(vq+1) as v → ∞, the order of phase-lag is q.
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Theorem 2.4. The symmetric 2k-step method (2) has phase-lag order q and
phase-lag constant c given by

−cvq+2 +O(vq+4) =

∑k
i=1 2Ai(v) cos(iv) +A0(v)∑k

i=1 2i
2Ai(v)

. (5)

Proof. See [30].

3. Development and Analysis
For the numerical integration of (1), we consider four-step, symmetric multideriva-
tive method of the form

yn+2 + yn−2 + a1 (yn+1 + yn−1) + a0yn =h2 [b1 (fn+1 + fn−1) + b0fn]

+h4
[
c0f

(2)
n

]
+h6

[
d0f

(4)
n

]
, (6)

where aj , bj , j = 0, 1 and c0 and d0 are six arbitrary parameters that must be
calculated. Applying (6) to the scalar test Eq. (3), one gets its difference equation

A2(v)(yn+2 + yn−2) +A1(v)(yn+1 + yn−1) +A0(v)yn = 0, (7)

where Ai(v) = ai + v2bi − v4ci + v6di, i = 0, 1, 2 such that c1 = c2 = d1 = d2 = 0,
a2 = 1 and v = ωh. So, its corresponding characteristic equation is given by

A2(v)(λ
4 + 1) +A1(v)(λ

3 + λ) +A0(v)λ
2 = 0. (8)

Now, if we assume that A1(v) = 0, then (8) is reduced to A2(v)(λ
4+1)+A0(v)λ

2 =
0. In addition, to calculate the phase-lag of the method (6), we apply the direct
formula (5) for k = 2 and for Aj(v), j = 0(1)2. This leads to the following
equation:

PL =
2
(
d1v

6 − c1v
4 + v2b1 + a1

)
cos (v) + 2 cos (2 v) + v6d0 − v4c0 + v2b0 + a0

2 d1v6 − 2 c1v4 + 2 v2b1 + 2 a1 + 8
.

(9)
We demand that the phase-lag and its first, second, third and fourth derivatives
and A1(v) to be equal to zero. So we have the following system{

A1(v) = 0,
PL(i) = 0, i=0,1,2,3,4.

By solving the above system of equations, the coefficients of the new four-step
multiderivative method are given by

a0 =
1

24

(
8 (cos (v))

3
v5 − 72 (cos (v))

2
sin (v) v4 − 246 (cos (v))

3
v3 + 4 cos (v) v5
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+ 363 (cos (v))
2
sin (v) v2 + 24 v4 sin (v) + 261 v (cos (v))

3
+ 213 v3 cos (v)

− 72 (cos (v))
2
sin (v)− 69 v2 sin (v)

− 45 v cos (v)− 144 sin (v)
)/(

v2 sin (v) + 3 v cos (v)− 3 sin (v)
)
,

a1 =
(
8 (cos (v))

2
v3 − 24 cos (v) sin (v) v2 − 30 (cos (v))

2
v − 4 v3

+ 15 sin (v) cos (v) + 15 v
)
Big/

(
2
(
v2 sin (v) + 3 v cos (v)− 3 sin (v)

) )
,

b0 =− 1

8

(
8 (cos (v))

3
v5 − 56 (cos (v))

2
sin (v) v4 − 142 (cos (v))

3
v3

+ 4 cos (v) v5 + 219 (cos (v))
2
sin (v) v2 + 16 v4 sin (v) + 225 v (cos (v))

3

+ 149 v3 cos (v)− 120 (cos (v))
2
sin (v)− 81 v2 sin (v)− 105 v cos (v)

)/
(
v2

(
v2 sin (v) + 3 v cos (v)− 3 sin (v)

) )
,

b1 =−1

2

(
8 (cos (v))

2
v3 − 24 cos (v) sin (v) v2 − 30 (cos (v))

2
v − 4 v3

+ 15 sin (v) cos (v) + 15 v
)/(

v2
(
v2 sin (v) + 3 v cos (v)− 3 sin (v)

) )
,

c0 =− 1

8

(
8 (cos (v))

3
v4 − 40 (cos (v))

2
sin (v) v3 − 70 (cos (v))

3
v2 + 4 cos (v) v4

+ 75 (cos (v))
2
sin (v) v + 8 sin (v) v3 + 45 (cos (v))

3
+ 85 cos (v) v2

− 45 v sin (v)− 45 cos (v)
)/(

v3
(
v2 sin (v) + 3 v cos (v)− 3 sin (v)

