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F -Hypergroups of Type U on the Right

Mehdi Farshi, Bijan Davvaz ⋆ and Fatemeh Dehghan

Abstract

In this paper, first we introduce F -hypergroups of type U on the right.
We will prove that every right scalar identity of an F -hypergroup of type
U on the right of size ≤ 5 is also a left identity. Also, we will classify F -
hypergroups of type U on the right of order 2 or 3 up to an isomorphism.
Then, we will study cyclic F -semihypergroups and finally by using regular
relations we construct right reversible quotient F -hypergroups.
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1. Introduction and Basic Definitions
In this section, after expressing a short history of hyperstructure theory and fuzzy
set theory, we will offer all definitions we require of fuzzy hyperstructures. In
1934, F. Marty has introduced algebraic hyperstructures as a natural extension
of classical algebraic structures [18]. He defined hypergroups, investigated their
properties and applied them to groups and rational algebraic functions. The prin-
cipal notion of hypergroup theory and some examples can be found in [1, 2, 4, 20].
In 1984, hypergroups of type U on the right right were introduced in [16] to an-
alyze certain hypergroups obtained as quotient sets. That class includes that of
hypergroups of type C on the right, cogroups and that of quotient hypergroups
G/g of a group G with respect to a non-normal subgroup g ⊆ G (D-hypergroups).
In (D-hypergroups). In [19], the concept of the category of hypergroups of type U
on the right is introduced, and some result already known in the field of homology
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of abelian groups are extended to non-commutative groups, while in the latter, the
analysis of relationships existing between hypergroups of type U and hypergroups
of double cosets is furthered. Later, this topic studied by De Salvo, Fasino, Freni,
Lo Faro, etc (see [6, 7, 8, 10, 11]). The hypergroups H of type U on the right can
be classified in terms of the family Pϵ = {ϵx | x ∈ H}, where ϵ ∈ H is the right
scalar identity. If H has size six, then in [5] Davvaz and Bardestani showed that
there exist twelve cases for the family Pϵ.

Following the introduction of fuzzy set by Zadeh in 1965 [21], fuzzy set theory
has made remarkable progress. Many mathematicians have used this concept in
different branches of mathematics. The notion of fuzzy polygroup (F -polygroup)
has been introduced by Zahedi and Hasankhani in [22, 23]. In [3], Davvaz intro-
duced the notion of n-ary F -polygroups which is a generalization of ideas presented
by Zahedi and Hasankhani. Afterwards, Farshi and Davvaz, generalized the classi-
cal isomorphism theorems of groups to Fn-polygroups [13]. In [12], the concept of
Fn-hypergroups is introduced and some related properties are investigated. Now,
we express all definitions that we will use in this article.

Let H be a non-empty set. Each mapping µ : H −→ [0, 1] is called a fuzzy
subset of H. We define the support of µ by supp(µ) = {x ∈ H | µ(x) > 0}. An
empty fuzzy subset of H denoted by ∅ is the zero function from H to [0, 1]. Clearly,
we have supp(∅) = ∅. The set of all non-empty fuzzy subsets of H will be denoted
by I∗(H). If A ⊆ H and t ∈ [0, 1], then by At we mean a fuzzy subset of H which
is defined as follows:

At(x) =

{
t if x ∈ A,
0 if x ∈ H\A.

In particular, if A is a singleton set, say {a}, then {a}t is said to be a fuzzy
point and is denoted by at, briefly. In fact χH , the characteristic function of
H, is equal to Ht whenever t = 1. For fuzzy subsets µ and η of H we define
(µ ∪ ν)(x) = max{µ(x), ν(x)} and (µ ∩ ν)(x) = min{µ(x), ν(x)}. Let {µα | α ∈
Λ} be a collection of fuzzy subsets of H, where Λ is a non-empty indexed set.
Then, we define (

∪
α∈Λ

µα)(x) =
∨

α∈Λ

{µα(x)}, where
∨

denotes supremum. An F -

hyperoperation (or fuzzy hyperoperation) on H is a function ◦ : H×H −→ I∗(H),
i.e., x ◦ y is a non-empty fuzzy subset of H, for all x, y ∈ H. Let µ, ν ∈ I∗(H) and
x ∈ H. Then, µ◦ν denotes

∪
w∈supp(µ),z∈supp(ν)

w◦z and x◦ν denotes
∪

y∈supp(ν)
x◦y.

Moreover, for non-empty subsets A and B of H, x ◦ A denotes x ◦ χA, µ ◦ A
denotes µ ◦ χA and A ◦ B denotes χA ◦ χB . A couple (H, ◦), where ◦ is an F -
hyperoperation on H, is called an F -hypergroupoid. An F -hypergroupoid (H, ◦)
is called an F -semihypergroup if ◦ is associative, i.e., x ◦ (y ◦ z) = (x ◦ y) ◦ z,
for all x, y, z ∈ H. An F -semihypergroup (H, ◦) is called an F -hypergroup if
supp(x ◦ H) = supp(H ◦ x) = H, for all x ∈ H. This condition is called the
reproduction axiom. A non-empty subset K of an F -semihypergroup (H, ◦) is
called an F -subsemihypergroup if supp(K ◦K) ⊆ K. In the case that (H, ◦) is an
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F -hypergroup, K is called an F -subhypergroup if supp(K ◦x) = supp(x ◦K) = K,
for all x ∈ K. Whenever an F -hypergroup (H, ◦) contains an element e with the
property that, for all x ∈ H, one has x ∈ supp(x◦e) (resp. x ∈ supp(e◦x)), then we
say that e is a right identity (resp. left identity) element of H. An identity element
is a left and right identity element. If supp(x ◦ e) = {x} (resp. supp(e ◦x) = {x}),
for all x ∈ H, then e is called a right scalar identity (resp. left scalar identity).
Finally, an F -semihypergroup (H, ◦) is called an F -polygroup if the following three
conditions are satisfied: (i) there exists e ∈ H such that x ∈ supp(x ◦ e ∩ e ◦ x),
for every x ∈ H, (ii) for each x ∈ H, there exists a unique element x−1 ∈ H such
that e ∈ supp(x ◦ x−1 ∩ x−1 ◦ x), (iii) z ∈ supp(x ◦ y) ⇒ x ∈ supp(z ◦ y−1) ⇒ y ∈
supp(x−1◦z), for every x, y, z in H. Clearly, each F -polygroup is an F -hypergroup.

2. F -Semihypergroups of Type U on the Right

In this section we introduce the notion of F -semihypergroups of type U on the
right, giving several examples that illustrate the importance of this new fuzzy
hyperstructure.

Definition 2.1. An F -semihypergroup (H, ◦) is said to be of type U on the right
if it fulfills the following conditions:

(1) H has a right scalar identity element e,

(2) x ∈ supp(x ◦ y) implies that y = e, for all x, y ∈ H.

We shall use the notation (H, ◦, e) to say that e is a right scalar identity element.

Example 2.2. Let (H, ◦) be an F -polygroup in which for all x ∈ H we have
supp(x ◦ e) = {x} and supp(x−1 ◦ x) = {e}. Then, (H, ◦, e) is an F -hypergroup of
type U on the right.

Example 2.3. Let H = {e, a, b}. Then, the following table shows an F -polygroup
structure on H which is not an F -hypergroup of type U on the right.

◦ e a b

e e
1 ,

a
0 ,

b
0

e
0 ,

a
1 ,

b
0

e
0 ,

a
0 ,

b
1

a e
0 ,

a
1 ,

b
0

e
0 ,

a
1 ,

b
0

e
1 ,

a
1 ,

b
1

b e
0 ,

a
0 ,

b
1

e
1 ,

a
1 ,

b
1

e
0 ,

a
0 ,

b
1

Next example is a fuzzy version of an example of [14].
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Example 2.4. Let H be a set with at least 2 elements and choose an element
e ∈ H. Let t ∈ (0, 1]. We define an F -hyperoperation ∗t on H as follows:

(x ∗t y)(z) =


t if y = e, z = x
0 if y ̸= e, z = x
0 if y = e, z ̸= x
t if y ̸= e, z ̸= x

, for all x, y, z ∈ H.

