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Homotopy Category of Cotorsion Flat

Representations of Quivers

Hossein Eshraghi ⋆

Abstract

Recently in [10], it was proved that over any ring R, there exists a
complete cotorsion pair (Kp(Flat-R),K(dg-CotF-R)) in K(Flat-R), the ho-
motopy category of complexes of flat R-modules, where Kp(Flat-R) and
K(dg-CotF-R) are the homotopy categories raised by flat (or pure) and dg-
cotorsion complexes of flat R-modules, respectively. This paper aims at
recognition of a parallel cotorsion pair in K(Flat-Q), the homotopy category
of flat representation of certain quivers Q, where Q may also be infinite.
The importance of this result lies in the fact that this homotopy categories
do not necessarily raise from the category of modules over some ring. In
the other part of this paper, we give a classification of compact objects in
K(dg-CotF-Q), the homotopy category of dg-cotorsion complexes of flat rep-
resentations of certain Q, in terms of the corresponding vertex-complexes.
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1. Introduction

In a recent work [10], the basis of a systematic study of K(dg-CotF-R), the ho-
motopy category of dg-cotorsion complexes of flat modules over a ring R was
founded. In that paper it was proved, in particular, that this homotopy cate-
gory is compactly generated whenever R is right coherent. We point out that
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the importance of the notion of compact generation is something well-understood
in the general theory of triangulated categories [16, 17, 20]. One of the basic
tools there to obtain such a result was the discovery of a complete cotorsion pair
(Kp(Flat-R),K(dg-CotF-R)) in K(Flat-R), the homotopy category of complexes
of flat R-modules, where Kp(Flat-R) is the triangulated subcategory of K(Flat-R)
formed by the so-called flat (or pure) complexes of R-modules. To see more about
cotorsion pairs in the setting of homotopy categories and their applications, the
reader is referred to [5, 15].

One of the main objectives in this paper is to extend the aforementioned co-
torsion pair to the corresponding homotopy categories raised by representations
of certain quivers. To give a more detailed introduction, we must recall that for
a finite quiver Q, the category of representations of Q by R-modules, denoted
Rep(Q, R), is naturally equivalent to ModRQ, the category of modules over the
path algebra RQ of Q over R which is, by definition, a free R-module on the basis
of all paths in Q and whose multiplication is given by the usual combination of
consecutive arrows of Q [3, Theorem 1.6]. However, this is not the case for infi-
nite Q. Nonetheless, Rep(Q, R) has proved to show rather the same homological
behavior as those displayed by the category of modules over a ring. That’s why
we have chosen the homotopy category raised by Rep(Q, R) to state our results.
To see further works in this context, the reader may take a glance at [2, 11].

For a (possibly infinite) quiver Q, let K(Flat-Q) be the homotopy category of
flat representations of Q by R-modules. Specifically speaking, what makes the
current study reasonable to us is that the aforementioned cotorsion pair is capa-
ble of being extended to a complete cotorsion pair (Kp(Flat-Q),K(dg-CotF-Q))
in K(Flat-Q) while these homotopy categories have not necessarily been raised by
a category of modules over a ring; we do this is Section 3 for certain Q. Here
K(dg-CotF-Q) is the homotopy category of dg-cotorsion complexes of flat repre-
sentations of Q by R-modules; we leave the definitions to Section 2.

Recognition of compact objects is another fundamental task in the theory of tri-
angulated categories [17, 20]. This has many applications in connection with form-
ing certain equivalences between triangulated categories. Our Section 4 is devoted
to provide a local characterization of compact objects in K(dg-CotF-Q). That is,
we show how, for certain quivers Q, compactness of an object in K(dg-CotF-Q)
impresses the resulting vertex-complexes in K(dg-CotF-R).

2. Notation and Basic Facts

Throughout the paper, R will always denote a ring with unity and R-modules
are intended to be left R-modules; ModR is reserved to denote the category of
all R-modules. Also the category of complexes of R-modules and the chain maps
between them is denoted C(R). Recall that the homotopy category of R, K(R),
has the objects of C(R) as its objects and the morphisms are given by the ho-



Homotopy Category of Cotorsion Flat Representations of Quivers 281

motopy equivalence classes of chain maps [22]. The homotopy categories formed
by complexes of projective (resp. flat) R-modules is denoted K(Proj-R) (resp.
K(Flat-R)). It is well-known that these are typical examples of triangulated cat-
egories where the suspension (or shift) functor is given by Σ−1, the usual shifting
of complexes to the left; namely, Σ−1 : K(R) −→ K(R) is an autoequivalence
of categories by means of which these homotopy categories are turned into tri-
angulated categories. We refer the reader to the classic text [19] on triangulated
categories and their defining axioms and properties. Basic facts about homotopy
categories may be found in [22]. As a convention, for a triangulated category T
with suspension functor T : T −→ T , a typical triangle is represented by either of
the diagrams

X −→ Y −→ Z −→ T (X) or X // Y // Z ///o/o/o .

