On Vertex-Uniprimitive Non-Cayley Graphs of Order pq

Mohammad Ali Iranmanesh*

Abstract

Let p and q be distinct odd primes. Let $\Gamma = (V(\Gamma), E(\Gamma))$ be a non-Cayley vertex-transitive graph of order pq. Let $G \leq \operatorname{Aut}(\Gamma)$ acts primitively on the vertex set $V(\Gamma)$. In this paper, we show that G is uniprimitive which is primitive but not 2-transitive and we obtain some information about p, qand the minimality of the Socle $T = \operatorname{Soc}(G)$.

Keywords: uniprimitive group, non-Cayley graph, socle

2010 Mathematics Subject Classification: Primary 20B20, Secondary 05C25.

How to cite this article

M. A. Iranmanesh, On vertex-uniprimitive non-Cayley graphs, *Math. Interdisc. Res.* 5 (2020) 315–319.

1. Introduction

Let $\Gamma = (V(\Gamma), E(\Gamma))$ or simply Γ be a finite, simple and undirected graph. We denote by Aut(Γ), the automorphism group of Γ and we say that Γ is vertextransitive if Aut(Γ) acts transitively on $V(\Gamma)$. The cardinality of $V(\Gamma)$ is called the order of the graph. For a group G and a subset S of G such that $1_G \notin S$ and $S^{-1} = S$, the Cayley graph $\Gamma = \operatorname{Cay}(G, S)$ is defined to have vertex set G and for $g, h \in G, \{g, h\}$ is an edge if and only if gs = h foe some $s \in S$. Every Cayley graph is a vertex-transitive graph and conversely, see [1], a vertex-transitive graph is isomorphic to a Cayley graph for some group if and only if its automorphism group has a regular subgroup on vertices.

By \mathcal{NC} we denote the set of positive integers n for which there exists a vertextransitive non-Cayley graph on n vertices which is not a Cayley graph. In [9],

DOI: 10.22052/mir.2020.240329.1249

O2020 University of Kashan

E This work is licensed under the Creative Commons Attribution 4.0 International License.

^{*}Corresponding author (E-mail: iranmanesh@yazd.ac.ir) Academic Editor: Ali Reza Ashrafi

Received 18 October 2020, Accepted 27 November 2020

Marušič proposed the determination of \mathcal{NC} and in [10], he proved that $p, p^2, p^3 \notin \mathcal{NC}$ for prime p. Mckay and Praeger settled the status of all non-square-free numbers n are in \mathcal{NC} , with the exceptions $n = 12, n = p^2, n = p^3, p$ prime and they finished the characterization of non-Cayley numbers which are the product of two distinct primes (see [7, 8]). The following theorem characterize all numbers $n = pq \in \mathcal{NC}$ where p, q are distinct primes.

Theorem 1.1. [8, Theorem 1] Let p < q be primes. Then $pq \in \mathcal{NC}$ if and only if one of the following holds.

- (1) p^2 divides q-1;
- (2) q = 2p 1 or $q = \frac{p^2 + 1}{2}$;
- (3) $q = 2^{t} + 1$ and either p divides $2^{t} 1$ or $p = 2^{t-1} 1$;
- (4) $q = 2^t 1$ and $p = 2^{t-1} + 1;$

```
(5) pq = 7.11.
```

For characterization of non-Cayley number which are the product of three distinct primes we refer to [4, 5, 13].

Suppose that a group G acting on a set V transitively. We say that a partition Σ of V is G-invariant if G permutes the blocks of Σ . A transitive action of G on V is said to be primitive if all G-invariant partitions of V are trivial. A primitive permutation group which is not 2-transitive is said to be uniprimitive. Also a transitive permutation group is said to be minimal transitive if all of its proper subgroups are intransitive. Suppose that Γ is a graph of order pq. In this paper we prove that if $G \leq \operatorname{Aut}(\Gamma)$ acts primitively on the vertex set of Γ , then either Γ is a Cayley graph or G is uniprimitive and when $pq \notin \mathcal{NC}$ then $T = \operatorname{Soc}(G)$ is not minimal transitive.