It is easy to check that (H, ∗t) is an F -hypergroup of type U on the right and that
for all y ∈ H\{e} and all x ∈ H we have supp(x ∗t y) = H\{x}.

Example 2.5. Let t1, t2, t3 ∈ (0, 1]. Then, the following tables denote F -hypergroups
of type U on the right structure on Z2 and Z3, respectively.

◦ 0 1

0 0
t1
, 1
0

0
0 ,

1
t2

1 0
0 ,

1
t2

0
t1
, 1
0

◦ 0 1 2

0 0
t1
, 1
0 ,

2
0

0
0 ,

1
t2
, 2
0

0
0 ,

1
0 ,

2
t3

1 0
0 ,

1
t2
, 2
0

0
0 ,

1
0 ,

2
t3

0
t1
, 1
0 ,

2
0

2 0
0 ,

1
0 ,

2
t3

0
t1
, 1
0 ,

2
0

0
0 ,

1
t2
, 2
0

We denote them by Z2(t1, t2) and Z3(t1, t2, t3), respectively.

Next example is a fuzzy version of an example in section 2-2 of [15].

Example 2.6. Let S3/S2 be the set of all cosets of the subgroup S2 = ⟨(1 2)⟩
of the symmetric group S3, i.e., S3/S2 = {S2, (1 3)S2, (2 3)S2}. Let t1, t2 and t3
be arbitrary elements of (0, 1]. Set e = S2, x = (1 3)S2, and y = (2 3)S2. Then,
S3/S2 with the following table is an F -hypergroup of type U on the right which
we denote by S3/S2(t1, t2, t3).

◦ e x y

e e
t1
, x
0 ,

y
0

e
0 ,

x
t2
, y
t3

e
0 ,

x
t2
, y
t3

x e
0 ,

x
t2
, y
0

e
t1
, x
0 ,

y
t3

e
t1
, x
0 ,

y
t3

y e
0 ,

x
0 ,

y
t3

e
t1
, x
t2
, y
0

e
t1
, x
t2
, y
0

Example 2.7. Let t be an arbitrary element of (0, 1] and G be a group. We define
an F -hyperoperation ◦ on G as follows:

(x ◦ y)(z) = et(xyz
−1), for all x, y, z ∈ G.

It is easy to check that ◦ induces an F -hypergroup of type U on the right structure
on G, where et is a fuzzy point of G.
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Lemma 2.8. Let (H, ◦, e) be an F -hypergroup of type U on the right. Then, for
all x, y, z, t ∈ H the following assertions hold:

(1) supp(e ◦ x) = supp(e ◦ y) implies that supp(z ◦ x) = supp(z ◦ y).

(2) x ∈ supp(e ◦ y) implies that supp(z ◦ x) ⊆ supp(z ◦ y).

(3) If supp(e ◦ x) = {x} and z ∈ supp(x ◦ y), then supp(e ◦ z) ⊆ supp(x ◦ y).

(4) If e ∈ supp(x ◦ y), then e ∈ supp(y ◦ x).

(5) If y ∈ supp(x ◦ z) and x ∈ supp(y ◦ t), then e ∈ supp(z ◦ t ∩ t ◦ z).

Proof. 1) Let x, y ∈ H be arbitrary elements and supp(e ◦x) = supp(e ◦ y). Then,
for each z ∈ H we have

supp(z ◦ x) = supp((z ◦ e) ◦ x) = supp(z ◦ (e ◦ x)) = supp(z ◦ (e ◦ y))
= supp((z ◦ e) ◦ y)
= supp(z ◦ y).

2) Let x, y ∈ H be arbitrary elements and x ∈ supp(e ◦ y). Then, for each
z ∈ H we have supp(z ◦ x) ⊆ supp(z ◦ (e ◦ y)) = supp((z ◦ e) ◦ y) = supp(z ◦ y).

3) Let x, y, z ∈ H be arbitrary elements, supp(e◦x) = {x} and z ∈ supp(x◦y).
Then, we have

supp(e ◦ z) ⊆ supp(e ◦ (x ◦ y)) = supp((e ◦ x) ◦ y) = supp(x ◦ y).

4) Let x, y ∈ H be arbitrary elements and e ∈ supp(x ◦ y). Then, we have

y ∈ {y} = supp(y ◦ e) ⊆ supp(y ◦ (x ◦ y)) = supp((y ◦ x) ◦ y).

So, there exists w ∈ supp(y ◦ x) such that y ∈ supp(w ◦ y). This implies that
w ∈ supp(y ◦ x) ⊆ supp((w ◦ y) ◦ x) = supp(w ◦ (y ◦ x)). Hence, there exists
w′ ∈ supp(y ◦ x) such that w ∈ supp(w ◦ w′). Since (H, ◦) is of type U on the
right, we conclude that w′ = e and therefore we have e ∈ supp(y ◦ x).

5) Let x, y, z, t ∈ H be arbitrary elements, y ∈ supp(x ◦ z) and x ∈ supp(y ◦ t).
Then, we have y ∈ supp(x ◦ z) ⊆ supp((y ◦ t) ◦ z) = supp(y ◦ (t ◦ z)) and so there
exists w ∈ supp(t ◦ z) such that y ∈ supp(y ◦ w). Since (H, ◦) is of type U on the
right, we conclude that w = e and therefore we have e ∈ supp(t ◦ z). In a similar
manner we have e ∈ supp(z ◦ t). This implies that e ∈ supp(t ◦ z) ∩ supp(z ◦ t) =
supp(t ◦ z ∩ z ◦ t).

Lemma 2.9. Let (H, ◦) be an F -hypergroup of type U on the right and x ∈ H.
Then, the following assertions are equivalent:

(1) |supp(e ◦ x)| = 1.
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(2) supp(e ◦ x) = {x}.

Proof. 1 ⇒ 2) Let supp(e ◦ x) = {y}. Then, we have

supp(e ◦ y) = supp(e ◦ (e ◦ x)) = supp(e ◦ x) = {y}.

On the other hand, by reproduction axiom, there exists w ∈ H such that y ∈
supp(x ◦ w) and so we have {y} = supp(e ◦ y) ⊆ supp((e ◦ x) ◦ w) = supp(y ◦ w).
Since (H, ◦) is of type U on the right, we conclude that w = e and therefore
y ∈ supp(x ◦ e) = {x}. Hence, x = y.

2 ⇒ 1) It is trivial.

Lemma 2.10. Let (H, ◦, e) be an F -hypergroup of type U on the right. Then, for
each x ∈ H\{e} the following assertions are equivalent:

(1) x /∈ supp(e ◦ (H\{x})).

(2) supp(e ◦ x) = {x}.

Proof. 1 ⇒ 2) Let x /∈ supp(e◦(H\{x})). Thus, x ∈ supp(e◦x). Let y ∈ supp(e◦x)
be an arbitrary element. We have to show that y = x. By reproduction axiom,
there exists z ∈ H such that x ∈ supp(y ◦ z). Whence,

x ∈ supp(y ◦ z) ⊆ supp((e ◦ x) ◦ z) = supp(e ◦ (x ◦ z)).

So, there exists t ∈ supp(x ◦ z) such that x ∈ supp(e ◦ t). Since x /∈ supp(e ◦
(H\{x})), we obtain x = t. Thus, x ∈ supp(x ◦ z). Since (H, ◦) is of type U on
the right, we conclude that z = e. Now, since x ∈ supp(y ◦ z) we have y = x.

2 ⇒ 1) By way of contradiction, suppose that there exists z ∈ H\{x} such
that x ∈ supp(e ◦ z). By reproduction axiom, there exists y ∈ H\{e} such that
z ∈ supp(x ◦ y) and so,

supp(e ◦ z) ⊆ supp(e ◦ (x ◦ y)) = supp((e ◦ x) ◦ y) = supp(x ◦ y).

Whence, x ∈ supp(x ◦ y). This implies that y = e and from z ∈ supp(x ◦ y) it
follows that z = x, which is a contradiction.