If S is a triangulated subcategory of a triangulated category T , then we have
the following two triangulated subcategories:

S⊥ = {X ∈ T | HomT (S,X) = 0 for all S ∈ S},
⊥S = {X ∈ T | HomT (X,S) = 0 for all S ∈ S}.

These are called the right and left orthogonals of S in T .
Let F be in K(Flat-R). Following [9], [14], and [20], we say that F is flat (or

pure) provided it lies in K(Proj-R)
⊥, where the orthogonal is taken in K(Flat-R).

The corresponding homotopy category is denoted Kp(Flat-R). In [9] and [20] the
objects in Kp(Flat-R) are characterized as complexes F ∈ K(Flat-R) that are
exact, that is with trivial homology modules, and have flat syzygy modules.

Recall that an R-module C is called cotorsion if Ext1R(F,C) = 0 for every flat
R-module F . Complexes C of cotorsion R-modules in Kp(Flat-R)

⊥ are called dg-
cotorsion. These were originally defined in [9] by requiring that Ext1C(R)(F,C) = 0
for every pure complex F; see [9, Proposition 3.4]. The homotopy category raised
by dg-cotorsion complexes of flat R-modules is denoted K(dg-CotF-R).

Throughout the paper, by a quiver Q we mean an oriented graph with vertex set
V and arrow set E. There exist two functions s and t that correspond to any arrow
in E its origin and terminal vertices respectively. A representation M of Q comes
up by assigning an R-module Mv to any vertex v of Q and an R-homomorphism
Ma : Mv −→ Mw to any arrow a : v → w of Q. A morphism f : M −→ N
of representations of Q is given by a family f = {fv}v∈V of R-homomorphisms
fv : Mv −→ Nv that fulfil the commutativity condition Na ◦ fv = fw ◦ Ma for
any arrow a : v → w. It is a classical result that the representations of Q by
R-modules and their morphisms form an abelian category Rep(Q, R) which is
naturally equivalent to ModRQ, the category of modules over the path algebra
RQ of Q over R whenever Q is finite, i.e., both V and E are finite. These and
more background on the theory of representations of quivers might be found, e.g.
in [3].
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We need to quote the following construction from [2]. For a quiver Q, we let V1

be the set of all source vertices in Q, that is, all vertices with no arrow terminating
at them. In symbols,

V1 = {v ∈ V : ∄ a ∈ E such that t(a) = v}.

Suppose β is an ordinal number and Vγ has been defined for any ordinal number
γ < β. We let

Vβ = {v ∈ V \ ∪γ<βVγ : ∄ a ∈ E \ {a : s(a) ∈ ∪γ<βVγ} such that t(a) = v}.

Hence, using transfinite induction, we may construct the sets Vβ for any ordinal
number β. Then Q is called rooted provided there exists an ordinal number α
with V =

∪
β≤α Vβ ; the least possible ordinal α that fulfils this is denoted µ(Q).

According to [2, Proposition 2.8 ] and [13, Proposition 3.6], this is equivalent to
saying that Q has no subquiver of the form · · · → v2 → v1. Moreover, Q is said to
be locally finite if the number of input and output arrows is finite for any vertex
of Q.

The category Rep(Q, R) has been widely studied in the literature; see the
papers [2, 7, 8, 13, 21]. In particular, we need to mention the following results
that classify flat, projective, and cotorsion representations of rooted Q.

Lemma 2.1. Let Q be an arbitrary quiver and let F ,P, C ∈ Rep(Q, R).

• (a) ([13, Theorem 3.7]) If F if flat, then for any vertex v of Q,

– Fv is a flat R-module;

– the R-homomorphism
⨿

t(a)=v Fs(a) −→ Fv induced from the R-homomo-

rphisms Fs(a) −→ Fv is a pure monomorphism.

If, further, Q is rooted, then these conditions are also sufficient.

