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Some Results on the Strong Roman
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Abstract

Let G = (V,E) be a finite and simple graph of order n and maximum
degree ∆(G). A strong Roman dominating function on a graph G is a func-
tion f : V (G) → {0, 1, . . . , ⌈∆(G)

2
⌉ + 1} satisfying the condition that every

vertex v for which f(v) = 0 is adjacent to at least one vertex u for which
f(u) ≥ 1+ ⌈ 1

2
|N(u)∩V0|⌉, where V0 = {v ∈ V | f(v) = 0}. The minimum of

the values
∑

v∈V f(v), taken over all strong Roman dominating functions f
of G, is called the strong Roman domination number of G and is denoted by
γStR(G). In this paper we continue the study of strong Roman domination
number in graphs. In particular, we present some sharp bounds for γStR(G)
and we determine the strong Roman domination number of some graphs.
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1. Introduction

Throughout this paper, G is a simple graph with vertex set V (G) and edge set
E(G) (briefly V,E). The order |V | of G is denoted by n = n(G). For every vertex
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v ∈ V (G), the open neighborhood of v is the set NG(v) = N(v) = {u ∈ V (G) |
uv ∈ E(G)} and its closed neighborhood is the set NG[v] = N [v] = N(v) ∪ {v}.
The degree of a vertex v ∈ V is degG(v) = deg(v) = |N(v)|. The minimum
and maximum degree of a graph G are denoted by δ = δ(G) and ∆ = ∆(G),
respectively. A leaf of G is a vertex with degree one in G, the set of all leaves
of G is denoted by ℓ = ℓ(G). A graph G is regular if the degrees of all vertices
of G are the same. We write Kn for the complete graph and Cn for a cycle of
order n. We also denote the complete bipartite graph with two parts of sizes m
and n, by Km,n. The complement of a graph G is denoted by G. A graph G is
called self-complementary if G ∼= G. The double star DSq,p, where q ≥ p ≥ 1,
is the graph consisting of the union of two stars K1,q and K1,p together with an
edge joining their centers. The distance dG(u, v) between two vertices u and v in
a connected graph G is the length of a shortest u− v path in G. The diameter of
a graph G, denoted by diam(G), is the greatest distance between two vertices of
G. For a vertex v in a rooted tree T , let D(v) denote the set of descendants of v
and D[v] = D(v) ∪ {v}. The maximal subtree at v is the subtree of T induced by
D[v], and is denoted by Tv.

A subset X of the vertices of G is called a clique if the induced subgraph on
X is a complete graph. The clique number of a graph G is the number of vertices
in a maximum clique of G and denoted by cl(G). A subdivision of an edge uv is
obtained by replacing the edge uv with a path uwv, where w is a new vertex. A
unicyclic graph is a connected graph containing exactly one cycle. An edge of G
is said to be contracted if it is deleted and its ends are identified. The resulting
graph has one less edge than G. The corona GoK1 of a graph G is obtained by
attaching one pendant edge at each vertex of G.

A subset S of vertices is called a 2-packing if N [u] ∩N [v] = ∅ for every pair of
vertices u, v ∈ S. The 2-packing number ρ := ρ2(G) of a graph G is the maximum
cardinality of a 2-packing in G. More notation and terminology not explicitly
given here are conformed with [2].

A subset S of vertices of G is a dominating set if N [S] = V . The domination
number γ(G) is the minimum cardinality of a dominating set of G. A dominating
set of minimum cardinality of G is called a γ(G)-set.

A Roman dominating function (RDF for short) on a graph G = (V,E) was
defined in [4] and [5] as a function f : V → {0, 1, 2} satisfying the condition that
every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which
f(u) = 2. The weight of an RDF f is the value ω(f) =

∑
v∈V f(v). The Roman

domination number of a graph G, denoted by γR(G), equals the minimum weight
of an RDF on G. A γR(G)-function is a Roman dominating function of G with
weight γR(G).

Consider a graph G of order n and maximum degree ∆(G). Suppose that
f : V (G) → {0, 1, . . . , ⌈∆(G)

2 ⌉+ 1} is a function that labels the vertices of G.
Then, f is a strong Roman dominating function (StRDF for short) for G if

every v ∈ V0 has a neighbor u such that f(u) ≥ 1+ ⌈ 1
2 |N(u)∩V0|⌉. The minimum
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weight, ω(f) = f(V ) =
∑

v∈V f(v), over all the strong Roman dominating func-
tions for G, is called the strong Roman domination number of G and we denote
it by γStR(G). A StRDF of minimum weight is called a γStR(G)-function. This
concept was announced in [1]. A strong Roman dominating function f can be
represented by the ordered partition (V0, V1, . . . , V⌈∆(G)

2 ⌉+1
) of V (G).

Motivated by [1], we are interested to study the strong Roman domination
number in graphs. The outline of paper is as follows. In Section 2, we present some
bounds for the strong Roman domination number. In Section 3, we investigate
the operations on graphs and the strong Roman domination number. In Section
4, it is shown that γStR(G) < 6n

7 + 1, where G is a unicyclic graph of order n.
Then, among other results, the strong Roman domination number is determined
for some classes of graphs.

We make use of the following results in this paper.

Proposition A. ([1]) Let G be a connected graph of order n. Then γStR(G) = n
if and only if G = K1 or K2.

Proposition B. ([1]) If T is a tree of order n ≥ 3, then γStR(T ) ≤ 6n
7 .

Let S(K1,3) (the star K1,3 with all its edges subdivided) be rooted in its center
v and let F p

m consist of all the rooted product graphs T ◦v S(K1,3), where T is any
tree on m vertices.

Proposition C. ([1]) Let T be an n-vertex tree. Then γStR(T ) =
6n
7 if and only

if T ∈ F p
m.

Proposition D. ([1])Let G be a graph of order n. Then γStR(G) ≤ n− ⌊∆(G)
2 ⌋.

Proposition E. ([1]) Let G be a graph of order n. Then γStR(G) ≥ ⌈n+1
2 ⌉.

Moreover, if n is odd, then the equality holds if and only if ∆(G) = n− 1.

Proposition F. ([3]) For paths Pn and cycles Cn, γR(Pn) = γR(Cn) = ⌈ 2n
3 ⌉.

Proposition G. ([1]) For any connected graph G with ∆(G) ≤ 2, γStR(G) =
γR(G).

2. Bounds on the Strong Roman Domination
Number

The authors in [1] gave several bounds for the strong Roman domination number.
Our goal in this section is to provide some new bounds. Our bounds are not
comparable with bounds in [1] in general.

In the following we provide an upper bound on the strong Roman domination
number of a tree T in terms of its order n and the number of leaves ℓ.
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Lemma 2.1. Let T be a double star of order n ≥ 5. Then γStR(T ) > 3.