Lemma 2.11. Let (H, ◦, e) be an F -hypergroup of type U on the right with at
least two elements. Then, the following assertions hold:

(1) If supp(e ◦ y) = H\{e} for some y ∈ H, then supp(x ◦ y) = H\{x}, for all
x ∈ H.

(2) If there exists y ∈ H\{e} such that supp(x ◦ y) = H\{x} for some x ∈ H,
then e ∈ supp(y ◦ z), for all z ∈ H\{e}.
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Proof. 1) Let x, y ∈ H be arbitrary elements and supp(e ◦ y) = H\{e}. Then, we
have

supp(x ◦ y) = supp((x ◦ e) ◦ y) = supp(x ◦ (e ◦ y)) = supp(x ◦ (H\{e})).

This implies that x /∈ supp(x◦y). On the other hand, by using reproduction axiom
we have

(H\{x}) ∪ {x} = H = supp(x ◦H) = supp(x ◦ ((H\{e}) ∪ {e}))
= supp(x ◦ (H\{e})) ∪ supp(x ◦ e)
= supp(x ◦ (H\{e})) ∪ {x}
= supp(x ◦ y) ∪ {x}.

This implies that supp(x ◦ y) = H\{x}.
2) Let supp(x ◦ y) = H\{x}, where x ∈ H and y ∈ H\{e}. By way of

contradiction, suppose that there exists z ∈ H\{e} such that e /∈ supp(y ◦ z).
Then,

x /∈ supp(x ◦ (y ◦ z)) = supp((x ◦ y) ◦ z) = supp((H\{x}) ◦ z).

By reproduction axiom, we have H = supp((H\{x})◦z)∪supp(x◦z). This implies
that x ∈ supp(x ◦ z). So, we have z = e which is a contradiction.

Theorem 2.12. Let (H, ◦, e) be an F -hypergroup of type U on the right with
|H| < 6. Then, e is a left identity element.

Proof. In the case that |H| = 1 we have H = {e} and obviously e is a left scalar
identity element. Let H = {e, x}. By way of contradiction, suppose that x /∈
supp(e ◦ x). By reproduction axiom, we have supp(e ◦ x)∪ supp(x ◦ x) = H. This
implies that x ∈ supp(x ◦ x). Since (H, ◦) is of type U on the right, we have x = e
which is a contradiction. Now, assume that H = {e, x, y}. By reproduction axiom,
we have supp(e◦e)∪supp(e◦x)∪supp(e◦y) = H. This implies that x ∈ supp(e◦y)
and y ∈ supp(e◦x). Hence, x ∈ supp(e◦y) ⊆ supp(e◦ (e◦x)) = supp(e◦x), which
is a contradiction. Let H = {e, x, y, z}. By way of contradiction, suppose that
x /∈ supp(e ◦ x). By using reproduction axiom, x ∈ supp(e ◦ y) or x ∈ supp(e ◦ z).
Without loss of generality, we can assume that x ∈ supp(e◦y). Thus, supp(e◦y) ̸⊆
supp(e◦x) and so y /∈ supp(e◦x). By way of contradiction, let y ∈ supp(e◦x).Then,
by Lemma 2.8 (2), supp(e ◦ y) ⊆ supp(e ◦ x) which is a contradiction. Thus,
supp(e ◦ x) = {z} and supp(e ◦ z) = supp(e ◦ (e ◦ x)) = supp(e ◦ x) = {z}. By
reproduction axiom, there exists w ∈ H such that x ∈ supp(z ◦ w) and therefore
we have

z ∈ supp(e ◦ x) ⊆ supp(e ◦ (z ◦ w)) = supp((e ◦ z) ◦ w) = supp(z ◦ w).

Since (H, ◦) is an F -hypergroup of type U on the right, we have w = e. This
implies that x ∈ supp(z ◦ e) = {z} which is a contradiction. Finally, assume
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that H = {e, x, y, z, t} and by way of contradiction, let x /∈ supp(e ◦ x). By
using reproduction axiom, x ∈ supp(e ◦ y) or x ∈ supp(e ◦ z) or x ∈ supp(e ◦ t).
Without loss of generality, we can assume that x ∈ supp(e◦y). Thus, supp(e◦y) ̸⊆
supp(e◦x) and so by Lemma 2.8 (2), y /∈ supp(e◦x). Therefore, supp(e◦x) ⊆ {z, t}.
If supp(e◦x) = {z}, then we have supp(e◦z) = supp(e◦(e◦x)) = supp(e◦x) = {z}.
On the other hand, by using reproduction axiom, there exists w ∈ H such that
x ∈ supp(z ◦ w) and therefore we have

z ∈ supp(e ◦ x) ⊆ supp(e ◦ (z ◦ w)) = supp((e ◦ z) ◦ w) = supp(z ◦ w).

Since (H, ◦) is an F -hypergroup of type U on the right, we have w = e. This implies
that x ∈ supp(z ◦ e) = {z} which is a contradiction. In a similar manner, in the
case that supp(e ◦ x) = {t} we will have a contradiction. So, supp(e ◦ x) = {z, t}.
From

supp(e◦z)∪ supp(e◦ t) = supp(e◦{z, t}) = supp(e◦ (e◦x)) = supp(e◦x) = {z, t},

and reproduction axiom, it follows that y ∈ supp(e ◦ y). Moreover, since x ∈
supp(e ◦ y), by Lemma 2.8 (2), we have {z, t} = supp(e ◦ x) ⊆ supp(e ◦ y) which
implies that supp(e ◦ y) = {x, y, z, t}. Thus, by Lemma 2.11 (1), we have supp(x ◦
y) = H\{x} and supp(y ◦ y) = H\{y}. So,

y ∈ supp(x ◦ y) ⊆ supp((e ◦ y) ◦ y) = supp(e ◦ (y ◦ y))
⊆ {e} ∪ supp(e ◦ x) ∪ supp(e ◦ z) ∪ supp(e ◦ t) = {e, z, t},

which is a contradiction.

In the next example, which is a fuzzy version of Remark 4.1 of [6] , we will
offer a right identity element of an F -hypergroup of type U on the right which is
not a left identity element.

Example 2.13. Let H = {e, a, b, c, d, f} and t ∈ (0, 1]. Then, H with the following
table is an F -hypergroup of type U on the right. It is easy to check that e is not
a left identity element.

◦ e a, b, c d, f

e et {c, d}t {a, b, c, d, f}t

a at {e, d, f}t {e, b, c, d, f}t

b et {e, a, c, d}t {e, a, c, d, f}t

c et {e, a, b, f}t {e, a, b, d, f}t

d et {e, a, f}t {e, a, b, c, f}t

f et {e, a, d}t {e, a, b, c, d}t
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Theorem 2.14. Let (H, ◦, e) be an F -hypergroup of type U on the right and
P ⊂ H. Let (P, ◦, e) be an F -polygroup such that supp(x−1 ◦ x ∩ x ◦ x−1) = {e},
for all x ∈ P . Then,

(1) supp((H\P ) ◦ P ) = H\P ,

(2) supp((H\P ) ◦ x) = H\P , for all x ∈ P ,

(3) supp(x ◦ P ∩ x ◦ (H\P )) = ∅, for all x ∈ H,

(4) |supp(x ◦ y)| = 1, for all x ∈ H\P and all y ∈ P .

Proof. 1) It is obvious that H\P = supp((H\P ) ◦ e) ⊆ supp((H\P ) ◦ P ). Con-
versely, let z ∈ H\P and y ∈ P be arbitrary elements. We prove that supp(z◦y) ⊆
H\P which will imply that supp((H\P ) ◦ P ) ⊆ H\P . By way of contradiction,
suppose that supp(z◦y) ̸⊆ H\P . Then, there exists x ∈ P such that x ∈ supp(z◦y)
and so we have

supp(x ◦ y−1) ⊆ supp((z ◦ y) ◦ y−1) = supp(z ◦ (y ◦ y−1)) = supp(z ◦ e) = {z}.