• (b) ([7, Theorme 3.1]) If P if projective, then for any vertex v of Q,

– Pv is a projective R-module;

– the R-homomorphism
⨿

t(a)=v Ps(a) −→ Pv, as mentioned above, is a
split monomorphism.

If, further, Q is rooted, then these conditions are also sufficient.

• (c) ([21, Theorem 6]) C is a cotorsion representation of Q if and only if Cv
is a cotorsion R-module for all v.
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Note that a cotorsion representation of Q is defined in an obvious way.
For a quiver Q, the subcategory of Rep(Q, R) consisting of projective (resp.

flat) representations is denoted Proj-Q (resp. Flat-Q). We must stress that the
symbol R has been dropped because it is fixed throughout the paper and gives no
ambiguity. The homotopy category formed by all representations of Q over R is
denoted K(Q) and the triangulated subcategories corresponding to projective and
flat representations of Q are respectively denoted K(Proj-Q) and K(Flat-Q).

Let Q be an arbitrary quiver and let Q′ be a subquiver. It follows from
the definitions above that the natural embedding Q′ ⊆ Q induces a functor
eQ

′
: Rep(Q, R) −→ Rep(Q′, R) called the restriction functor, that restricts any

representation of Q to the vertices of Q′. It is shown in [2] that eQ
′

has left
and right adjoint functors, respectively denoted eQ

′

λ and eQ
′

ρ . We refrain from
giving the explicit constructions here, and refer the reader to [2] for the details.
In particular, for any vertex v of Q, there corresponds to the natural embedding
{v} ⊆ Q a functor ev : Rep(Q, R) −→ Mod R, called the evaluation at v, with
left and right adjoints evλ and evρ. For the ease of reader, we hint the rule for evλ:
For any R-module X, evλ(X) is the representation of Q in which the vertex w is
represented by the R-module

⨿
Q(v,w) X where Q(v, w) is the set of all paths in Q

from v to w. Moreover, the arrows are represented by natural injections. There is
a dual definition for evρ [2]. Hence, in this notation, one is given the adjoint pairs
of functors (eQ

′

λ , eQ
′
), (eQ

′
, eQ

′

ρ ), and in particular, (evλ, e
v), and (ev, evρ).

As a direct consequence of Lemma 2.1, it follows readily that every projective
representation P of a rooted quiver Q is of the form

⨿
v∈V evλ(P

v) where the projec-
tive R-module P v is the cokernel of the split monomorphism

⨿
t(a)=v Ps(a) −→ Pv.

Also it turns out that the functors evλ preserve flatness and projectivity.
What should be pointed out is that the aforementioned functors can naturally

be extended to triangulated functors over corresponding homotopy categories. We
use the symbols kQ

′
, kQ

′

λ , kQ
′

ρ , kv, kvλ, and kvρ to denote them. This extension
procedure goes ahead in a so-called degreewise manner; see [2] for the details. We
are therefore equipped with the adjoint pairs of triangulated functors (kQ

′

λ , kQ
′
),

(kQ
′
, kQ

′

ρ ), and in particular, (kvλ, k
v), and (kv, kvρ) over homotopy categories. A

particular case also arises when the subquiver Q′ of a rooted quiver Q is supposed
to be full and has

∪
β≤δ Vβ , δ ≤ µ(Q), as its set of vertices. The aforementioned

functors are then denoted kδ and kδλ in this case.
Suppose Projop-Q is the full subcategory of Rep(Q, R) consisting those repre-

sentations P where Pv is projective, for any v, but the R-homomorphisms assigned
to the arrows are split epimorphisms. It is proved in [2, Theorem 3.8] that there
exists an equivalence of triangulated categorieŝ : K(Proj-Q) −→ K(Projop-Q)

whenever the quiver is finite without oriented cycles. The key ingredient of this
equivalence is that, as stated above, in this case, every projective representation
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of Q can be described as a finite direct sum of projective representation of the
form evλ(P

v) for various vertices v and projective modules P v. We now want to
generalize this idea to flat representations. For, we need the following definition.

Definition 2.2. A (possibly infinite) rooted quiver Q is said to satisfy the property
(∗) if every flat representation of Q is a finite direct sum of flat representations of
the form evλ(F

v) for various vertices v and flat R-modules F v.