Proof. If n ≤ 6, then T = DS1,2 or DS1,3 or DS2,2 and it is not hard to see that
γStR(T ) = 4 > 3. If n ≥ 7, then Proposition E shows that γStR(T ) ≥ 4 > 3, as
desired.

Theorem 2.2. Let T be a tree of order n ≥ 2. Then

γStR(T ) ≥ ⌈2(n+ 2− ℓ)

3
⌉.

This bound is sharp for paths.

Proof. We proceed by induction on n. The statement holds for all trees of order
n ≤ 4. Suppose n ≥ 5 and let the result hold for all non-trivial tree T of order
less than n. Let T be a tree of order n ≥ 5. If diam(T ) = 2, then T is a star,
which yields γStR(T ) = ⌈n+1

2 ⌉ > ⌈ 2(n+2−ℓ)
3 ⌉ = 2. If diam(T ) = 3, then T is a

double star and by Lemma 2.1 we have γStR(T ) > 3 = ⌈ 2(n+2−ℓ)
3 ⌉. In this case,

the inequality holds. Henceforth we assume that diam(T ) ≥ 4. Let v1v2 . . . vk be
a diametral path in T and root T in vk. Let f be a γStR(T )-function. We consider
the following cases.

Case 1. degT (v2) = t ≥ 3.
Let T ′ = T − Tv2 . Clearly γStR(T ) ≥ γStR(T

′) + ⌈ t
2⌉, ℓ(T ) − (t − 1) ≤ ℓ(T ′) ≤

ℓ(T )− (t− 2) and we conclude from the induction hypothesis that

γStR(T ) ≥ γStR(T
′) + ⌈ t

2
⌉

≥ ⌈2(n(T
′) + 2− ℓ(T ′))

3
⌉+ ⌈ t

2
⌉

≥ ⌈2((n− t) + 2− ℓ+ t− 2)

3
⌉+ ⌈ t

2
⌉

≥ ⌈2(n− ℓ)

3
⌉+ ⌈ t

2
⌉

> ⌈2(n+ 2− ℓ)

3
⌉,

as desired.

Case 2. degT (v2) = 2.
If degT (v3) ≥ 3, then let T ′ = T − {v1, v2}. Clearly γStR(T ) ≥ γStR(T

′) + 1,
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ℓ(T ′) = ℓ(T )− 1 and we conclude from the induction hypothesis that

γStR(T ) ≥ γStR(T
′) + 1

≥ ⌈2(n(T
′) + 2− ℓ(T ′))

3
⌉+ 1

≥ ⌈2((n− 2) + 2− ℓ+ 1)

3
⌉+ 1

> ⌈2((n+ 2− ℓ)

3
⌉,

as desired.
If degT (v3) = 2, then let T ′ = T −{v1, v2, v3}. Clearly γStR(T ) ≥ γStR(T

′)+2,
ℓ(T )− 1 ≤ ℓ(T ′) ≤ ℓ(T ) and we conclude from the induction hypothesis that

γStR(T ) ≥ γStR(T
′) + 2

≥ ⌈2(n(T
′) + 2− ℓ(T ′))

3
⌉+ 2

≥ ⌈2((n− 3) + 2− ℓ)

3
⌉+ 2

≥ ⌈2((n+ 2− ℓ)

3
⌉.

This completes the proof.

The following proposition bounds the strong Roman domination number in
terms of the clique number.

Proposition 2.3. Let G be a graph of order n. Then γStR(G) ≤ n− ⌊ cl(G)−1
2 ⌋.

Proof. Suppose that v1, . . . , vcl(G) are the vertices in the maximum clique of G.
Define f : V (G) → {0, 1, . . . , ⌈∆(G)

2 ⌉ + 1} by f(v1) = ⌈ cl(G)+1
2 ⌉, f(vi) = 0 for

i = 2, . . . , cl(G) and f(v) = 1 otherwise. Clearly f is a StRDF of G and so we
have

γStR(G) ≤ ω(f) = (n− cl(G)) + ⌈cl(G) + 1

2
⌉ = n− ⌊cl(G)− 1

2
⌋.

The next result gives an upper bound for the strong Roman domination number
using 2-packing number.

Proposition 2.4. Let G be a graph of order n with minimum degree δ. Then

γStR(G) ≤ n− ρ⌊δ
2
⌋.
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Proof. Suppose that S = {v1, . . . , vρ} is a 2-packing set of G. Define f as follows:

f(x) =

 1 + ⌈degG(x)
2 ⌉ x ∈ S

0 x ∈
∪ρ

i=1 N(vi)
+1 otherwise.

It is easily seen that f is a strong Roman dominating function for G. Since S is a
2-packing set, one has

γStR(G) ≤ ω(f) =
∑
x∈S

f(x) + (n− |S| − |
ρ∪

i=1

N(vi)|)

= (1 + ⌈degG(v1)
2

⌉+ · · ·+ 1 + ⌈degG(vρ)
2

⌉)

+ (n− ρ− degG(v1)− · · · − degG(vρ))

= n− ⌊degG(v1)
2

⌋ − · · · − ⌊degG(vρ)
2

⌋

≤ n− ρ⌊δ
2
⌋

as desired.

Next we present a bound for strong Roman domination number with regard
to the diameter. When δ ≥ 2 this bound is better than the bound given in [1,
Proposition 11].

Proposition 2.5. Let G be a graph of order n with minimum degree δ. Then

γStR(G) ≤ n− (1 + ⌊diam(G)

3
⌋)⌊δ

2
⌋.

Proof. Suppose that S = v0, v1, . . . , vd is a diametral path, d = 3t+r with integers
t ≥ 0 and 0 < r ≤ 2. It is easy to see that A = {v0, v3, . . . , v3t} is a 2-packing set
of G such that |A| = 1+ ⌊diam(G)

3 ⌋. Then we have ρ ≥ |A|. So by Proposition 2.4,
one has

γStR(G) ≤ n− ρ⌊δ
2
⌋ ≤ n− (1 + ⌊diam(G)

3
⌋)⌊δ

2
⌋.

For graphs with diameter 2, one can find bounds in terms of δ and ∆(G).

Proposition 2.6. Let G be a graph of order n and diam(G) = diam(G) = 2.
Then

γStR(G) ≤ δ(1 + ⌈∆(G)

2
⌉), γStR(G) ≤ ⌈n+ 1 + δ

2
⌉.
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Proof. For every vertex x ∈ V , N(x) dominates all vertices of G. Choose v ∈ V

such that degG(v) = δ and define f : V (G) → {0, 1, . . . , 1 + ⌈∆(G)
2 ⌉} by f(t) =

1+⌈∆(G)
2 ⌉ for every t ∈ N(v) and f(x) = 0 otherwise. It is clear that f is a strong

Roman dominating function which in turn implies that

γStR(G) ≤ (1 + ⌈∆(G)

2
⌉)|N(v)| ≤ (1 + ⌈∆(G)

2
⌉)δ.