Hence, z ∈ P which is a contradiction.
2) Let x ∈ P be an arbitrary element. By using reproduction axiom we have

H = supp(H ◦ x) = supp((H\P ) ◦ x ∪ P ◦ x)
= supp((H\P ) ◦ x) ∪ supp(P ◦ x)
= supp((H\P ) ◦ x) ∪ P.

Hence, we have H\P ⊆ supp((H\P ) ◦ x). On the other hand, by using (1) we
have supp((H\P ) ◦ x) ⊆ supp((H\P ) ◦ P ) = H\P .

3) By way of contradiction, suppose that supp(x◦P ∩x◦ (H\P )) ̸= ∅, for some
x ∈ H. Then, there exist y ∈ P and z ∈ H\P such that supp(x◦y)∩supp(x◦z) ̸=
z) ̸= ∅. Assume that w ∈ supp(x ◦ y) ∩ supp(x ◦ z). Then, we have

supp(w ◦ y−1) ⊆ supp(x ◦ y ◦ y−1) = supp(x ◦ e) = {x}.

So, {x} = supp(w ◦ y−1) ⊆ supp((x ◦ z) ◦ y−1) = supp(x ◦ (z ◦ y−1)). Thus, by
condition (2) of Definition 2.1 we have e ∈ supp(z ◦ y−1). Therefore,

supp(e ◦ y) ⊆ supp((z ◦ y−1) ◦ y) = supp(z ◦ (y ◦ y−1)) = supp(z ◦ e) = {z}.

Consequently, we have z ∈ supp(e ◦ y) ⊆ P which is a contradiction.
4) Let x ∈ H\P and y ∈ P be arbitrary elements. Suppose that {t, w} ⊆

supp(x ◦ y). Then, we have

supp(t ◦ y−1) ⊆ supp((x ◦ y) ◦ y−1) = supp(x ◦ (y ◦ y−1)) = supp(x ◦ e) = {x}.

Similarly, we have supp(w ◦ y−1) ⊆ {x}. Hence, supp(t ◦ y−1) = supp(w ◦ y−1) =
{x}. This implies that

{t} = supp(t ◦ e) = supp(t ◦ (y−1 ◦ y)) = supp((w ◦ y−1) ◦ y) = supp(w ◦ e) = {w}.

Therefore, we have |supp(x ◦ y)| = 1.
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Definition 2.15. Let (H, ◦) be an F -hypergroup of type U on the right with at
least two elements. Then, an element x ∈ H is said to be total or a TF -element if
supp(x ◦ y) = H\{x}, for all y ∈ H\{e}.

Example 2.16. Let (H, ◦) be the F -hypergroup of type U on the right which is
defined in Example 2.6. Then, each element of H is a TF -element while (Z3, ◦)
defined in Example 2.5 has no TF -element.

Example 2.17. Let H = {e, a, b, c, d} and t ∈ (0, 1]. Then, H with the following
table is an F -hypergroup of type U on the right. It is easy to check that b, c, d are
TF -elements while a is not a TF - element.

◦ e a b c d

e et {a, b}t {a, b}t {c, d}t {c, d}t

a at {e, b, c}t {e, b, c}t {e, b, c, d}t {e, b, c, d}t

b bt {e, a, c, d}t {e, a, c, d}t {e, a, c, d}t {e, a, c, d}t

c ct {e, a, b, d}t {e, a, b, d}t {e, a, b, d}t {e, a, b, d}t

d dt {e, a, b, c}t {e, a, b, c}t {e, a, b, c}t {e, a, b, c}t

Proposition 2.18. Let (H, ◦) be an F -hypergroup of type U on the right such
that |H| ≥ 2. Let x be a TF -element in H and y, z ∈ H\{e}. Then, the following
assertions hold:

(1) e ∈ supp(y ◦ z).

(2) If |H| ≥ 3, then |supp(y ◦ z)| ≥ 2.

Proof. 1) It follows from Lemma 2.11 (2).
2) If x = e, then the result follows from Lemma 2.11 (1). So, suppose that

x ∈ H\{e}. By reproduction axiom, there exists w ∈ H such that x ∈ supp(w◦y).
It is obvious that w ̸= x. Moreover, we have

H\{x} = supp(x ◦ z) ⊆ supp((w ◦ y) ◦ z) = supp(w ◦ (y ◦ z)).

If |supp(y ◦ z)| = 1, then from the previous point we obtain supp(y ◦ z) = {e}.
Whence, H\{x} = supp(w ◦ e) = {w}. This is absurd because |H| ≥ 3. Conse-
quently, we have |supp(y ◦ z)| ≥ 2.

Lemma 2.19. Let (H, ◦, e) be an F -hypergroup of type U on the right. Let K ⊂ H
be an F -subsemihypergroup such that |K| ≥ 2. Then, |H −K| > 1.
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Proof. By way of contradiction, suppose that H\K = {x}, for some x ∈ H. Since
|K| ≥ 2, there exists an element a in K\{e}. Now, by using reproduction axiom
we have

x ∈ H = supp(H ◦ a) = supp((K ∪ (H\K)) ◦ a)
= supp(K ◦ a) ∪ supp((H\K) ◦ a)
⊆ K ∪ supp(x ◦ a).

Since x /∈ K, we have x ∈ supp(x◦a) which implies that a = e, a contradiction.

Lemma 2.20. Let (H, ◦, e) be an F -hypergroup of type U on the right and K ⊂ H
be an F -subhypergroup. If |K| ≥ 3 and |H\K| = 2, then supp(x ◦ y) ̸= K\{x}, for
every two distinct elements x, y ∈ K.

Proof. By way of contradiction, suppose that there exist two distinct elements x, y
in K such that supp(x ◦ y) = K\{x}. If y = e, then supp(x ◦ e) = {x} = K\{x},
which is a contradiction. Thus, y ̸= e. By hypothesis, there exist u, v ∈ H such
that H\K = {u, v}. Suppose that x ̸= e. By reproduction axiom, there exists
w ∈ H such that u ∈ supp(w ◦ y). If w ∈ K, then we have u ∈ supp(w ◦ y) ⊆ K,
which is absurd. Thus, w ̸∈ K. On the other hand, since u ̸∈ supp(u ◦ y), we
conclude that w = v and therefore u ∈ supp(v ◦ y). From x ̸= e it follows that
v ̸∈ supp(v ◦ x) and so we have supp(v ◦ x) ⊆ H\{v}. We have

u ∈ supp(v ◦ y) ⊆ supp(v ◦ (K\{x})) = supp(v ◦ (x ◦ y)) = supp((v ◦ x) ◦ y)
⊆ supp((H\{v}) ◦ y) = supp((K ∪ {u}) ◦ y)
= supp(K ◦ y) ∪ supp(u ◦ y) = K ∪ supp(u ◦ y),

which is a contradiction. Thus, x = e and supp(e ◦ y) = K\{e}. On the other
hand, since |K| ≥ 3, there exists z ∈ H such that {e, y, z} ⊆ K. Therefore,

K = supp(z ◦K) = supp(z ◦ e ∪ z ◦ (K\{e})) =supp(z ◦ e) ∪ supp(z ◦ (K\{e}))
={z} ∪ supp(z ◦ (e ◦ y))
={z} ∪ supp(z ◦ y).

Hence, we have supp(z ◦y) = K\{z}. By the above argument we have z = e which
is a contradiction.

3. Isomorphism of F -Hypergrous of Type U on the Right

In this section, we begin with the definition of isomorphism of F -hypergroupoids.
We use this notion to obtain characterizations of F -hypergroups of type U on the
right of order 2 or 3.
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Definition 3.1. Let (H1, ∗) and (H2, ◦) be two F -hypergroupoids. A one-to-one
and onto mapping φ : H1 −→ H2 is called an isomorphism if there exists a positive
real number r such that (x ∗ y)(a) = r(φ(x) ◦ φ(y))(φ(a)), for every x, y, a ∈ H1.
We say that H1 is isomorphic to H2, denoted by H1

∼= H2, if there exists an
isomorphism from H1 to H2.