With regards to this definition, we notice that every evλ(F
v) is itself a flat

representation according to Lemma 2.1 and the description of the functors evλ
given above. Let also Flatop-Q be the subcategory of Rep(Q, R) whose objects
are representations F in which a flat module is assigned to every vertex and the
R-homomorphism Fv −→ Fw is a split epimorphism for every arrow v → w.

Lemma 2.3. Suppose Q is a locally finite quiver satisfying the property (∗).
Then there exists an equivalence of triangulated categories ̂ : K(Flat-Q) −→
K(Flatop-Q).

Proof. In view of the assumptions on Q, this follows by pursuing the argument
given in [2, pages 111-112].

3. Extending a Cotorsion Pair
Let us start with recalling the definition of a cotorsion pair in triangulated cate-
gories.

Definition 3.1. A cotorsion pair in a triangulated category T is a pair (A,B) of its
full subcategories that satisfy A⊥ = B and ⊥B = A. Such a cotorsion pair is said
to be complete if any object X of T fits into a triangle A −→ X −→ B −→ T (A)
where A ∈ A and B ∈ B.

There is also a notion of cotorsion pair in abelian categories. Both of these
concepts, being rather of the same essence, have proved very useful in studying
famous problems in various fields; see, e.g., [1, 6, 9]. The following lemma was
discovered in [10].

Lemma 3.2. ([10, Theorem 3.7]) For any ring R, there exists a complete cotorsion
pair

(Kp(Flat-R),K(dg-CotF-R)),

in K(Flat-R).

In this section we generalize this cotorsion pair to the homotopy category
K(Flat-Q) of flat representations of certain quivers Q.

Definition 3.3. A complex F ∈ K(Flat-Q) is called flat (or pure) provided F ∈
K(Proj-Q)

⊥, the orthogonal being taken in K(Flat-Q).
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The full subcategory of K(Flat-Q) consisting of pure complexes is denoted
Kp(Flat-Q). In order to obtain local characterizations for the objects in Kp(Flat-Q),
we make use of the following observation, made in [2, Lemma 2.10]. Any complex
P in K(Proj-Q), where Q is rooted, fits into a short exact sequence

0 −→ lim−→
δ<µ(Q)

kδλk
δ(P) −→ P −→ ⊕v∈Vµ(Q)

kvλ(P
v) −→ 0,

of complexes where, for each vertex v, Pv is the cokernel of the degree-wise split
monomorphism ⊕t(a)=vPs(a) −→ Pv. Indeed this comes up as an upshot of Lemma
2.1. Further this sequence splits at the representations level and thus turns into a
triangle

lim−→
δ<µ(Q)

kδλk
δ(P) // P // ⊕v∈Vµ(Q)

kvλ(P
v) ///o/o/o ,

in K(Proj-Q) by [18, Lemma 2.15]. Now if we assume instead that the quiver
satisfies the property (∗), then the same argument would apply to show that
the same short exact sequence exists for any F ∈ K(Flat-Q); we use this freely
throughout the paper.

The following proposition provides a local classification of pure complexes of
representations of a quiver in terms of the resulting vertex complexes.

Proposition 3.4. Let Q be a rooted quiver and let F ∈ K(Flat-Q). Then F ∈
Kp(Flat-Q) if and only if Fv ∈ Kp(Flat-R), for every vertex v of Q.

Proof. (⇒) It is known from Lemma 2.1 that for any vertex v of Q, Fv is a
complex of flat R-modules. Hence, according to definitions given before, we only
need to show that for any P ∈ K(Proj-R), HomK(R)(P,Fv) = 0. But, the adjoint
situation (kvλ, k

v) implies that the latter is isomorphic to HomK(Q)(k
v
λ(P),F) and

this vanishes by the assumption since, as stated above, the functor evλ preserves
projectivity and, consequently, kvλ(P) lies in K(Proj-Q).

(⇐) We exploit transfinite induction on µ(Q) to show that F ∈ Kp(Flat-Q).
For µ(Q) = 1, there is nothing to prove since in this case, the quiver is a discrete
one. Assume we are done for all rooted quivers Q′ with µ(Q′) < µ(Q). Take
P ∈ K(Proj-Q) and consider the triangle

lim−→
δ<µ(Q)

kδλk
δ(P) // P // ⊕v∈Vµ(Q)

kvλ(P
v) ///o/o/o , (∗)

in K(Proj-Q) provided by [2, Lemma 2.10], in which for any vertex v, Pv fulfills
the degree-wise split exact sequence