) )
,

d0 =− 1

24

(
8 (cos (v))

3
v4 − 24 (cos (v))

2
sin (v) v3 − 30 (cos (v))

3
v2

+ 4 cos (v) v4 + 27 (cos (v))
2
sin (v) v + 9 (cos (v))

3
+ 21 cos (v) v2

− 9 v sin (v)− 9 cos (v)
)/(

v5
(
v2 sin (v) + 3 v cos (v)− 3 sin (v)

) )
,

For small values of |v|, these coefficients are subject to heavy cancelations. In this
case the following Taylor series expansions should be used:

a0 =− 2 +
64

7
v2 − 608

441
v4 +

2312

33957
v6 − · · · ,

a1 =− 32

7
v2 +

304

441
v4 − 1156

33957
v6 + · · · ,
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b0 =− 36

7
− 1408

441
v2 +

2344

3773
v4 − 902312

27810783
v6 − · · · ,

b1 =
32

7
− 304

441
v2 +

1156

33957
v4 − 22226

27810783
v6 + · · · ,

c0 =− 68

21
+

136

441
v2 +

2384

101871
v4 − 752824

139053915
v6 + · · · ,

d0 =− 64

315
+

296

6615
v2 − 6568

1528065
v4 +

99536

417161745
v6 − · · · ,

where v = ωh, and the local truncation error of the new method is

LTEex4 =
67h10

198450

[
ω10y + 5ω8y(2) + 10ω6y(4) + 10ω4y(6) + 5ω2y(8) + y(10)

]
.

(10)

The behavior of the coefficients are given in Figures 1, 2 and 3. In the related
formulas to ai, bi, ci and dj , i = 0, 1, we get to know that the coefficients of the
new method in what values of v are smooth or in what values have high volatility,
and they may even have some asymptotic in some states (when the denominator
of the ratio is targeted zero). Obviously, when the coefficient for every value of
the v is an asymptote, or has a high fluctuation, it would be better to use Taylor
series. Since the new method is explicit, it is most important to show its stability

Figure 1: Behavior of the coefficients a0 and a1 of the new method.

property. The singularly P-stability of the new method can be demonstrated in
two ways. At first, by its figure and at second by the theorem. For this purpose,
the application of the new method (6), to the scalar test equation

y′′(x) = −ϕ2y(x), (11)
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Figure 2: Behavior of the coefficients b0 and b1 of the new method.

Figure 3: Behavior of the coefficients c0 and d0 of the new method.

leads to the following difference equation

A2(s, v) (yn+2 + yn−2) +A1(s, v) (yn+1 + yn−1) +A0(s, v)yn = 0, (12)

where A0(s, v) = − 1
24v5

A00

A , A1(s, v) = − 1
2v2

A10

A , A2(s, v) = 1 where v = ωh,
s = ϕh and Ai0, i = 0, 1 and

A = v2 sin(v) + 3v cos(v)− 3 sin(v), (13)
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A00 =8 (cos (v))
3
s6v4 − 24 (cos (v))

3
s4v6

+ 24 (cos (v))
3
s2v8 + 72 (cos (v))

2
sin (v) v9 − 30 (cos (v))

3
s6v2

+ 210 (cos (v))
3
s4v4 − 426 (cos (v))

3
s2v6 + 4 cos (v) s6v4

− 12 cos (v) s4v6 + 12 cos (v) s2v8 − 363 (cos (v))
2
sin (v) v7

− 24 sin (v) s4v5 + 48 sin (v) s2v7 − 135 (cos (v))
3
s4v2

+ 675 (cos (v))
3
s2v4 + 21 cos (v) s6v2 − 255 cos (v) s4v4 + 447 cos (v) s2v6

+ 72 (cos (v))
2
sin (v) v5 − 9 sin (v) s6v + 135 sin (v) s4v3 − 243 sin (v) s2v5

+ 135 cos (v) s4v2 − 315 cos (v) s2v4 − 24 (cos (v))
2
sin (v) s6v3

+ 120 (cos (v))
2
sin (v) s4v5 − 168 (cos (v))

2
sin (v) s2v7

+ 27 (cos (v))
2
sin (v) s6v − 225 (cos (v))

2
sin (v) s4v3

+ 657 (cos (v))
2
sin (v) s2v5 − 360 (cos (v))

2
sin (v) s2v3

+ 69 sin (v) v7 + 45 cos (v) v6 + 144 sin (v) v5

− 8 (cos (v))
3
v10 + 246 (cos (v))