Example 3.2. Let t ∈ (0, 1] and H = {e, x, y} be equipped with the
F -hyperoperation ∗t defined in Example 2.4. If we define the mapping φ : H −→
S3/S2(t1, t1, t1) as follows:

φ(e) = S2, φ(x) = (1 3)S2 and φ(y) = (2 3)S2,

where t1 ∈ (0, 1] and S3/S2(t1, t1, t1) is the F -hypergroup of type U on the right
defined in Example 2.6, then H ∼= S3/S2(t1, t1, t1).

Lemma 3.3. Let (H1, ∗) and (H2, ◦) be two F -hypergroupoids F -hypergroupoids
and φ : H1 −→ H2 be a map. Then, φ is an isomorphism if and only if φ satisfies
the following conditions:

(1)φ(supp(x ∗ y)) = supp(φ(x) ◦ φ(y)), for every x, y ∈ H1,

(2) (x ∗ y)(a)(φ(z) ◦ φ(w))(φ(b)) = (φ(x) ◦ φ(y))(φ(a))(z ∗ w)(b), for every
x, y, z, w, a, b ∈ H1.

Proof. Let φ : H1 −→ H2 be an isomorphism and φ(a) ∈ φ(supp(x ∗ y)) be an
arbitrary element. Since φ is one-to-one, we have a ∈ supp(x ∗ y) and therefore
(x∗y)(a) ̸= 0. Thus, (φ(x)◦φ(y))(φ(a)) ̸= 0 which implies that φ(a) ∈ supp(φ(x)◦
φ(y)). So, we have φ(supp(x ∗ y)) ⊆ supp(φ(x) ◦ φ(y)). To prove the reverse
inclusion, suppose that φ(a) ∈ supp(φ(x) ◦ φ(y)) be an arbitrary element. Then,
(φ(x) ◦ φ(y))(φ(a)) ̸= 0. So, we have (x ∗ y)(a) ̸= 0. Consequently, we have
a ∈ supp(x ∗ y) which implies that φ(a) ∈ φ(supp(x ∗ y)). Now, to prove (2), let
x, y, z, w, a, b ∈ H1 be arbitrary elements. If (x∗y)(a) = 0 or (z∗w)(b) = 0, then by
using (1) we have (φ(x)◦φ(y))(φ(a)) = 0 or (φ(z)◦φ(w))(φ(b)) = 0 and so in this
case the desired result holds. So, assume that a ∈ supp(x ∗ y) and b ∈ supp(z ∗w).
Since φ : H1 −→ H2 is an isomorphism, there exists a positive real number r such
that (x∗y)(a) = r(φ(x)◦φ(y))(φ(a)) and (z∗w)(b) = r(φ(z)◦φ(w))(φ(b)). Hence,
the desired result follows easily.

Conversely, suppose that φ satisfies conditions (1) and (2). Let x, y, a ∈ H1

be arbitrary elements. We choose z, w, b ∈ H1 such that b ∈ supp(z ∗ w). By (1),
we have (φ(z) ◦ φ(w))(φ(b)) ̸= 0. We set r = (z ∗ w)(b)/(φ(z) ◦ φ(w))(φ(b)). By
(2), we have (x ∗ y)(a)(φ(z) ◦ φ(w))(φ(b)) = (φ(x) ◦ φ(y))(φ(a))(z ∗ w)(b) which
implies that (x ∗ y)(a) = r(φ(x) ◦ φ(y))(φ(a)).

Corollary 3.4. Let (H1, ∗) and (H2, ◦) be two F -hypergroupoids F -hypergroupoids
and φ : H1 −→ H2 be an (x∗y)(a) = (z ∗w)(b) if and only if (φ(x)◦φ(y))(φ(a)) =
(φ(z) ◦ φ(w))(φ(b)), for every x, y, z, w, a, b ∈ H1.
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Next example shows that the converse of Corollary 3.4 does not hold in general.

Example 3.5. We equip the sets H1 = {0, 1} and H2 = {e, a} with the F -
hyperoperations ∗ and ◦ which are defined in the following tables:

∗ 0 1

0 0
0.4 ,

1
0

0
0 ,

1
0.3

1 0
0 ,

1
0.5

0
0.6 ,

1
0

◦ e a

e e
0.8 ,

a
0

e
0 ,

a
0.1

a e
0 ,

a
0.9

e
0.3 ,

a
0

We define φ : H1 −→ H2 by φ(0) = e and φ(1) = a. We can see easily that for
each x, y, z, w, a, b ∈ H1 we have

(x ∗ y)(a) = (z ∗ w)(b) if and only if (φ(x) ◦ φ(y))(φ(a)) = (φ(z) ◦ φ(w))(φ(b)).

But φ is not an isomorphism because we have (0 ∗ 0)(0) = 0.5(φ(0) ◦ φ(0))(φ(0))
and (1 ∗ 1)(0) = 2(φ(1) ◦ φ(1))(φ(0)).

Lemma 3.6. Let (H1, ∗), (H2, ◦) and (H3, •) be F -hypergroupoids such that H1
∼=

H2 and H2
∼= H3. Then, H1

∼= H3.

Proof. It is straightforward.

Lemma 3.7. Let (H1, ∗) and (H2, ◦) be two F -hypergroupoids and φ : H1 −→ H2

be an isomorphism. Then,

(1) e is a right scalar element of (H1, ∗) if and only if φ(e) is a right scalar
element of (H2, ◦).

(2) φ−1 : H2 −→ H1 is an isomorphism.

Proof. 1) Let e be a right scalar element of (H1, ∗) and y ∈ H2 be an arbitrary
element. Since φ is onto, there exists x ∈ H1 such that φ(x) = y. So, by using
Lemma 3.3 we have

supp(y ◦ φ(e)) = supp(φ(x) ◦ φ(e)) = φ(supp(x ∗ e)) = {φ(x)} = {y}.

Therefore, φ(e) is a right scalar element of (H2, ◦). Conversely, let φ(e) be a right
scalar element of (H2, ◦). Then, for each element x of H1 we have

φ(supp(x ∗ e)) = supp(φ(x) ◦ φ(e)) = {φ(x)}.

Since φ is one-to-one, we have supp(x ∗ e) = {x} and therefore e is a right scalar
element of (H1, ∗).

2) It is straightforward.
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Lemma 3.8. Let (H1, ∗) and (H2, ◦) be two F -semihypergroups and φ : H1 −→ H2

be an isomorphism. Then, the following assertions are equivalent:

(1) (H1, ∗, e) is an F -hypergroup of type U on the right.

(2) (H2, ◦, φ(e)) is an F -hypergroup of type U on the right.

Proof. 1⇒2) Let y ∈ H2 be an arbitrary element. Since φ is onto, there exists
x ∈ H1 such that φ(x) = y. By assumption we have supp(x∗H1) = supp(H1∗x) =
H1. Hence,

supp(y ◦H2) = supp(φ(x) ◦ φ(H1)) = φ(supp(x ∗H1)) = φ(H1) = H2.

Similarly, we have supp(H2 ◦ y) = H2. Therefore, (H2, ◦) is an F -hypergroup.
By Lemma 3.7, φ(e) is a right scalar element of (H2, ◦). Thus, condition (1) of
Definition 2.1 holds. It is sufficient to show that condition (2) of Definition 2.1
is true. Let y, z ∈ H2 be arbitrary elements and y ∈ supp(y ◦ z). Since φ is
onto, there exist x, t ∈ H1 such that φ(x) = y and φ(t) = z. Thus, by using
Lemma 3.3 we have φ(x) ∈ supp(φ(x) ◦ φ(t)) = φ(supp(x ∗ t)). So, there exists
w ∈ supp(x ∗ t) such that φ(x) = φ(w). Since φ is one-to-one, we have x = w and
therefore x ∈ supp(x ∗ t). Since (H1, ∗) is of type U on the right we have t = e
which implies that z = φ(t) = φ(e).