Now we show that γStR(G) ≤ ⌈n+1−δ
2 ⌉. Let NG(v) = {v1, . . . , vk}. It follows

from diam(G) = 2 that dG(v, vi) = 2 and so v and vi have a common neighbor
ui ∈ X = V (G) − NG[v] for each 1 ≤ i ≤ k. Thus the function f : V (G) →
{0, 1, . . . , ⌈∆(G)

2 ⌉ + 1} defined by f(v) = 1 + ⌈∆(G)
2 ⌉ and f(u) = 1 if u ∈ NG(v)

and f(x) = 0 otherwise, is a StRDF of G, and so

γStR(G) ≤ w(f) = (1 + ⌈∆(G)

2
⌉) + δ ≤ (1 + ⌈∆(G)

2
⌉) + δ = ⌈n+ 1 + δ

2
⌉.

Applying the proposition above on regular graphs, we can bound the strong
Roman domination number with regard to the order and regularity.

Corollary 2.7. Let G be an r-regular graph of order n. Then

γStR(G) ≤ max{n+ 1− r, r(1 + ⌈r
2
⌉)}.

Proof. Suppose first that there exist non-adjacent vertices u and v of G with
N(u)

∩
N(v) = ∅. Define f : V (G) → {0, 1, . . . , 1 + ⌈∆(G)

2 ⌉} by f(u) = f(v) =
1 + ⌈ r

2⌉, f(x) = 0 for x ∈ N(u)
∪

N(v) and f(t) = 1 otherwise. Clearly f
is a strong Roman dominating function; so that we have γStR(G) ≤ ω(f) =
2(1 + ⌈ r

2⌉) + n − 2 − 2r ≤ n − r + 1. Suppose now that N(u)
∩
N(v) ̸= ∅ for

all non-adjacent vertices u and v of G. One can see that diam(G) = 2. So by
Proposition 2.6, one has γStR(G) ≤ r(1 + ⌈ r

2⌉) and this completes the proof.

Alvarez-Ruiz et al. [1] established the following relationship between the dom-
ination number and the strong Roman domination number of a graph: For every
graph G,

γ(G) ≤ γStR(G) ≤ (1 + ⌈∆(G)

2
⌉)γ(G). (1)

Now, we present next a trivial necessary and sufficient condition for a graph G

such that γStR(G) = γ(G) and γStR(G) = (1 + ⌈∆(G)
2 ⌉)γ(G).

Proposition 2.8. Let G be a connected graph of order n. Then γStR(G) = γ(G)
if and only if G = K1.
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Proof. One side is clear. Let f = (V0, V1, . . . , V⌈∆(G)
2 ⌉+1

) be a γStR(G)-function.

Then
∪⌈∆(G)

2 ⌉+1
i=1 Vi is a dominating set of G and so we have

γ(G) ≤
⌈∆(G)

2 ⌉+1∑
i=1

|Vi| ≤
⌈∆(G)

2 ⌉+1∑
i=1

|Vi|+
⌈∆(G)

2 ⌉+1∑
i=2

(i− 1)|Vi| = γStR(G) = γ(G).

Then one has
∑⌈∆(G)

2 ⌉+1
i=2 (i − 1)|Vi| = 0, implying that

∪⌈∆(G)
2 ⌉+1

i=2 Vi = ∅ and so
γStR(G) = n. Hence, by Proposition A we have G = K1 or K2. If G = K2, then
γStR(G) = 2γ(G) which is a contradiction. Hence G = K1, as desired.

Proposition 2.9. Let G be a graph of order n. Then γStR(G) = (⌈∆(G)
2 ⌉+1)γ(G)

if and only if there exists a γStR(G)-function f = (V0, V1, . . . , V1+⌈∆(G)
2 ⌉) such that∪⌈∆(G)

2 ⌉
i=1 Vi = ∅.

Proof. Let γStR(G) = (⌈∆(G)
2 ⌉+1)γ(G) and S be an arbitrary γ(G)-set. Then the

function f = (V0, V1, . . . , V⌈∆(G)
2 ⌉+1

) that assigns a weight of ⌈∆(G)
2 ⌉ + 1 to each

vertex of S and a weight of 0 to all remaining vertices of G is a StRD-function on
G, and so

γStR(G) ≤ f(V (G)) = (⌈∆(G)

2
⌉+ 1)|V⌈∆(G)

2 ⌉+1
|

≤ (⌈∆(G)

2
⌉+ 1)|S| = (⌈∆(G)

2
⌉+ 1)γ(G) = γStR(G).

Hence, we have equality throughout this inequality chain. In particular,

γStR(G) = f(V (G)) = (⌈∆(G)

2
⌉+ 1)|V⌈∆(G)

2 ⌉+1
|.

implying that f is a γStR(G)-function satisfying
∪⌈∆(G)

2 ⌉
i=1 Vi = ∅.

Conversely, suppose there exists a γStR(G)-function f = (V0, V1, . . . , V⌈∆(G)
2 ⌉+1

)

such that
∪⌈∆(G)

2 ⌉
i=1 Vi = ∅. Since

∪⌈∆(G)
2 ⌉+1

i=1 Vi = V⌈∆(G)
2 ⌉+1

is a dominating set of
G, we have

γ(G) ≤ |V⌈∆(G)
2 ⌉+1

| = 1

⌈∆(G)
2 ⌉+ 1

γStR(G)

and so γStR(G) ≥ (⌈∆(G)
2 ⌉+1)γ(G). Hence by (1), we have γStR(G) = (⌈∆(G)

2 ⌉+
1)γ(G).

Proposition 2.10. Let G be a graph with diam(G) ≥ 3. Then γStR(G) ≤
2(1 + ⌈∆(G)

2 ⌉).
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Proof. Let P = v1v2 . . . vq, q = diam(G) + 1, be a diametral path in G where
q ≥ 4. Since diam(G) ≥ 3, {v1, vq} is a dominating set for G. Hence by (1), we
have

γStR(G) ≤ (1 + ⌈∆(G)

2
⌉)γ(G) ≤ 2(1 + ⌈∆(G)

2
⌉).

Proposition 2.11. Let G be a graph with at least one cut-edge and minimum
degree δ. Then γStR(G) ≤ n+ 2− δ.