0 −→ ⊕t(a)=vPs(a) −→ Pv −→ Pv −→ 0, (∗∗)

in the category of complexes of projective R-modules. Firstly, the adjoint pair
(kvλ, k

v) besides the assumption gives that

HomK(Flat-Q)(k
v
λ(P

v), F) ≃ HomK(Flat-R)(P
v, Fv) = 0,
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for any v. Here we use that Pv ∈ K(Proj-R) by (∗∗). Let Q′ be the full subquiver
of Q with V (Q′) =

∪
α<µ(Q) Vα as its set of vertices, where the union is taken over

all ordinal numbers strictly less than µ(Q). Since Q is a rooted quiver, it is clear
that µ(Q′) < µ(Q) and it follows from the discussions given in [2, Remark 2.9]
that lim−→

δ<µ(Q)

kδλk
δ(P) = kQ

′

λ kQ
′
(P). Hence the adjoint situation (kQ

′

λ , kQ
′
) implies

that

HomK(Flat-Q)( lim−→
δ<µ(Q)

kδλk
δ(P), F) = HomK(Flat-Q)(k

Q′

λ kQ
′
(P),F)

≃ HomK(Flat-Q′)(k
Q′
(P), kQ

′
(F)) = 0,

where we make use of the fact that, by Lemma 2.1, kQ
′
(P) is a complex of pro-

jective representations of the quiver Q′ and that, by the induction hypothesis,
kQ

′
(F) lies in Kp(Flat-Q′) as µ(Q′) < µ(Q). Therefore, applying the cohomolog-

ical functor HomK(Flat-Q)(−,F) on the triangle (∗) gives HomK(Flat-Q)(P,F) = 0,
as required.

The following corollary extends the nice characterization of pure complexes
given in [20, Theorem 8.6] to the setting of infinite quivers.

Corollary 3.5. Let Q be a rooted quiver and F ∈ K(Q). Then F ∈ Kp(Flat-Q)
if and only if it is an exact complex of representations of Q with flat syzygies.

Proof. The sufficiency is an immediate consequence of Proposition 3.4 and Lemma
2.1. For the necessity, suppose F ∈ Kp(Flat-Q). By Proposition 3.4, for any vertex
v, Fv ∈ Kp(Flat-R) and, accordingly, F is an exact complex of flat representations

of Q. Now if K is the i-th syzygies of F : · · · → F i di

→ F i+1 → · · · then, for any
v, there exists a short exact sequence of complexes displayed by the commutative
diagram

0

��

0

��

0

��
0 // ⨿

t(a)=v Ks(a)

��

// ⨿
t(a)=v F

i
s(a)

��

⨿
t(a)=v dis(a) // ⨿

t(a)=v F
i+1
s(a)

��

// · · ·

0 // Kv
//

��

F i
v

div //

��

F i+1
v

//

��

· · ·

0 // Jv
//

��

J i
v

//

��

J i+1
v

//

��

· · ·

0 0 0
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where the top two rows are exact, the bottom row arises from the cokernels, and
the vertical maps are the obvious ones. Hence also the bottom row is exact and
therefore the monomorphism Jv → J i

v is pure because the other two rows lie in
Kp(Flat-R) as already pointed out; see [20, Corollary 9.4]. This shows that Jv
is a flat R-module as J i

v is. Moreover, Lemma 2.1 combined to the commutativ-
ity of the leftmost top square shows that the R-map

⨿
t(a)=v Ks(a) −→ Kv is a

monomorphism. Now Lemma 2.1 gives that K is indeed a flat representation of
Q, completing the proof.

Definition 3.6. A complex X ∈ K(Q) of cotorsion representations of a quiver Q
is said to be dg-cotorsion if it satisfies Ext1Q(F , X ) = 0 for any pure complex F
of representations of Q.

The following proposition provides a local classification of dg-cotorsion flat
complexes of representations of quivers.

Proposition 3.7. Let Q be a rooted quiver and X ∈ K(Flat-Q). If X ∈
K(dg-CotF-Q), then Xv ∈ K(dg-CotF-R), for any vertex v of Q. Moreover, if
Q satisfies the property (∗), then also the converse holds.