2⇒1) Let (H2, ◦, φ(e)) be an F -hypergroup of type U on the right. By Lemma
3.7 (2), φ−1 : H2 −→ H1 is an isomorphism and therefore by the above argument
(H1, ∗, e) is an F -hypergroup of type U on the right.

Theorem 3.9. Let (H, ◦, e) be an F -hypergroup of type U on the right with |H| =
2. Then, H ∼= Z2(t1, t2), for some t1, t2 ∈ (0, 1]. (See Example 2.5.)

Proof. Let H = {e, x}. By conditions (1) and (2) of Definition 2.1, ◦ has the
following table:

◦ e x

e e
t1
, x
0

e
0 ,

x
t2

x e
0 ,

x
t3

e
t4
, x
0

where t1, t2, t3, t4 ∈ (0, 1]. Since (H, ◦) is an F -hypergroup of type U on the right,
we have

t2 = (e ◦ x)(x) = ((x ◦ x) ◦ x)(x) = (x ◦ (x ◦ x))(x) = (x ◦ e)(x) = t3

and

t4 = (x ◦ x)(e) = ((e ◦ x) ◦ x)(e) = (e ◦ (x ◦ x))(e) = (e ◦ e)(e) = t1.

We define the mapping φ : H −→ Z2 by φ(e) = 0 and φ(x) = 1. Obviously, φ is
an isomorphism and therefore the desired result holds.
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Theorem 3.10. Let (H, ◦, e) be an F -hypergroup of type U on the right with |H| =
3. Then, either H ∼= Z3(t1, t2, t3) or H ∼= S3/S2(t1, t2, t3), for some t1, t2, t3 ∈
(0, 1]. (See Examples 2.5 and 2.6.)

Proof. Let H = {e, x, y}. By condition (2) of Definition 2.1 we have

supp(e ◦ x) ∪ supp(e ◦ y) ⊆ {x, y}.

We claim that |supp(e ◦ x)| = |supp(e ◦ y)|. If this is not the case, then without
loss of generality we can assume that |supp(e◦x)| = 1 and |supp(e◦y)| = 2. Thus,
we have supp(e ◦ y) = {x, y} and by Lemma 2.9 we have supp(e ◦ x) = {x}. By
reproduction axiom, there exists z ∈ H such that y ∈ supp(x ◦ z). Hence,

x ∈ supp(e ◦ y) ⊆ supp(e ◦ (x ◦ z)) = supp((e ◦ x) ◦ z) = supp(x ◦ z),

which implies that z = e and so we have y ∈ supp(x ◦ e) = {x}, a contradiction.
Thus, we have the following two cases.

Case 1: Let supp(e ◦ x) = supp(e ◦ y) = {x, y}. Then, we have

supp(x ◦ y) = supp((x ◦ e) ◦ y) = supp(x ◦ (e ◦ y)) = supp(x ◦ (e ◦ x))
= supp(x ◦ x).

Since x ̸∈ supp(x ◦ y) we have supp(x ◦ y) ⊆ {e, y}. In the case that supp(x ◦ y) =
{e}, we have

{e, x} = supp(x ◦ x) ∪ supp(x ◦ y) ∪ supp(x ◦ e) = supp(x ◦H) = H,

which is a contradiction. In the case that supp(x ◦ y) = {y}, we have

{y} = supp(x ◦ y) = supp(x ◦ (x ◦ y)) = supp((x ◦ x) ◦ y) = supp(y ◦ y).

This implies that y = e which is a contradiction. Thus, supp(x ◦ y) = {e, y}. In
a similar manner we can show that supp(y ◦ x) = supp(y ◦ y) = {e, x}. So, ◦ has
the following table in which ti’s are in (0, 1].

◦ e x y

e e
t1
, x
0 ,

y
0

e
0 ,

x
t2
, y
t3

e
0 ,

x
t4
, y
t5

x e
0 ,

x
t6
, y
0

e
t7
, x
0 ,

y
t8

e
t9
, x
0 ,

y
t10

y e
0 ,

x
0 ,

y
t11

e
t12

, x
t13

, y
0

e
t14

, x
t15

, y
0

We have t11 =
∨{

(e◦e)(y), (y◦e)(y)
}
= ((x◦y)◦e)(y) = (x◦y)(y) = t10. In a can

show that t1 = t7 = t9 = t12 = t14, t2 = t4 = t6 = t13 = t15 and t3 = t5 = t8 = t11.
Therefore, in this case we have H ∼= S3/S2(t1, t2, t3).
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Case 2: Let |supp(e ◦ x)| = |supp(e ◦ y)| = 1. By Lemma 2.9, we have supp(e ◦
x) = {x} and supp(e◦y) = {y}. We claim that supp(x◦x) = {y}. If supp(x◦x) =
{e}, then as supp(e ◦ x) ∪ supp(x ◦ x) ∪ supp(y ◦ x) = supp(H ◦ x) = H, we have
y ∈ supp(y ◦ x) which implies that x = e, a contradiction. If supp(x ◦ x) = {e, y},
then from the following equalities we conclude that y ̸∈ supp(x ◦ y).

{x} ∪ supp(y ◦ x) = supp(e ◦ x) ∪ supp(y ◦ x) = supp((x ◦ x) ◦ x)
= supp(x ◦ (x ◦ x))
= supp(x ◦ e) ∪ supp(x ◦ y).

On the other hand, by condition (2) of Definition 2.1 we have x ̸∈ supp(x ◦ y).
Thus, supp(x ◦ y) = {e}. Therefore,

y ∈ supp(e ◦ y) ∪ supp(y ◦ y) = supp((x ◦ x) ◦ y) = supp(x ◦ (x ◦ y)) = {x},

that is a contradiction. Hence, supp(x ◦ x) = {y}. In a similar manner we have
supp(y ◦ y) = {x}. From supp(x ◦ y) = supp(x ◦ (x ◦ x)) = supp((x ◦ x) ◦ x) =
supp(y◦x), x /∈ supp(x◦y) and y /∈ supp(y◦x) we conclude that {x, y} ⊈ supp(x◦y)
and therefore supp(x ◦ y) = {e}. So, ◦ has the following table in which ti’s are in
(0, 1].

◦ e x y

e e
t1
, x
0 ,

y
0

e
0 ,

x
t2
, y
0

e
0 ,

x
0 ,

y
t3

x e
0 ,

x
t4
, y
0

e
0 ,

x
0 ,

y
t5

e
t6
, x
0 ,

y
0

y e
0 ,

x
0 ,

y
t7

e
t8
, x
0 ,

y
0

e
0 ,

x
t9
, y
0

We have t1 = (e ◦ e)(e) = ((x ◦ y) ◦ e)(e) = (x ◦ (y ◦ e))(e) = (x ◦ y)(e) = t6. In a
similar way we can show that t1 = t8, t2 = t4 = t9 and t3 = t5 = t7. So, in this
case we have H ∼= Z3(t1, t2, t3).

Notice that, by Theorem 3.9, there are 2 different F -hypergroups of type U
on the right of order two up to an isomorphism. One of them is Z2(t1, t2) with
t1 = t2 and the other one is Z2(t1, t2) with t1 ̸= t2. Also, by Theorem 3.10, there
are 10 different F -hypergroups of type U on the right of order three up to an
isomorphism depending on whether some ti’s are equal or not.

Theorem 3.11. Let (H, ◦, e) be an F -semihypergroup of type U on the right.
Assume that K ⊊ H is an F -subsemihypergroup of H isomorphic to (K, ∗t), for
some t ∈ (0, 1] (see Example 2.4) and let e ∈ K. Also, let x ∈ H\K and a, b ∈
K\{e} be arbitrary elements. Then, the following assertions hold:

(1) supp(x ◦ a) = supp(x ◦ b),

(2) supp(x ◦ a) ∩K ̸= ∅ K ⊆ supp(x ◦ a),
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(3) supp(x ◦ a) ̸= K,

(4) supp(x ◦ a) ∩ (H\a) ∩ (H\K) ≠ ∅.

(5) |supp(x ◦ a)| > 1.