Proof. Let e = xy be a cut-edge of G. Suppose that G1 and G2 are two components
of G \ e with minimum degree δ1 and δ2, respectively. Define f1 and f2 as follows:

f1(u) =

 1 + ⌈degG1
(x)

2 ⌉ u = x
0 u ∈ N(x)
+1 otherwise.

f2(u) =

 1 + ⌈degG2
(y)

2 ⌉ u = y
0 u ∈ N(y)
+1 otherwise.

Obviously, f1 and f2 are strong Roman dominating functions for G1 and G2,
respectively. Now define g as follows:

g(u) =

{
f1(u) u ∈ G1

f2(u) u ∈ G2.

It follows immediately that g is a strong Roman dominating function for G which
yields that:

γStR(G) ≤ ω(g) = 1 + ⌈
degG1

(x)

2
⌉+ (n1 − 1− degG1

(x))

+ 1 + ⌈
degG2

(y)

2
⌉+ (n2 − 1− degG2

(y))

= n1 − ⌊
degG1

(x)

2
⌋+ n2 − ⌊

degG2
(y)

2
⌋ ≤ n1 + n2 − ⌊δ1

2
⌋ − ⌊δ2

2
⌋

≤ n1 + n2 − ⌊δ − 1

2
⌋ − ⌊δ − 1

2
⌋ ≤ n+ 2− δ

as desired.

Concluding this section, we prepare a lower and upper bound for the strong
Roman domination number of a self-complementary graph. To this end, we need
the next proposition.

Proposition 2.12. Let G be a graph of order n. Then n + 1 ≤ γStR(G) +
γStR(Ḡ) ≤ ⌈ 3n+1

2 ⌉. Moreover, If G is a r-regular graph such that γStR(G) +
γStR(Ḡ) = ⌈ 3n+1

2 ⌉, then γStR(G) = n− ⌊ r
2⌋ and γStR(Ḡ) = n− ⌊n−r−1

2 ⌋.
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Proof. Using Propositions D and E, we have:

n+ 1 ≤ ⌈n+ 1

2
⌉+ ⌈n+ 1

2
⌉ ≤ γStR(G) + γStR(Ḡ)

≤ (n− ⌊∆(G)

2
⌋) + (n− ⌊∆(Ḡ)

2
⌋)

= (n− ⌊∆(G)

2
⌋) + (n− ⌊n− 1− δ

2
⌋)

≤ ⌈3n+ 1

2
⌉ − ⌊∆(G)

2
⌋+ ⌊δ

2
⌋

≤ ⌈3n+ 1

2
⌉.

Suppose that G is a r-regular graph such that γStR(G)+γStR(Ḡ) = ⌈ 3n+1
2 ⌉. Since

there is no r-regular n-vertex graph such that r, n are odd, by above inequality we
have γStR(G) = n− ⌊ r

2⌋ and γStR(Ḡ) = n− ⌊n−r−1
2 ⌋.

Proposition 2.12 yields the following corollary.

Corollary 2.13. Let G be a self-complementary graph. Then n+1
2 ≤ γStR(G) ≤

⌈ 3n+1
4 ⌉.

3. Strong Roman Domination Number under some
Graph Operations

This section is devoted to verify the behaviour of the strong Roman domination
number of a graph whenever a vertex or an edge was omitted. We also investigate
the strong Roman domination number under contraction and subdivision of an
edge.

We begin our investigation with removing a vertex of a graph.

Proposition 3.1. Let G be a graph and v be a vertex of G. Then γStR(G)− 1 ≤
γStR(G

′), where G′ = G− v.

Proof. Suppose that f is a γStR(G
′)-function. Define g on graph G as follows:

g(x) =

{
1 x = v
f(x) otherwise.

It is obvious that g is a strong Roman dominating function over G. So we have
γStR(G) ≤ ω(g) = ω(f) + 1. Hence γStR(G)− 1 ≤ γStR(G

′).

Iterating the removing, one can derive the next corollary.
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Corollary 3.2. Let G be a graph and suppose that v1, . . . , vk are vertices of G.
Then γStR(G)− k ≤ γStR(G

k), where Gk = G− {v1, . . . , vk}.

Proposition 3.1 yields the following corollary.

Corollary 3.3. Let G be a graph with a vertex v of degree n−1. Then γStR(G
′) ≥

⌈n−1
2 ⌉, where G′ = G− v.

Proof. Since γ(G) = 1, using [1, Proposition 8] and Proposition E, we have
γStR(G) = ⌈n+1

2 ⌉. The result is therefore immediate from Proposition 3.1.

The strong Roman domination number of a graph when removing an edge
changes as follows.

Proposition 3.4. Let G be a graph with an edge e = xy. Then

−1 ≤ γStR(G)− γStR(G
′) ≤ 1,

where G′ = G− e.

Proof. Suppose that f ′ = (V0, V1, . . . , V⌈∆(G′)
2 ⌉+1

) is a γStR(G
′)-function. If

{f ′(x), f ′(y)} ⊆ V0

∪
V1, then define g : V (G) → {0, 1, 2, . . . , ⌈∆(G)

2 ⌉ + 1} by
g(t) = f ′(t). Obviously g is a strong Roman dominating function over G. In the

case {f ′(x), f ′(y)} ⊆
∪⌈∆(G′)

2 ⌉+1
i=2 Vi, we can define a new function on G similarly.

Assume now that f ′(x) = 0 and f ′(y) ∈
∪⌈∆(G′)

2 ⌉+1
i=2 Vi. Without lose of generality,

define h : V (G) → {0, 1, 2, . . . , ⌈∆(G)
2 ⌉+1} by h(x) = 1 and h(t) = f ′(t) otherwise.

It is clear that h is a strong Roman dominating function over G. Therefore we
have γStR(G) ≤ γStR(G

′) + 1.
Now, let f = (V0, V1, . . . , V⌈∆(G)

2 ⌉+1
) be a γStR(G)-function. If {f(u), f(v)} ⊆

V0∪V1, the function g : V (G′) → {0, 1, . . . , 1+⌈∆(G′)
2 ⌉} defined by g(x) = f(x) for

x ∈ V (G′) is a StRDF of G′. If {f(u), f(v)} ⊆
∪⌈∆(G)

2 ⌉+1
i=2 Vi, then we can define a

new function on G′ similarly. Assume now that f(u) = 0 and f(v) ∈
∪⌈∆(G

2 ⌉+1
i=2 Vi.

The function h : V (G′) → {0, 1, 2, . . . , ⌈∆(G′)
2 ⌉ + 1} defined by h(u) = 1 and

h(x) = f(x) otherwise. It is clear that h is a StRDF of G′. Therefore we have
γStR(G

′)− γStR(G) ≤ 1.