2. Primitive Permutation Groups of Degree pq

First, we investigate primitive permutation groups of order pq which are 2-transitive.

Proposition 2.1. Let p and q be distinct odd primes such that p < q and suppose that G, a subgroup of S_{pq} , is 2-transitive of degree pq with Socle T. Then T is a non-abelian simple group and is one of the group listed below.

(i)
$$T = A_{pq};$$

- (*ii*) T = PSL(n, s) and $pq = \frac{s^n 1}{s 1}$;
- (*iii*) $T = PSU(3, 2^{a})$ and $p = 2^{a} + 1, q = 2^{2a} 2^{a} + 1;$

- (*iv*) T = Sz(8) and p = 5, q = 13;
- (v) $T = A_7$ and p = 3, q = 5.

Also in case (i) and (ii) for some but not all p and q, we have $pq \in \mathcal{NC}$. In case (iii), $pq \notin \mathcal{NC}$ except where p = 5, q = 13 and in case (v), $pq \notin \mathcal{NC}$ and in case (iv), $pq \in \mathcal{NC}$.

Proof. By the "O'Nan-Scott Theorem" [12], G is almost simple, that is, G has a unique minimal normal subgroup T which is a non-abelian simple group. All possibilities for the socle of almost 2-transitive groups are given for example in [2]. Note that in case (iv) we have the Suzuki groups Sz(q) with $s = 2^{2a+1} = \frac{r^2}{2} \ge 8$. In this case $pq = s^2 + 1 = (s+r+1)(s+r-1)$. Thus 5 divides pq and hence p = 5 and q = 1. From Theorem 1.1 we conclude that in case (iv), $pq \in \mathcal{NC}$ and in case (iii), $pq \in \mathcal{NC}$ if and only if a = 2, p = 5 and q = 13.

Now we deal with the primitive permutation groups of degree pq which are not 2-transitive, that is, the uniprimitive permutation groups of degree pq.

Proposition 2.2. Let p and q be distinct odd primes such that p < q. Suppose that G, is a uniprimitive permutation subgroup of S_{pq} , of degree pq with Socle T. Then T is a non-abelian simple group and Table 1 contains all the possibilities for T, p and q.

Proof. A similar argument to the proof of Proposition 2.1, we conclude that T is a non-abelian simple group. All possibilities for the socle of uniprimitive permutation groups of degree pq are given in [11] based on [6] which are listed in Table 1.

T	q	p		q	p
A_q	$q \ge 5$	$\frac{q-1}{2}$	PSL(2, 19)	19	3
A_{q+1}	$q \ge 5$	$\frac{q\mp 1}{2}$	PSL(2, 29)	29	7
A_7	7	$\overline{5}$	PSL(2, 59)	59	29
PSL(4,2)	7	5	PSL(2, 61)	61	31
PSL(5,2)	31	5	PSL(2, 23)	23	11
$PSp(4, 2^a)$	$2^{2a} + 1$	$2^{a} + 1$	PSL(2, 11)	11	5
$\Omega^{\pm}(2n,2)$	$2^n \mp 1 > 7$	$2^{n-1} \pm 1$	PSL(2, 13)	13	7
PSL(2,q)	$q \ge 13$	$\frac{q+1}{2}$	M_{23}	23	11
$\mathrm{PSL}(2,q)$	$q \geq 7$	$\frac{q-1}{2}$	M_{22}	11	7
$PSL(2, p^2)$	$q = \frac{p^2 + 1}{2}$	р	M_{11}	11	5

Table 1: Socle of uniprimitive groups of degree pq.

3. Uniprimitive Graphs of Order pq

In this section we prove that there is no any non-Cayley graph of order pq which admits a 2-transitive subgroup of automorphisms.

Theorem 3.1. Let p and q be distinct odd primes and $\Gamma = (V(\Gamma), E(\Gamma))$ be a vertex-transitive graph of order pq. Suppose that there exists a subgroup G of $Aut(\Gamma)$ which acts 2-transitively on $V(\Gamma)$. Then Γ is a Cayley graph.