Proof. From Corollary 3.5, it is easy to see that the functors kvλ preserve purity.
So the first statement follows again from the adjoint situation (kvλ, k

v) in view of
Lemma 2.1. To see the converse, we need to settle that for any F ∈ Kp(Flat-Q),
Ext1Q(F ,X ) = 0, for which we establish an induction on µ(Q). Consider the short
exact sequence

0 −→ lim−→
δ<µ(Q)

kδλk
δ(F) −→ F −→ ⊕v∈Vµ(Q)

kvλ(F
v) −→ 0, (†)

where, for any v, Fv is defined by the short exact sequence

0 −→ ⊕t(a)=vFs(a) −→ Fv −→ Fv −→ 0,

of complexes. Assume that the subquiver Q′ of Q is defined as in Proposition 3.4.
Then µ(Q′) < µ(Q) and lim−→

δ<µ(Q)

kδλk
δ(F) = kQ

′

λ kQ
′
(F). We also notice that the

adjoint isomorphisms coming up by the adjoint pairs (kQ
′

λ , kQ
′
) and (kvλ, k

v) easily
extend to isomorphisms between corresponding Exti(−,−) groups. Thus from the
induction hypothesis and Proposition 3.4 one obtains that Ext1Q(k

Q′

λ kQ
′
(F),X ) ≃

Ext1Q′(kQ
′
(F), kQ

′
(X )) = 0. Also, from Proposition 3.4 and the latter sequence

one gets Fv ∈ Kp(Flat-R). So Ext1Q(k
v
λ(F

v),X ) ≃ Ext1R(F
v,Xv) = 0 according to

the assumption. Now write the long exact sequence of ExtQ(−,−) arising from
the short exact sequence (†) and use the aforementioned isomorphisms besides
Lemma 2.1 to deduce that Ext1Q(F ,X ) = 0; that is, X ∈ K(dg-CotF-Q).

The main result of this section reads as:
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Theorem 3.8. Suppose Q is a locally finite quiver satisfying the property (∗).
Then there exists a complete cotorsion pair (Kp(Flat-Q),K(dg-CotF-Q))
in K(Flat-Q).

Proof. The proof goes ahead in two steps. The first step shows that Kp(Flat-Q)
⊥
=

K(dg-CotF-Q), the orthogonal being taken is K(Flat-Q). By definitions, we only
need to see that Kp(Flat-Q)

⊥ ⊆ K(dg-CotF-Q). But by Lemma 2.1, this amounts
to showing that for any F ∈ Kp(Flat-Q)

⊥ and any vertex v of Q, Fv is lo-
cally represented by cotorsion R-modules. Lemma 3.2 yields that we are done
if Fv ∈ Kp(Flat-R)

⊥. For take some F′ ∈ Kp(Flat-R). Then there is an adjoint
isomorphism

HomK(Flat-R)(F
′,Fv) ≃ HomK(Flat-Q)(k

v
λ(F

′),F) = 0,

where the latter Hom vanishes because the functor kvλ preserves purity.
The next step is to settle that Kp(Flat-Q) = ⊥K(dg-CotF-Q) and it suffices

to verify only the inclusion ⊥K(dg-CotF-Q) ⊆ Kp(Flat-Q). Choose a vertex v
and some G ∈ K(Flat-Q) such that G ∈ ⊥K(dg-CotF-Q). Then for any K ∈
K(dg-CotF-R), there exist isomorphisms

HomK(Flat-R)(Ĝv,K) ≃ HomK(Flatop-Q)(Ĝ, kvρ(K)) ≃ HomK(Flat-Q)(G, kvλ(K)), (∗)

where we are using Lemma 2.3 and the adjoint isomorphism provided by the
adjoint pair (kv, kvρ). The claim now is that kvλ(K) ∈ K(dg-CotF-Q). That it is
a complex of cotorsion flat representations of Q follows from Lemma 2.1 because
the quiver is supposed to be locally finite. On the other hand, if L ∈ Kp(Flat-Q),
then another application of 2.3 yields the isomorphisms

HomK(Flat-Q)(L, kvλ(K)) ≃ HomK(Flatop-Q)(L̂, kvρ(K))

≃ HomK(Flat-R)(L̂v,K)

= 0,

where the vanishing of the latter Hom follows from Proposition 3.4 and K being
in K(dg-CotF-R). By virtue of these computations, we deduce that kvλ(K) ∈
K(dg-CotF-Q); therefore Ĝv ∈ Kp(Flat-R) for any vertex v according to (∗) and
Lemma 3.2.