We shall now describe the behaviour of the strong Roman domination number
under the contracting an edge of a graph.

Proposition 3.5. Let G be a graph with edge e = uv. Then γStR(G
′) ≤

γStR(G) + ⌈∆(G)−1
2 ⌉, where G′ obtained from G by contracting e.
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Proof. Suppose that f = (V0, V1, . . . , V⌈∆(G)
2 ⌉+1

) is a strong Roman dominating
function over G. If f(u) = f(v) = 0 (f(u) = f(v) = 1), then define f1 : V (G′) →
{0, 1, 2, . . . , 1 + ⌈∆(G′)

2 ⌉} by f1(u = v) = f(u) = 0 (f1(u = v) = f(v) = 1) and
f1(x) = f(x) otherwise. Obviously f1 is a strong Roman dominating function over
G′. Assume now that f(u) = 0 and f(v) = 1. Define f2 : V (G′) → {0, 1, 2, . . . , 1+
⌈∆(G′)

2 ⌉} by f2(u = v) = f(v) = 1 and f2(x) = f(x) otherwise. It is easy to see that
f2 is a strong Roman dominating function over G′. Next suppose that f(u) = 0

and f(v) ∈
∪⌈∆(G)

2 ⌉+1
i=2 Vi and define f3 : V (G′) → {0, 1, 2, . . . , 1 + ⌈∆(G′)

2 ⌉} by
f3(u = v) = f(v)+ ⌈∆(G)−1

2 ⌉ and f3(x) = f(x) otherwise. It is easy to see that f3
is a strong Roman dominating function over G′. Without lose of generality, assume

that f(u) ≤ f(v) ∈
∪⌈∆(G)

2 ⌉+1
i=2 Vi. Define f4 : V (G′) → {0, 1, 2, . . . , 1 + ⌈∆(G′)

2 ⌉}
by f4(u = v) = f(v) + ⌈∆(G)−1

2 ⌉ and f4(x) = f(x) otherwise. Again it is easy
to see that f4 is a strong Roman dominating function over G′. Therefore, for
i = 1, 2, 3, 4, we have

γStR(G
′) ≤ ω(fi) ≤ ω(f) + ⌈∆(G)− 1

2
⌉ = γStR(G) + ⌈∆(G)− 1

2
⌉.

We now deal with the subdivision.

Proposition 3.6. Let G be a graph of order n ≥ 3. If G′ is obtained from G by
subdividing the edge e = xy, then γStR(G) ≤ γStR(G

′).

Proof. Let us to subdivide the edge e = xy with z. Suppose that f ′ = (V0, V1, . . . ,
V⌈∆(G′)

2 ⌉+1
) is a γStR(G

′)-function. If f ′(z) ∈ V0

∪
V1, then f ′

|G is a strong Roman

dominating function of G. Assume that f ′(z) ∈
∪⌈∆(G′)

2 ⌉+1
i=2 Vi. It is easy to see

that f ′(x) = 0 or f ′(y) = 0. We also have f ′(z) = 2. Suppose first that f ′(x) =

f ′(y) = 0. Define f : V (G) → {0, 1, . . . , 1 + ⌈∆(G)
2 ⌉} by f(x) = f(y) = 1 and

f(t) = f ′(t) for each t ∈ V (G) \ {x, y}. Clearly, f is a strong Roman dominating
function of G and ω(f) = ω(f ′). Suppose now that f ′(x) = 0 and f ′(y) ̸= 0.
Define g : V (G) → {0, 1, . . . , 1 + ⌈∆(G)

2 ⌉} by g(x) = 1 and g(t) = f ′(t) for each
t ∈ V (G) \ {x}. Clearly, g is a strong Roman dominating function of G and
ω(g) = ω(f ′)− 1. Therefore we conclude that γStR(G) ≤ γStR(G

′).

4. Strong Roman Domination Number for some
Classes of Graphs

The authors in [1] gave an upper bound for γStR(T ), where T is a tree of order
n ≥ 3. They conjectured that, for any graph of order n ≥ 3, γStR(G) ≤ 6n

7 . In this
section we give an upper bound for unicyclic graph. Also, we determine strong
Roman domination number for some classes of graphs.
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Lemma 4.1. Let G = F p
m. Then

γStR(G+ e)− γStR(G) ≤ 0

where e = uv is a new edge which is added to G.

Proof. Let D3 be the vertices of degree at least 3 in G and D2 be the vertices
of degree 2 in G and D1 be the leaves of G. Then the function f : V (G) →
{0, 1, . . . , 1 + ⌈∆(G)

2 ⌉} defined by f(x) = 3 for x ∈ D3, f(x) = 1 for x ∈ D1 and
f(x) = 0 for x ∈ D2, is a StRDF of G of weight 2(3m) = 6n

7 . We show that
f is a StRDF of G + e. If u, v ∈ D3 ∪ D1 or u, v ∈ D2 ∪ D1, then clearly f is
a StRDF of G + e. Without lose of generality, let u ∈ D3 and v ∈ D2. Since
1 + |⌈NG(u)∩V0⌉

2 | = 3 and 1 + |⌈NG+e(u)∩V0⌉
2 | = 3, then f is a StRDF of G + e.

Therefore, γStR(G+ e)− γStR(G) ≤ 0.

Theorem 4.2. Let G be a unicyclic graph. Then

StR(G)

{
≤ 6n

7 if n ≡ 0 (mod 7)
< 6n

7 + 1 O.W

Proof. Consider C as a cycle of G and e ∈ E(C). Note that G′ = G−e is a tree. If
G′ ∈ F p

m, then by Lemma 4.1 and Proposition C, we have γStR(G) ≤ 6n
7 . Suppose

G′ /∈ F p
m. By Proposition 3.4, we have γStR(G) ≤ γStR(G

′) + 1. If n ≡ 0 (mod 7),
then using Proposition B, γStR(G) ≤ γStR(G

′) + 1 ≤ 6n
7 − 1 + 1 = 6n

7 , otherwise
we have

γStR(G) ≤ γStR(G
′) + 1 <

6n

7
+ 1.

Proposition 4.3. For m ≥ 3, γStR(Cm ◦K1) ≤ ⌈ 5n
6 ⌉, where n = 2m.

Proof. Suppose that f is a γStR(Cm)-function. Define g : V (Cm◦K1) → {0, 1, 2, 3}
by g(x) = f(x) for x ∈ V (Cm) and g(x) = 1 otherwise. Clearly g is a strong
Roman dominating function for Cm ◦ K1 and, hence, we have γStR(Cm ◦ K1) ≤
ω(g) ≤ ω(f) + m. Using this in conjunction with Propositions F, one obtains
γStR(Cm ◦K1) ≤ ⌈ 2m

3 ⌉+ n
2 = ⌈ 5n

6 ⌉.