Proof. 1) Let φ : (K, ∗t) −→ (K, ◦) be an isomorphism. Then, by Lemma 3.8,
(K, ◦) is an F -hypergroup of type U on the right. By Lemma 3.7, we have φ(e) = e.
Since φ is an onto mapping, there exists c, d ∈ K such that φ(c) = a and φ(d) = b.
Therefore we have

supp(e ◦ a) = supp(φ(e) ◦ φ(c)) = φ(supp(e ∗t c)) = φ(K\{e}) = K\{e}.

Similarly, we have supp(e ◦ b) = K\{e}. So,

supp(x ◦ a) = supp((x ◦ e) ◦ a)
= supp(x ◦ (e ◦ a))
= supp(x ◦ (e ◦ b))
= supp((x ◦ e) ◦ b)
= supp(x ◦ b).

2) Let c ∈ supp(x ◦ a) ∩K. Since K is an F -hypergroup, we have

K = supp(c ◦K) ⊆ supp((x ◦ a) ◦K)

= supp(x ◦ (a ◦K))

= supp(x ◦K)

= supp(x ◦ a) ∪ {x}.

This implies that K ⊆ supp(x ◦ a).
3) By way of contradiction, suppose that supp(x ◦ a) = K. By assumption we

have

supp(a ◦ b) = supp(φ(c) ◦ φ(d)) = φ(supp(c ∗t d)) = φ(K\{c}) = K − {a}.

Therefore,

K = supp(K ◦ b) = supp((x ◦ a) ◦ b)
= supp(x ◦ (a ◦ b))
= supp(x ◦ (K − {a})
= {x} ∪ supp(x ◦ b)
= {x} ∪ supp(x ◦ a).

This implies that x ∈ K which is a contradiction.
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4) By way of contradiction, suppose that supp(x ◦ a) ∩ (H\K) = ∅. Then, we
have supp(x ◦ a) ⊆ K and so by (2) we have K ⊆ supp(x ◦ a) which implies that
K = supp(x ◦ a). By (3), this is a contradiction.

5) By way of contradiction, suppose that |supp(x◦a)| = 1. If supp(x◦a) = {e},
then by (2) we have K ⊆ supp(x ◦ a) = {e} which is absurd. If supp(x ◦ a) =
{y} ≠ {e}, then we have

supp(y ◦ b) = supp((x ◦ a) ◦ b)
= supp(x ◦ (K − {a})
= {x} ∪ supp(x ◦ b)
= {x} ∪ supp(x ◦ a)
= {x, y}.

This implies that y ∈ supp(y ◦ b). So, by condition (2) of Definition 2.1 we have
b = e which is a contradiction.

4. Cyclic F -Semihypergroups
What will happen in this section, is a fuzzy version of some parts of [14]. Let (H, ◦)
be an F -semihypergroup. Then, the intersection

∩
i∈Λ Si of a family {Si}i∈Λ of

F -subsemihypergroups of H (if it is non-empty) is an F -subsemihypergroup. For
every non-empty subset A of H, there exists at least an F -subsemihypergroup of
H containing A (H itself). Hence, the intersection of all F -subsemihypergroups
of H containing A is an F -subsemihypergroup. We denote it by Ǎ. It is easy to
see that

(1) A ⊆ Ǎ;

(2) Ǎ ⊆ S, where S is an F -subsemihypergroup H containing A.

Furthermore, one easily checks that Ǎ = A ∪
( ∪
k≥2

supp(x1 ◦ . . . ◦ xk)
)
, where xi’s

are in A. In particular, if A is a singleton set, say {x}, then Ǎ will be denoted by
x̌ and x̌ = {x} ∪

( ∪
k≥2

supp(xk)
)

in which xk means x ◦ . . . ◦ x︸ ︷︷ ︸
k times

. If |H| = n, then

we have x̌ =
n∪

k=1

supp(xk). It is obvious that x ∈ y̌ ⇔ x̌ ⊆ y̌, for every x, y ∈ H.

Definition 4.1. Let H be an F -semihypergroup. Then, H is called cyclic if there
exists an element x ∈ H such that H = x̌.

Example 4.2. Let G be the Klein 4-group. If we equip G with the F -hyperoperation
◦ defined in Example 2.7, then (G, ◦) is not cyclic while (H, ◦) defined in Example
2.4 is a cyclic F -hypergroup of type U on the right.
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Theorem 4.3. Let (H, ◦) be a finite F -semihypergroup of type U on the right.
If there exists an element x in H such that x̌ ̸= H and x̌ is isomorphic to
S3/S2(t, t, t), for some t ∈ (0, 1], then |H| ≥ 6.

Proof. Since x̌ is isomorphic to S3/S2(t, t, t), for some t ∈ (0, 1], we have |x̌| = 3
(see Example 2.6). Set x̌ = {e, x, y}. By Lemma 3.6, (x̌, ◦) is isomorphic to (x̌, ∗t)
(see Example 3.2). From x̌ ̸= H it follows that |H| ≥ 4. If |H| = 4, then we can
assume that H\x̌ = {z} and so by Theorem 3.11 (4) , we have z ∈ supp(z◦x). This
implies x = e which is a contradiction. If |H| = 5, then we set H = {e, x, y, w, z}.
So, we have H\x̌ = {w, z}. Since y ∈ x̌ we have y̌ ⊆ x̌. On the other hand,
by assumption we have x ∈ y̌ which implies that x̌ ⊆ y̌. Thus x̌ = y̌. Since
w /∈ supp(w ◦ x) and z /∈ supp(z ◦ x), z /∈ supp(z ◦ x), by using (2), (4) and (5)
of Theorem 3.11 , we have supp(w ◦ x) = x̌ ∪ {z} and supp(z ◦ x) = x̌ ∪ {w}.
Similarly, we have supp(w ◦ y) = y̌ ∪ {z} and

H = {w} ∪ supp(w ◦ x) = supp(w ◦ e) ∪ supp(w ◦ x)
= supp(w ◦ {e, x})
= supp(w ◦ (y ◦ y))
= supp((w ◦ y) ◦ y)

=
∪

t∈supp(w◦y)
supp(t ◦ y)

= supp(y̌ ◦ y) ∪ supp(z ◦ y)
= y̌ ∪ {w} = H\{z}.

This contradiction completes the proof.

5. Regular Relations over F -Hypergroups

In this section, inspired by [9], after defining the notion of regular F -hypergroups
containing a right identity element, we define right reversible F -hypergroups.
Then, by using regular relations on an F -hypergroup we construct right reversible
quotient F -hypergroups.

Definition 5.1. Let (H, ◦, e) be an F -hypergroup (not necessarily an F -hypergroup
of type U on the right) where e is a right identity element. Let x, y ∈ H. Then, y
is called an inverse of x if

e ∈ supp(x ◦ y ∩ y ◦ x).

The set of all inverses of x will be denoted by x−1. (H, ◦, e) is called regular if
e is an identity element and x−1 ̸= ∅, for every x ∈ H. A regular F -hypergroup
(H, ◦, e) is said to be right reversible if for every x, y, z ∈ H with x ∈ supp(y ◦ z),
there exists t ∈ z−1 such that y ∈ supp(x ◦ t).
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Theorem 5.2. Let (H, ◦, e) be an F -hypergroup of type U on the right. Then, the
following assertions are equivalent:

(1) e is a left identity element,

(2) (H, ◦, e) is right reversible.

Proof. 1 ⇒ 2) Let x be an arbitrary element of H. By reproduction axiom, there
exists y in H such that e ∈ supp(x ◦ y). By Lemma 2.8 (4), we e ∈ supp(y ◦ x).
This implies that (H, ◦, e) is regular. Now, let x, y, z be arbitrary elements of H
such that x ∈ supp(y ◦ z). By reproduction axiom, there exists an element t ∈ H
such that y ∈ supp(x ◦ t). By t).ByLemma2.8(5), wehavet ◦ z). This means that
t ∈ z−1 and so there is nothing to prove.

2 =⇒ 1) It is trivial.

Lemma 5.3. Let (H, ◦, e) be an F -hypergroup of type U on the right such that
Pe = {supp(e ◦ x) | x ∈ H} is a partition of H. Then, e is a left identity element.