Now consider the short exact sequences

0 // ⊕t(a)=vGs(a)
// Gv

// Gv // 0 ,

and
0 // Gv // Ĝv

// ⊕s(a)=vĜt(a)
// 0 ,
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arising from the definition of the functor ̂ : K(Flat-Q) −→ K(Flatop-Q) and
note that the second one combined to what we have proved so far gives Gv ∈
Kp(Flat-R) for all vertices v of Q. Since for any v ∈ V1, Gv = Gv, one may apply
the first sequence above in conjunction with transfinite induction to show that
Gv ∈ Kp(Flat-R) for any vertex v. Hence, Proposition 3.4 gives G ∈ Kp(Flat-R).

Finally, that this cotorsion pair is complete follows from [13, Proposition 4.2]
and [14, Corollary 4.10].

4. Compact Objects of K(dg-CotF-Q)

As stated before, this section provides a classification of compact objects of the tri-
angulated category K(dg-CotF-Q) in terms of resulting vertex-complexes. Let us
recall that an object X in a triangulated category T with small coproducts is said
to be compact if the functor HomT (X,−) commutes with categorical coproducts
in T .

The following is a preparatory, independently interesting, lemma. Prior to
giving it, we need to recall from [10, Proposition 4.1] that for a family {Ci}i∈I of
objects in K(dg-CotF-R), indexed over a set I, the categorical coproduct of this
family exists and is isomorphic, in K(dg-CotF-R), to an object C that embeds
into a triangle

⨿
pw

Ci
α // C

β // F
γ // Σ−1

⨿
pw

Ci,

where
⨿
pw

Ci is the pointwise coproduct of the complexes Ci in K(Flat-R), and

F ∈ Kp(Flat-R). Since the existence of this triangle relies on the existence of the
complete cotorsion pair

(Kp(Flat-R),K(dg-CotF-R)),

in K(Flat-R), provided by Lemma 3.2, it is possible to pursue the argument given
in [10, Proposition 4.1] in conjunction with Theorem 3.8 to deduce that the same
statement holds for K(dg-CotF-Q); namely, if Q is a locally finite quiver satisfying
the property (∗), then K(dg-CotF-Q) has categorical coproducts that are given via
the same triangle as mentioned above.

Lemma 4.1. Let Q be a locally finite quiver satisfying the property (∗). Assume
{Ci}i∈I is a family of objects in K(dg-CotF-R), indexed over a set I, and let C
be its categorical coproduct, as mentioned above. Then for any vertex v of Q,⨿

i k
v
λ(Ci) ≃ kvλ(C) as objects in K(dg-CotF-Q).

Proof. Note that kvλ(Ci), i ∈ I, and kvλ(C) both lie in K(dg-CotF-Q) by Proposi-
tion 3.7. Hence, as mentioned above, one is given two triangles
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⨿
pw

Ci
α // C

β // F
γ // Σ−1

⨿
pw

Ci,

and

⨿
pw

kvλ(Ci)
f // W

g // T h// Σ−1
⨿
pw

kvλ(Ci), (∗)

respectively in K(Flat-R) and K(Flat-Q) where C ∈ K(dg-CotF-R), F ∈ Kp(Flat-R),
W ∈ K(dg-CotF-Q), and T ∈ Kp(Flat-Q). Since kvλ is a triangulated functor, the
first triangle above provides us with a triangle

⨿
pw

kvλ(Ci)
kv
λ(α) // kvλ(C)

kv
λ(β) // kvλ(F)

kv
λ(γ) // Σ−1

⨿
pw

kvλ(Ci) , (∗∗)

in K(Flat-Q). Since W ∈ K(dg-CotF-Q) and kvλ(F) ∈ Kp(Flat-Q) by Corollary
3.5, Theorem 3.8 via applying the functor HomK(Flat-Q)(k

v
λ(F),−) on the triangle

(∗) gives an isomorphism

h∗ : HomK(Flat-Q)(k
v
λ(F), T ) ≃ HomK(Flat-Q)(k

v
λ(F),Σ

−1
⨿
pw

kvλ(Ci)).