3
v8 − 4 cos (v) v10 − 24 sin (v) v9

+ 9 (cos (v))
3
s6 − 261 (cos (v))

3
v6 − 213 cos (v) v8 − 9 cos (v) s6,

and

A10 =
(
8 (cos(v))

2
v3 − 24 cos(v) sin(v)v2 − 30 (cos(v))

2
v

− 4v3 + 15 sin(v) cos(v) + 15v
) (

s2 − v2
)
. (14)

A linear multistep method is said to be P-stable if the first quadrant of the s− v
plane is completely shadowed and it is said to be singularly P-stable if the method
is P-stable when ω = ϕ i.e. only when the frequency of the scalar test equation
for the stability analysis is equal with the frequency of the scalar test equation
for the phase-lag analysis, i.e. the surroundings of the first diagonal of the s − v
plane. The stability region (s − v plane) of the new method is plotted in Figure
4. A shadowed area denotes the region where the method is stable, while a white
area denotes the region where the method is unstable. According to Figure 4, we
can say that the new method is singularly P-stable. Of course, in the following
theorem, we prove algebraically that the new method is singularly P-stable.

Theorem 3.1. The new explicit four-step multiderivative method with vanished
phase-lag and its first, second, third and fourth derivatives (6) is singularly P-
stable.

Proof. The stability function of the new method is

ST = A2(s, v)
(
λ4 + 1

)
+A1(s, v)

(
λ3 + λ

)
+A0(s, v)λ

2, (15)
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Figure 4: The periodicity region of the new singularly P-stable multiderivative
method.

where Ai(s, v), i = 0, 1, 2 are mentioned after (12). In the case s = v we have

A0 =2− 4 cos2(v),

A1 =0,

A2 =1.

Then the characteristic equation for the new method (6) is given by ChE =
λ4 − 2

(
2 cos2(v)− 1

)
λ2 + 1. Now, since cos(2v) = 2 cos2(v) − 1, we have λ1,2 =

exp(±iv), λ3,4 = − exp(±iv). So, obviously the interval of periodicity of the new
method is (0,∞), and thus when s = v, the new method is P-stable, i.e. the new
explicit four-step multiderivative method with vanished phase-lag and some of its
derivatives (6) is singularly P-stable.

4. Numerical Results
In this section, we compare the numerical performance of the new multiderivative
method with that of some existing multistep methods proposed in the scientific
literature:

• Simos: The 12th order Obrechkoff method of Simos [28].

• Daele: The 12th order Obrechkoff method of Van Daele [33].

• Achar: The 8th order Obrechkoff method of Achar [2].

• Wang: The 12th order Obrechkoff method of Wang [35].
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• New: The 8th order multiderivative method developed in this paper.

Example 4.1. We consider the periodically forced nonlinear problem (undamped
Duffing’s equation)

y′′ = −y − y3 +B cos(ωx), y(0) = 0.200426728067, y′(0) = 0, (16)

where B = 0.002, ω = 1.01 and x ∈
[
0, 40.5π

1.01

]
. We use the following exact solution

for (16) from [14], g(x) =
∑3

i=0 K2i+1 cos((2i+ 1)ωx), where

{K1,K3,K5,K7} = {0.200179477536, 0.246946143× 10−3,

0.304016× 10−6, 0.374× 10−9}.

In order to integrate this equation by a Obrechkoff method, one needs the values
of y′, which occur in calculating y(4). These higher order derivatives can all be
expressed in terms of y(x) and y′(x) through (16), i.e.

y(3)(x) =− (1 + 3y2(x))y′(x)−Bω sin(ωx),

y(4)(x) =− (1 + 3y2(x))y′′(x)− 6y(x)y′(x)2 −Bω2 cos(ωx).

h New Simos Daele Achar Wang
M
500 4.36e-5 3.15e-4 4.06e-5 4.09e-5 4.08e-5
M

1000 1.04e-6 1.81e-5 1.87e-6 1.27e-6 1.27e-6
M

2000 1.21e-8 1.08e-6 3.83e-8 3.94e-8 3.93e-8
M

3000 3.14e-9 2.09e-7 5.13e-9 5.18e-9 5.17e-9
M

4000 6.13e-11 6.55e-8 3.19e-9 1.23e-9 1.23e-9
M

5000 2.16e-13 2.67e-8 9.89e-10 4.09e-10 4.07e-10

Table 1: Comparison of the end-point absolute error in the approximations ob-
tained by using Methods: New, Simos, Daele, Achar and Wang for Example 4.1.