Noting to the proof of Corollary 3.3, one has the following result.

Corollary 4.4. For n ≥ 1, γStR(Kn) = ⌈n+1
2 ⌉.

The following auxiliary lemma which is interesting in itself is of fundamental
importance in finding γStR(Kn,m). It’s simple proof is omitted.

Lemma 4.5. Let G be a graph of order n and f = (V0, V1, . . . , V⌈∆(G)
2 ⌉+1

) be a
strong Roman dominating function. Then |V0| ≤ n− 1. Moreover, if the equality
holds, then ∆ = n− 1.
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Proposition 4.6. For 2 ≤ n ≤ m,

StR(Kn,m) =

 ⌈n+1
2 ⌉+ ⌈m

2 ⌉ if m is odd
⌈n+1

2 ⌉+ ⌈m+1
2 ⌉ if m is even and n ≥ 3

2 + m
2 if m is even and n = 2.

Proof. Let (X,Y ) be two parts of the complete bipartite graph Kn,m and X =
{u1, . . . , un} and Y = {v1, . . . , vm}. Using Proposition E, we have

γStR(Kn,m) ≥ ⌈n+m+ 1

2
⌉.

Define f as follows:

f(x) =

 1 + ⌈m−1
2 ⌉ x = u1

1 + ⌈n−1
2 ⌉ x = v1

0 otherwise.

It is clear that f is a strong Roman dominating function for Kn,m which yields

⌈n+m+ 1

2
⌉ ≤ γStR(Kn,m) ≤ ω(f) = ⌈n+ 1

2
⌉+ ⌈m+ 1

2
⌉.

Now consider two following cases:
Case 1. m is odd. Suppose first that n is even. So in this case we have

⌈n+m+ 1

2
⌉ = ⌈n+ 1

2
⌉+ ⌈m

2
⌉ − 1 ≤ γStR(Kn,m) ≤ ⌈n+ 1

2
⌉+ ⌈m

2
⌉.

We claim that γStR(Kn,m) = ⌈n+1
2 ⌉ + ⌈m

2 ⌉. Suppose, on the contrary, that
γStR(Kn,m) = ⌈n+1

2 ⌉ + ⌈m
2 ⌉ − 1 and let g be a γStR(Kn,m)-function for Kn,m.

It is straightforward to see that |V0| ≥ n − 1. Without lose of generality, assume
that g(ui) = 0 for i = 1, . . . , t and g(vi) = 0 for i = 1, . . . , s. By Lemma 4.5, we
have t + s ≤ m + n − 2. So we have ⌊ t+s

2 ⌋ ≤ ⌊m+n
2 ⌋ − 1. In this case, there is a

vertex uj ∈ X, for some 1 ≤ j ≤ n such that g(uj) ≥ 1+ ⌈ s
2⌉ and a vertex vj ∈ Y ,

for some 1 ≤ j ≤ m such that g(vj) ≥ 1 + ⌈ t
2⌉. Therefore

⌈n+ 1

2
⌉+ ⌈m

2
⌉ − 1 = ω(g) ≥ 1 + ⌈ t

2
⌉+ 1 + ⌈s

2
⌉+ (m+ n− 2)− t− s

≥ ⌈ t+ s

2
⌉+m+ n− t− s

≥ m+ n− ⌊ t+ s

2
⌋

≥ m+ n− ⌊m+ n

2
⌋+ 1

= ⌈n+ 1

2
⌉+ ⌈m

2
⌉.
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So we get a contradiction. Suppose now that n is odd. Hence we have

⌈n+m+ 1

2
⌉ = ⌈n+ 1

2
⌉+ ⌈m

2
⌉ ≤ γStR(Kn,m) ≤ ⌈n+ 1

2
⌉+ ⌈m

2
⌉

as desired.
Case 2. m is even. Let us consider two subcases:

Subcase 2.1. Suppose first that n ≥ 3. One has

⌈n+m+ 1

2
⌉ = ⌈n+ 1

2
⌉+ ⌈m

2
⌉ ≤ γStR(Kn,m) ≤ ⌈n+ 1

2
⌉+ ⌈m+ 1

2
⌉.

We claim that γStR(Kn,m) = ⌈n+1
2 ⌉ + ⌈m+1

2 ⌉. Suppose, on contrary, that
γStR(Kn,m) = ⌈n+1

2 ⌉ + ⌈m
2 ⌉ and let g be a γStR(Kn,m)-function. Without lose

of generality, assume that g(ui) = 0 for i = 1, . . . , t and g(vi) = 0 for i = 1, . . . , s.
By Lemma 4.5, we have t+s ≤ m+n−2. At first, suppose that t+s = m+n−2.
Since n ≥ 3, there is exactly a vertex x ∈ X and y ∈ Y such that g(x) ̸= 0
and g(y) ̸= 0. Also by definition of strong dominating function g, one can see
g(x) ≥ 1 + ⌈m−1

2 ⌉ = 1 + ⌈m
2 ⌉ and g(y) ≥ 1 + ⌈n−1

2 ⌉ = ⌈n+1
2 ⌉. Hence we have

⌈n+ 1

2
⌉+ ⌈m

2
⌉ = ω(g) ≥ g(x) + g(y) = 1 + ⌈n+ 1

2
⌉+ ⌈m

2
⌉

which is a contradiction. Assume that t+ s = m+n− 3. Choose a vertex u1 ∈ X
and v1, v2 ∈ Y such that g(u1) ̸= 0, g(v1) ̸= 0 and g(v2) ̸= 0. By definition of
strong dominating function g, without lose of generality, one can suppose that
g(u1) ≥ 1 + ⌈m−2

2 ⌉ = ⌈m
2 ⌉, g(v1) ≥ 1 + ⌈n−1

2 ⌉ = ⌈n+1
2 ⌉ and g(v2) ≥ 1. Hence we

have

⌈n+ 1

2
⌉+ ⌈m

2
⌉ = ω(g) ≥ g(u1) + g(v1) + g(u2) = ⌈n+ 1

2
⌉+ ⌈m

2
⌉+ 1

which is a contradiction. Suppose now that t + s ≤ m + n − 4. So we have
⌊ t+s

2 ⌋ < ⌊m+n
2 ⌋ − 1. In this case, there is a vertex uj ∈ X, for some 1 ≤ j ≤ n

such that g(uj) ≥ 1 + ⌈ s
2⌉ and a vertex vj ∈ Y , for some 1 ≤ j ≤ m such that

g(vj) ≥ 1 + ⌈ t
2⌉. Therefore

⌈n+ 1

2
⌉+ ⌈m

2
⌉ = ω(g) ≥ 1 + ⌈ t

2
⌉+ 1 + ⌈s

2
⌉+ (m+ n− 2)− t− s

≥ ⌈ t+ s

2
⌉+m+ n− t− s

≥ m+ n− ⌊ t+ s

2
⌋

> m+ n− ⌊m+ n

2
⌋+ 1

= ⌈m+ n

2
⌉+ 1.
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So we get a contradiction.
Subcase 2.2. Suppose now that n = 2. Define h : V (K2,m) → {0, 1, . . . , 1 +

⌈m
2 ⌉} by h(u1) = 1 + m

2 , h(u2) = 1 and h(vi) = 0 for all 1 ≤ i ≤ m. It is easy
to see that h is a strong Roman dominating function of K2,m. This together with
Proposition E gives

2 +
m

2
≤ γStR(K2,m) ≤ ω(h) = 2 +

m

2

and the proof has been completed.