Hence, corresponding to kvλ(γ) one obtains a map t : kvλ(F) −→ T with ht = kvλ(γ).
Using the axioms of triangulated categories, we may complete this to a triangle

kvλ(F)
t // T // Y // Σ−1 kvλ(F), (∗ ∗ ∗)

in K(Flat-Q). Now apply the Octahedral Axiom [19, Proposition 1.4.6] to form
the commutative diagram

⨿
pw

kv
λ(Ci)

kv
λ(α) //

=

��

kv
λ(C)

kv
λ(β) //

��

kv
λ(F)

kv
λ(γ) //

t

��

Σ−1 ⨿
pw

kv
λ(Ci)

=

��⨿
pw

kv
λ(Ci)

f //

��

W
g //

��

T h //

��

Σ−1 ⨿
pw

kv
λ(Ci)

��
0 //

��

Y = //

��

Y //

��

0

��
Σ−1 ⨿

pw

kv
λ(Ci) // Σ−1kv

λ(C) // Σ−1kv
λ(F) // Σ−2 ⨿

pw

kv
λ(Ci)
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all of whose rows and columns are triangles. Apply now the triangle (∗ ∗ ∗) to
deduce that Y lies in Kp(Flat-Q) because the other two entries do. On the other
hand, since kvλ(C) ∈ K(dg-CotF-Q), the triangle

kvλ(C) // W // Y // Σ−1kvλ(F) ,

comes to our aid to settle that Y ∈ K(dg-CotF-Q). Thus Theorem 3.8 reveals that
Y ≃ 0 in K(Flat-Q). Therefore

⨿
i k

v
λ(Ci) = W ≃ kvλ(C) in K(dg-CotF-Q).

The following theorem is the main result of this section.

Theorem 4.2. Suppose Q is a locally finite quiver satisfying the property (∗) and
let X ∈ K(dg-CotF-Q). Then X is compact if and only if for any vertex v of Q,
Xv is compact as an object in K(dg-CotF-R).

Proof. We must point out firstly that this theorem makes sense in view of Propo-
sition 3.7. Assume first that X is a compact object in K(dg-CotF-Q) and take
a family {Ci}i∈I of objects in K(dg-CotF-R) indexed over a set I. If C is the
categorical coproduct of this family in K(dg-CotF-R), then for any vertex v of Q,
there exist a sequence of isomorphisms

HomK(dg-CotF-R)(Xv,C) ≃ HomK(dg-CotF-Q)(X , kvλ(C))

≃ HomK(dg-CotF-Q)(X ,
⨿
i

kvλ(Ci))

≃
⨿
i

HomK(dg-CotF-Q)(X , kvλ(Ci))

≃
⨿
i

HomK(dg-CotF-R)(Xv,Ci),

where the first isomorphism makes sense by Proposition 3.7 and the adjoint situa-
tion (kvλ, k

v), while the second and the third one follow respectively from Lemma
4.1 and our assumption.

Suppose conversely that Xv is a compact object in K(dg-CotF-R) for any vertex
v. Consider the short exact sequence

0 −→ lim−→
δ<µ(Q)

kδλk
δ(X ) −→ X −→ ⊕v∈Vµ(Q)

kvλ(X
v) −→ 0, (∗)

of complexes of representations of Q where, for any v, Xv is defined by the short
exact sequence

0 −→ ⊕t(a)=vXs(a) −→ Xv −→ Xv −→ 0. (∗∗)

Note that the sequence (∗∗) in conjunction with locally finiteness of Q and Lemma
2.1 yields that Xv is a complex of cotorsion flat R-modules for any vertex v;
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in particular, this makes (∗∗) into a degree-wise split sequence of R-complexes.
Hence, indeed, (∗∗) turns into a triangle

⊕t(a)=vXs(a)
// Xv

// Xv ///o/o/o ,

in K(dg-CotF-R), by [18, Lemma 2.15], from which one obtains that Xv is a
compact object in K(dg-CotF-R) according to our hypothesis. This, in turn, gives
that ⊕v∈Vµ(Q)

kvλ(X
v) lies in the subcategory of compact objects in K(dg-CotF-Q)

by the adjoint situation (kvλ, k
v). On the other hand, if we set Q′ be the subquiver

of Q as defined in Proposition 3.4, we get that lim−→
δ<µ(Q)

kδλk
δ(X ) = kQ

′

λ kQ
′
(X )

and µ(Q′) < µ(Q). Therefore, a straightforward transfinite induction on µ(Q)

implies that kQ
′

λ kQ
′
(X ) is also a compact object in K(dg-CotF-Q); here we also

use Proposition 3.7. But we also get from definition of Q′ and Lemma 2.1 that
the sequence (∗) splits at the representations level, thus turns into a triangle

kQ
′

λ kQ
′
(X ) // X // ⊕v∈Vµ(Q)

kvλ(X
v) ///o/o/o ,

in K(dg-CotF-Q). This triangle simply gives that X is also compact in
K(dg-CotF-Q).
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