Proof. Let x ∈ H be an arbitrary element. By reproduction axiom, there exists
y ∈ H such that x ∈ supp(e ◦ y) and so we have

supp(e ◦ x) ⊆ supp(e ◦ (e ◦ y)) = supp(e ◦ y).

Since Pe is a partition of H, we deduce that supp(e◦x) = supp(e◦y) and therefore
x ∈ supp(e ◦ x).

In what follows, we denote by me the maximum size of the elements of Pe

Proposition 5.4. Let (H, ◦, e) be an F -hypergroup of type U on the right. Then,
the following assertions hold:

(1) me = 1 if and only if e is a left scalar identity element.

(2) If 2 ≤ me < ∞, then there exist two distinct elements x, y ∈ H\{e} such
that supp(e ◦ x) = supp(e ◦ y) and |supp(e ◦ x)| = |supp(e ◦ y)| = me.

Proof. 1) By using Lemma 2.9, the proof is trivial.
2) Let me ≥ 2. Then, there exists x ∈ H\{e} such that |supp(e ◦ x)| = me.

By Lemma 2.10, there exists y ∈ H\{x} such that x ∈ supp(e ◦ y). Consequently,
supp(e◦x) ⊆ supp(e◦y) and me = |supp(e◦x)| ≤ |supp(e◦y)|. Since me is maximal,
we obtain |supp(e ◦ x)| = |supp(e ◦ y)| and therefore supp(e ◦ x) = supp(e ◦ y).

Let R be a relation on a non-empty set X and A,B ⊆ X. Then, ARB means
that for each a in there exists b ∈ B such that aRb and for each b in B, there
exists a ∈ A such that bRa. For an equivalence relation R on X, we may use
R(x) to denote the equivalence class of x ∈ X. We let H/R denote the family
{R(x) | x ∈ X} of classes of R.



F -Hypergroups of Type U on the Right 341

Let (H, ◦) be an F -hypergroup of type U on the right. An equivalence relation
R on H is called regular if

xR y =⇒ supp(z ◦ x)R supp(z ◦ y) and supp(x ◦ z)R supp(y ◦ z),

for every x, y, z ∈ H.

Theorem 5.5. Let (H, ◦, e) be an F -hypergroup of type U on the right such that
Pe is a partition of H. Then, the following assertions hold:

(1) The relation R ⊆ H2 defined as follows is a regular relation.

xR y ⇐⇒ supp(e ◦ x) = supp(e ◦ y).

(2) The set H/R endowed with the following F -hyperoperation is right reversible.

R(x)⊙R(y) = χ{R(t) | t∈supp(x◦y)}.

(3) Let R(y) = R(u) and R(z) = R(v), for some y, z, u, v ∈ H. Then,

(a) the following statements are equivalent, for some x ∈ H:

(i) R(x) ∈ supp(R(y)⊙R(z)).
(ii) R(x) ∩ supp(u ◦ v) ̸= ∅.
(iii) R(x) ⊆ supp(e ◦ u ◦ v).

(b) if |R(x)| = 1, for some x ∈ H, then

R(x) ∈ supp(R(y)⊙R(z)) ⇐⇒ x ∈ supp(u ◦ v).

Proof. 1) Obviously, R is an equivalence relation. Let xR y and a ∈ H. We
show that supp(x ◦ R supp(y ◦ a). Assume that z is an an arbitrary element of
supp(x ◦ a). By Lemma 5.3 we have z ∈ supp(e ◦ z). Since

supp(e ◦ z) ⊆ supp(e ◦ (x ◦ a)) = supp((e ◦ x) ◦ a)
= supp((e ◦ y) ◦ a) = supp(e ◦ (y ◦ a)),

there exists w ∈ supp(y ◦ a) such that z ∈ supp(e ◦ w). Since Pe is a partition of
H, we have supp(e ◦ z) = supp(e ◦ w). Hence, zRw. In a similar manner, we can
show that for each z ∈ supp(y ◦ a) there exists w ∈ supp(x ◦ a) such that zRw.
Thus, supp(x ◦ a)R supp(y ◦ a). On the other hand, we have

supp(a ◦ x) = supp((a ◦ e) ◦ x) = supp(a ◦ (e ◦ x)) = supp(a ◦ (e ◦ y))
= supp((a ◦ e) ◦ y) = supp(a ◦ y).

Hence, supp(a ◦ x)R supp(a ◦ y) and the desired result follows.
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2) By Theorem 3.1 of [12], (H/R,⊙) is an F -hypergroup. By Lemma 5.3, e is
a left identity element, so we have x ∈ supp(x ◦ ◦x), for every x ∈ H. Thus, for
each R(x) ∈ H/R, we have

R(x) ∈ supp(R(x)⊙R(e)) ∩ supp(R(e)⊙R(x)).

Hence, R(e) is an identity element of (H/R,⊙). Let R(x) be an arbitrary element
of H/R. By reproduction axiom, there exists y ∈ H such that e ∈ supp(x ◦ y) and
so by Lemma 2.8 (4) we have e ∈ supp(y ◦ x). This implies that

R(e) ∈ supp(R(x)⊙R(y)) ∩ supp(R(y)⊙R(y)) ∩ supp(R(y)⊙R(x)).

Hence, R(y) ∈ (R(x))−1. So, (H/R,⊙) is regular. Finally, let R(x), R(y), R(z)
be arbitrary elements of H/R such that R(x) ∈ supp(R(y) ⊙ R(z)). Then, there
exists t ∈ supp(y ◦ z) such that R(x) = R(t). By using Lemma 5.3 and Theorem
5.2, (H, ◦, e) is right reversible. So, there exists w ∈ z−1 such that y ∈ supp(t◦w).
Therefore,

R(y) ∈ supp(R(t)⊙R(w)) = supp(R(x)⊙R(w)).

Clearly, R(w) ∈ (R(z))−1. This proves that (H/R,⊙) is right reversible.
3) First, we prove (a).
i ⇒ ii) Let R(x) ∈ supp(R(y) ⊙ R(z)). As R(y) = R(u) and R(z) = R(v),

we have R(x) ∈ supp(R(u)⊙ R(v)). Thus, there exists a ∈ supp(u ◦ v) such that
R(x) = R(a). So, a ∈ R(x) ∩ supp(u ◦ v).

ii ⇒ iii) We claim that R(x) = supp(e◦x). For each w ∈ R(x), by Lemma 5.3,
we have w ∈ supp(e ◦ w) = supp(e ◦ x). So, R(x) ⊆ supp(e ◦ x). Conversely, for
each w ∈ supp(e ◦ x) we have supp(e ◦ w) ⊆ supp(e ◦ (e ◦ x)) = supp(e ◦ x). Since
Pe is a partition of H, we have supp(e ◦ w) = supp(e ◦ x) that is w ∈ R(x). So,
supp(e◦x) ⊆ R(x). Therefore, R(x) = supp(e◦x). Now, let a ∈ R(x)∩supp(u◦v).
Then,

R(x) = R(a) = supp(e ◦ a) ⊆ supp(e ◦ u ◦ v).
iii ⇒ i) According to hypothesis, we have x ∈ supp(e ◦ u ◦ v). Thus, there exists
a ∈ supp(u ◦ v) such that x ∈ supp(e ◦ ◦a). Now, from R(a) = supp(e ◦ a) it
R(x) = R(a). On the other hand, R(a) ∈ supp(R(u) ⊙ R(v)) which implies that
R(x) ∈ supp(R(y)⊙R(z)).

The proof of (b) is trivial.

6. Conclusion
By an F -hypergroup of type U on the right, we mean an F -hypergroup (H, ◦) which
has a right scalar identity element e such that for all x, y ∈ H, from x ∈ supp(x◦y)
it follows that y = e. In the resent paper, we classified F -hypergroups of type U
on the right of order 2 or 3 up to an isomorphism. An interested reader can
think about classifying F -hypergroups of higher orders and think about ternary
F -hypergroups of type U .
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