Example 4.2. Consider the initial value problem

y′′ = −100y + 99 sin(x), y(0) = 1, y′(0) = 11,

with the exact solution y(t) = sin(t) + sin(10t) + cos(10t). This equation has been
solved numerically for 0 ≤ x ≤ 10π using exact starting values. In the numerical
experiment, we take the step lengths h = π/50, π/100, π/200, π/300, π/400, and
π/500 and for this problem we use w = 1.

Example 4.3. Consider the initial value problem

y′′ =
8y2

1 + 2x
, y(0) = 1, y′(0) = −2, x ∈ [0, 4.5],

with the exact solution y(x) = 1
1+2x . The absolute errors have been calculated at

x = 4.5. For this problem we use w = 1.



A New Efficient High Order Four-Step Multiderivative Method 167

h New Simos Daele Achar Wang
M
500 1.3 1.4 1.5 1.2 1.4
M

1000 2.4 2.9 2.9 2.3 2.9
M

2000 4.3 6.2 6.3 4.8 6.2
M

3000 6.8 9.8 9.7 7.5 9.5
M

4000 9.2 13.5 13.3 10 13
M

5000 10.1 17 17 12.9 16.5

Table 2: CPU time for the Example 4.1, are calculated for comparison among five
methods: New, Simos, Daele, Achar and Wang.

h New Simos Daele Achar
π
50 3.21e-14 3.05e-11 1.20e-11 5.79e-13
π

100 2.18e-16 2.28e-13 7.34e-13 5.79e-13
π

200 5.17e-16 4.40e-13 8.62e-13 1.32e-12
π

300 6.14e-15 2.11e-12 2.63e-12 1.96e-12
π

400 2.68e-15 1.38e-12 2.93e-12 4.78e-12
π

500 1.91e-15 6.46e-12 2.89e-12 7.50e-12

Table 3: Comparison of the end-point absolute error in the approximations ob-
tained by using Methods: New, Simos, Daele, and Achar for Example 4.2.

h New Simos Daele Achar
π
50 0.14 0.17 0.25 0.19
π

100 0.36 0.51 0.53 0.45
π

200 0.72 0.86 0.83 0.75
π

300 0.82 1.14 1.15 0.95
π

400 1.13 1.39 1.40 1.23
π

500 1.41 1.70 1.78 1.47

Table 4: CPU time for the Example 4.2, are calculated for comparison among four
methods: New, Simos, Daele and Achar.

5. Conclusions

In this paper, we have presented a new explicit singularly P-stable four-step multi-
derivative method for the numerical solution of periodic or high oscillatory initial
value problems. From the numerical test to the well-known problems such as Duff-
ing’s equation without damping, we found that the new method has the advantage
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in simplicity, accuracy, stability and efficiency.
All computations were carried out on a PC(i5@2.67GHz) using Maple 17 using

double precision arithmetic with 16 significant digits accuracy (IEEE standard).

h New Simos Daele Achar Wang
4.5
500 2.17e-9 1.24e-7 1.26e-7 1.26e-7 1.24e-7
4.5
1000 4.38e-11 3.82e-9 3.90e-9 3.85e-9 3.82e-9
4.5
2000 2.92e-13 1.19e-10 1.23e-10 1.20e-10 1.19e-10
4.5
3000 2.73e-14 1.92e-11 2.02e-11 1.40e-11 1.92e-11
4.5
4000 1.81e-15 7.85e-12 7.85e-12 2.68e-12 7.85e-12
4.5
5000 1.05e-16 1.63e-12 1.63e-12 7.47e-14 1.63e-12

Table 5: Comparison of the end-point absolute error in the approximations ob-
tained by using Methods: New, Simos, Daele, Achar and Wang for Example 4.3.

h New Simos Daele Achar Wang
4.5
500 0.14 0.369 0.34 0.19 0.31
4.5
1000 0.49 0.62 0.61 0.76 1.23
4.5
2000 0.49 0.62 0.61 0.76 1.23
4.5
3000 0.83 1.23 1.92 1.20 1.87
4.5
4000 1.36 1.89 2.59 1.62 2.56
4.5
5000 2.01 2.59 3.29 2.06 3.24

Table 6: CPU time for the Example 4.3, are calculated for comparison among five
methods: New, Simos, Daele, Achar and Wang.
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