Proof. Let Γ be a vertex-transitive graph of order pq and suppose that $G \leq \operatorname{Aut}(\Gamma)$ is 2-transitive on $V(\Gamma)$. If Γ be an empty graph of order pq, then obviously Γ is a Cayley graph. So we may assume that there exist $x, y \in V(\Gamma)$, such that $\{x, y\} \in E(\Gamma)$. Since G is doubly transitive on $V(\Gamma)$, there exists $g \in G$, such that $x^g = x'$ and $y^g = y'$. Thus $\{x, y\}^g = \{x', y'\} \in E(\Gamma)$. This shows that Γ is a complete graph and the proof is complete. \Box

Corollary 3.2. Let Γ be a non-Cayley vertex-transitive graph of order pq. If $G \leq \operatorname{Aut}(\Gamma)$ acts primitively on $V(\Gamma)$, then G is uniprimitive and $T = \operatorname{Soc}(G)$ is one of the group listed in Table 2. Also if $pq \notin \mathcal{NC}$, then T is not minimal transitive.

Proof. The first part is direct consequence of Theorem 3.1. If $pq \notin \mathcal{NC}$, then T is one of the groups in Table 2. For each line we see that T has a transitive subgroup isomorphic to a Frobenius group of order pq. This can be shown by using [3]. \Box

T	q	p
A_q	$q \ge 5$	$\frac{q-1}{2}$
$PSL(\hat{5},2)$	31	$\overline{5}$
PSL(2,q)	$q \ge 7$	$\frac{q-1}{2}$
PSL(2, 29)	29	$ \bar{7}$
PSL(2, 59)	59	29
PSL(2, 23)	23	11
PSL(2, 11)	11	5
M_{23}	23	11
M_{11}	11	5

Table 2: Socle of uniprimitive groups of degree pq where $pq \notin \mathcal{NC}$.

Confilcts of Interest. The author declares that there are no conflicts of interest regarding the publication of this article.

References

- N. L. Biggs, Algebraic Graph Theory, Cabridge University Press, New York, 1974.
- [2] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981) 1 – 22.
- [3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, An Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [4] A. Hassani, M. A. Iranmanesh and C. E. Praeger, On vertex-imprimitive graphs of order a product of three distinct odd primes, J. Combin. Math. Combin. Comput. 28 (1998) 187 – 213.
- [5] M. A. Iranmanesh and C. E. Praeger, On non-Cayley vertex-transitive graphs of order a product of three primes, J. Combin. Theory B 81 (2001) 1 – 19.
- [6] M. W. Liebeck and J. Saxl, Primitive permutation groups containing an element of large prime order, J. London Math. Soc. 31 (2) (1985) 237 – 249.
- [7] B. D. Mckay and C. E. Praeger, Vertex-transitive graphs which are not Cayley graphs I, J. Austral. Math. Soc. 56 (1994) 53 – 63.
- [8] B. D. Mckay and C. E. Praeger, Vertex-transitive graphs which are not Cayley graphs II, J. Graph Theory 22 (1996) 321 – 334.
- [9] D. Marušič, Cayley properties of vertex symmetric graphs, Ars. Combin. 16B (1983) 297 - 302.
- [10] D. Marušič, Vertex-transitive graphs and digraphs of order p^k, Ann. Disc. Math. 27 (1985) 115 – 128.
- [11] D. Marušič, R. Scapellato and B. Zgrablič, On quasiprimitive pqr-graphs, Algebra Coll. 2 (1995) 295 – 314.
- [12] C. E. Praeger, An O'Nan-Scott Theorem for finite quasiprimitive permutation groups, and an application to 2-transitive groups, J. London. Math. Soc. 47 (2) (1993) 227 - 239.
- [13] A. Seress, On vertex-transitive non-Cayley graphs of order *pqr*, *Discrete Math.* 182 (1998) 279 – 292.

Mohammad Ali Iranmanesh Department of Mathematical Science Yazd University Yazd, 89195-741, I. R. Iran e-mail: iranmanesh@yazd.ac.ir