As an immedate consequence one has the following.

Corollary 4.7. γStR(Kn,n) =

{
n+ 1 if n is odd
n+ 2 if n is even.

The Cartesian product of graphs G and H is the graph G□H with the vertex set
V (G)□V (H) and (x1, x2)(y1, y2) ∈ E(G□H) whenever x1y1 ∈ E(G) and x2 = y2,
or x2y2 ∈ E(H) and x1 = y1. In the follow we determine the strong Roman
domination number of P2□Pn. We assume the vertices of the i-th copy of P2 in
P2□Pn are u1

i , u
2
i for i = 1, 2, . . . , n.

Proposition 4.8. For n ≥ 1,

γStR(P2□Pn) =


4n
3 if n ≡ 0 (mod 3)
4n+2

3 if n ≡ 1 (mod 3)
4n+1

3 if n ≡ 2 (mod 3).

Proof. Define f : V (P2□Pn) → {0, 1, 2, 3} by f(u1
3i+2) = f(u2

3i+2) = 2 for 0 ≤ i ≤
⌊n−2

3 ⌋ and f(u) = 0 otherwise if n ≡ 0 (mod 3), by f(u1
n) = f(u2

n) = 1, f(u1
3i+2) =

f(u2
3i+2) = 2 for 0 ≤ i ≤ ⌊n−2

3 ⌋ and f(u) = 0 otherwise if n ≡ 1 (mod 3) and by
f(u1

n) = f(u1
3i+2) = f(u2

3i+2) = 2 for 0 ≤ i ≤ ⌊n−4
3 ⌋, f(u2

n−1) = 1 and f(u) = 0
otherwise if n ≡ 2 (mod 3). Clearly f is a StRDF of P2□Pn with desired weight
and so

γStR(P2□Pn) ≤


4n
3 if n ≡ 0 (mod 3)
4n+2

3 if n ≡ 1 (mod 3)
4n+1

3 if n ≡ 2 (mod 3).

Now we prove the inverse inequality by induction on n. The results is trivial for
n = 1, 2, 3. Assume that n ≥ 4 and the result is true for P2□Pn′ for each n′ < n.
Let

G′ = P2□Pn − {u1
n, u

2
n, u

1
n−1, u

2
n−1, u

1
n−2, u

2
n−2}.

Clearly G′ = P2□Pn−3. Assume f = (V0, V1, . . . , V⌈∆
2 ⌉+1) is a γStR(P2□Pn)-

function such that
∪⌈∆

2 ⌉+1
i=2 Vi is as small as possible. We consider following cases.

Case 1. f(u1
n) = f(u2

n) = 0.
We have f(u1

n−1) = f(u2
n−1) = 2. If f(u1

n−2) ≥ 1 or f(u2
n−2) ≥ 1, then the function



Some Results on the Strong Roman Domination Number of Graphs 275

g : V (P2□Pn) → {0, 1, 2, 3} defined by g(u1
n−1) = g(u1

n) = 1 and g(u) = f(u)
otherwise, is a γStR(P2□Pn)-function which contradicts the choice of f . Thus
f(u1

n−2) = f(u2
n−2) = 0. If f(u1

n−3) = 3 (the case f(u2
n−3) = 3 is similar), then the

function g : V (P2□Pn) → {0, 1, 2, 3} defined by g(u1
n−3) = g(u1

n−4) = g(u2
n−3) =

1 and g(u) = f(u) otherwise, is a γStR(P2□Pn)-function which contradicts the
choice of f . Then the function f , restricted to G′ is a StRDF of G′ of weight
γStR(P2□Pn)− 4 and the result follows by the induction hypothesis.

Case 2. f(u1
n) = 0 and f(u2

n) = 1 (the case f(u1
n) = 1 and f(u2

n) = 0 is similar).
We have f(u1

n−1) ≥ 2 . If f(u1
n−1) = 3, then f(u2

n−1) = f(u1
n−2) = 0. If f(u2

n−2) =
1, then the function g : V (G) → {0, 1, 2, 3} defined by g(u1

n−1) = g(u2
n−1) =

2, g(u1
n) = g(u2

n) = g(u1
n−2) = g(u2

n−2) = 0 and g(u) = f(u) otherwise, is a
γStR(P2□Pn)-function of weight less than f which is a contradiction. If f(u2

n−2) ≥
2, then the function g : V (G) → {0, 1, 2, 3} defined by g(u1

n−1) = g(u2
n−1) = 2,

g(u2
n−3) = 1, g(u1

n) = g(u2
n) = g(u1

n−2) = g(u2
n−2) = 0 and g(u) = f(u) otherwise,

is a γStR(P2□Pn)-function of weight less than f which is a contradiction. Hence
f(u2

n−2) = 0 and so the function f1 : V (G) → {0, 1, 2, 3} defined by f1(u
1
n−1) =

f1(u
2
n−1) = 2, f1(u

1
n−2) = f1(u

2
n−2) = f1(u

1
n) = f1(u

2
n) = 0 and f1(u) = f(u)

otherwise, is a StRDF of P2□Pn such that f1(u1
n) = f1(u

2
n) = 0 and similar above

case, we are done.
Let f(u1

n−1) = 2. Then f(u2
n−1) ≥ 1 or f(u1

n−2) ≥ 1. Suppose that f(u2
n−1) ≥

1. If f(u2
n−1) = 2, the function g : V (P2□Pn) → {0, 1, 2, 3} defined by g(u2

n) = 0
and g(u) = f(u) otherwise, is a γStR(P2□Pn)-function of weight less than f which
is a contradiction. Hence, f(u2

n−1) = 1. Then the function h : V (G) → {0, 1, 2, 3}
defined by h(u1

n−1) = h(u2
n−1) = 2, h(u1

n−2) = h(u2
n−2) = h(u1

n) = h(u2
n) = 0

and h(u) = f(u) otherwise, is a StRDF of P2□Pn of with h(u1
n) = h(u2

n) = 0 and
similar above case, we are done. Now let f(u1

n−2) ≥ 1. If f(u1
n−2) = 1, then the

function h defined in above, is a StRDF of P2□Pn of with h(u1
n) = h(u2

n) = 0
and similar above case, we are done. If f(u1

n−2) = 2, the function f2 : V (G) →
{0, 1, 2, 3} defined by f2(u

1
n−3) = 1, and f2(u) = f1(u) otherwise, is a StRDF of

P2□Pn of with f1(u
1
n) = f1(u

2
n) = 0 and similar above case, we are done.

Case 3. f(u1
n) = f(u2

n) = 1.
If f(u1

n−1) = f(u2
n−1) = 0, then to strong Roman dominate u1

n−1, u
2
n−1 we must

have f(u1
n−2) = f(u2

n−2) = 2. It follows from the choice of f that f(u1
n−3) =

f(u2
n−3) = 0. Now the function f3 : V (G′) → {0, 1, 2, 3} defined by f3(u

1
n−3) =

f3(u
2
n−3) = 1 and f3(u) = f(u) otherwise, is a StRDF of G′ of weight γtR(P2□Pn)−

4 and the result follows by the induction hypothesis. Hence, we assume without
loss of generality that f(u1

n−1) ≥ 1. Consider the following subcases.

Subcase 3.1. f(u1
n−1) = 2.

By the choice of f , we must have f(u1
n−2) = f(u2

n−1) = 0. If f(u2
n−2) = 0, then the

function f restricted to G′ is a StRDF of G′ of weight γtR(P2□Pn)−4 and the result
follows by the induction hypothesis. Suppose f(u2

n−2) ≥ 1. If f(u2
n−2) = 1, then

the function g : V (G) → {0, 1, 2, 3} defined by g(u1
n−1) = g(u2

n−1) = 2, g(u1
n) =

g(u2
n) = g(u1

n−2) = g(u2
n−2) = 0 and g(u) = f(u) otherwise, is a γStR(P2□Pn)-
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function of weight less than f which is a contradiction. If f(u2
n−2) ≥ 2, then the

function g : V (G) → {0, 1, 2, 3} defined by g(u1
n−1) = g(u2

n−1) = 2, g(u2
n−3) =

1, g(u1
n) = g(u2

n) = g(u1
n−2) = g(u2

n−2) = 0 and g(u) = f(u) otherwise, is a
γStR(P2□Pn)-function of weight less than f which is a contradiction.

Subcase 3.2. f(u1
n−1) = 1.

By choise of f we have f(u2
n−1) ≤ 1. If f(u1

n−2) ̸= 2, then the function g :
V (G) → {0, 1, 2, 3} defined by g(u1

n) = 2, g(u2
n) = g(u1

n−1) = 0 and g(u) = f(u)
otherwise, is a γStR(P2□Pn)-function of weight less than f which is a contradiction.
If f(u1

n−2) = 2, then we must have f(u2
n−2) = f(u1

n−3) = 0 and f(u2
n−1) = 1. Then

the function g : V (G) → {0, 1, 2, 3} defined by g(u2
n) = 2, g(u1

n) = g(u2
n−1) = 0

and g(u) = f(u) otherwise, is a γStR(P2□Pn)-function of weight less than f which
is a contradiction.
Case 4. f(u1

n) = 2 (the case f(u2
n) = 2 is similar).

Then we must have f(u1
n−1) = f(u2

n) = 0. If f(u2
n−1) ≥ 2, then the function

g : V (G) → {0, 1, 2, 3} defined by g(u1
n) = 1 and g(u) = f(u) otherwise, is

a γStR(P2□Pn)-function of weight less than f which is a contradiction. Hence
f(u2

n−1) ≤ 1. If f(u2
n−1) = 0, then f(u2

n−2) ≥ 2. If f(u2
n−2) = 3, then the function

f4 : V (G′) → {0, 1, 2, 3} defined by f4(u
2
n−3) = 1 and f4(u) = f(u) otherwise, is

a StRDF of G′ of weight γtR(P2□Pn)− 4 and the result follows by the induction
hypothesis. If f(u2

n−2) = 2 and f(u1
n−2) = 0, then the function f , restricted to G′ is

a StRDF of G′ of weight γStR(P2□Pn)− 4 and the result follows by the induction
hypothesis. If f(u2

n−2) = 2 and f(u1
n−2) = 1, then the function f5 : V (G′) →

{0, 1, 2, 3} defined by f5(u
2
n−3) = 1 and f5(u) = f(u) otherwise, is a StRDF of G′

of weight γStR(P2□Pn)− 4 and the result follows by the induction hypothesis. If
f(u2

n−2) = 2 and f(u1
n−2) = 2, then the function f6 : V (G′) → {0, 1, 2, 3} defined

by f6(u
1
n−3) = f6(u

2
n−3) = 1 and f6(u) = f(u) otherwise, is a StRDF of G′ of

weight γStR(P2□Pn) − 4 and the result follows by the induction hypothesis. Let
f(u2

n−1) = 1. If f(u1
n−2) = f(u2

n−2) = 1, then the function g : V (G) → {0, 1, 2, 3}
defined by g(u1

n−1) = g(u2
n−1) = 2, g(u1

n) = g(u2
n) = g(u1

n−2) = g(u2
n−2) = 0 and

g(u) = f(u) otherwise, is a γStR(P2□Pn)-function of weight less than f which
is a contradiction. If f(u1

n−2) = 3 (similarly f(u2
n−2) = 3), then the function

g : V (G) → {0, 1, 2, 3} defined by g(u1
n−1) = g(u2

n−1) = 2, g(u1
n−3) = 1, g(u1

n) =
g(u2

n) = g(u1
n−2) = g(u2

n−2) = 0 and g(u) = f(u) otherwise, is a γStR(P2□Pn)-
function of weight less than f which is a contradiction.

If f(u1
n−2) = 2 (similarly f(u2

n−2) = 2), then f(u2
n−2) ≥ 1 or f(u1

n−3) ≥ 1.
Without generality, let f(u2

n−2) ≥ 1. Then the function g : V (G) → {0, 1, 2, 3}
defined by g(u1

n−1) = g(u2
n−1) = 2, g(u1

n−3) = 1, g(u1
n) = g(u2

n) = g(u1
n−2) =

g(u2
n−2) = 0 and g(u) = f(u) otherwise, is a γStR(P2□Pn)-function of weight less

than f which is a contradiction.
This completes the proof.
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