F-Hypergroups of Type U on the Right

Mehdi Farshi, Bijan Davvaz * and Fatemeh Dehghan

Abstract

In this paper, first we introduce F-hypergroups of type U on the right. We will prove that every right scalar identity of an F-hypergroup of type U on the right of size ≤ 5 is also a left identity. Also, we will classify F-hypergroups of type U on the right of order 2 or 3 up to an isomorphism. Then, we will study cyclic F-semihypergroups and finally by using regular relations we construct right reversible quotient F-hypergroups.

Keywords: F-hypergroup of type U on the right, regular relation, right reversible, cyclic F-semihypergroup.

2010 Mathematics Subject Classification: 08A72, 20N20.

How to cite this article

M. Farshi, B. Davvaz and F. Dehghan, F-hypergroups of type U on the right, *Math. Interdisc. Res.* **5** (2020) 321–344.

1. Introduction and Basic Definitions

In this section, after expressing a short history of hyperstructure theory and fuzzy set theory, we will offer all definitions we require of fuzzy hyperstructures. In 1934, F. Marty has introduced algebraic hyperstructures as a natural extension of classical algebraic structures [18]. He defined hypergroups, investigated their properties and applied them to groups and rational algebraic functions. The principal notion of hypergroup theory and some examples can be found in [1, 2, 4, 20]. In 1984, hypergroups of type U on the right right were introduced in [16] to analyze certain hypergroups obtained as quotient sets. That class includes that of hypergroups of type C on the right, cogroups and that of quotient hypergroups G/g of a group G with respect to a non-normal subgroup $g \subseteq G$ (D-hypergroups). In (D-hypergroups). In [19], the concept of the category of hypergroups of type Uon the right is introduced, and some result already known in the field of homology

 $\odot 2020$ University of Kashan

E This work is licensed under the Creative Commons Attribution 4.0 International License.

^{*}Corresponding author (E-mail: davvaz@yazd.ac.ir)

Academic Editor: Mohammad Ali Iranmanesh

Received 18 October 2020, Accepted 22 November 2020

DOI: 10.22052/mir.2020.240327.1248

of abelian groups are extended to non-commutative groups, while in the latter, the analysis of relationships existing between hypergroups of type U and hypergroups of double cosets is furthered. Later, this topic studied by De Salvo, Fasino, Freni, Lo Faro, etc (see [6, 7, 8, 10, 11]). The hypergroups H of type U on the right can be classified in terms of the family $P_{\epsilon} = \{\epsilon x \mid x \in H\}$, where $\epsilon \in H$ is the right scalar identity. If H has size six, then in [5] Davvaz and Bardestani showed that there exist twelve cases for the family P_{ϵ} .

Following the introduction of fuzzy set by Zadeh in 1965 [21], fuzzy set theory has made remarkable progress. Many mathematicians have used this concept in different branches of mathematics. The notion of fuzzy polygroup (*F*-polygroup) has been introduced by Zahedi and Hasankhani in [22, 23]. In [3], Davvaz introduced the notion of *n*-ary *F*-polygroups which is a generalization of ideas presented by Zahedi and Hasankhani. Afterwards, Farshi and Davvaz, generalized the classical isomorphism theorems of groups to F^n -polygroups [13]. In [12], the concept of F^n -hypergroups is introduced and some related properties are investigated. Now, we express all definitions that we will use in this article.

Let *H* be a non-empty set. Each mapping $\mu : H \longrightarrow [0,1]$ is called a *fuzzy* subset of *H*. We define the support of μ by $\operatorname{supp}(\mu) = \{x \in H \mid \mu(x) > 0\}$. An empty fuzzy subset of *H* denoted by \emptyset is the zero function from *H* to [0,1]. Clearly, we have $\operatorname{supp}(\emptyset) = \emptyset$. The set of all non-empty fuzzy subsets of *H* will be denoted by $I^*(H)$. If $A \subseteq H$ and $t \in [0,1]$, then by A_t we mean a fuzzy subset of *H* which is defined as follows:

$$A_t(x) = \begin{cases} t & \text{if } x \in A, \\ 0 & \text{if } x \in H \backslash A. \end{cases}$$

In particular, if A is a singleton set, say $\{a\}$, then $\{a\}_t$ is said to be a fuzzy point and is denoted by a_t , briefly. In fact χ_H , the characteristic function of H, is equal to H_t whenever t = 1. For fuzzy subsets μ and η of H we define $(\mu \cup \nu)(x) = \max\{\mu(x), \nu(x)\}$ and $(\mu \cap \nu)(x) = \min\{\mu(x), \nu(x)\}$. Let $\{\mu_{\alpha} \mid \alpha \in$ Λ be a collection of fuzzy subsets of H, where Λ is a non-empty indexed set. Then, we define $(\bigcup_{\alpha \in \Lambda} \mu_{\alpha})(x) = \bigvee_{\alpha \in \Lambda} {\{\mu_{\alpha}(x)\}}$, where \bigvee denotes supremum. An *F*hyperoperation (or fuzzy hyperoperation) on H is a function $\circ : H \times H \longrightarrow I^*(H)$, i.e., $x \circ y$ is a non-empty fuzzy subset of H, for all $x, y \in H$. Let $\mu, \nu \in I^*(H)$ and $\bigcup_{w \in \mathrm{supp}(\mu), z \in \mathrm{supp}(\nu)}$ $w \circ z$ and $x \circ \nu$ denotes $\bigcup x \circ y$. $x \in H$. Then, $\mu \circ \nu$ denotes $y \in \operatorname{supp}(\nu)$ Moreover, for non-empty subsets A and B of H, $x \circ A$ denotes $x \circ \chi_A$, $\mu \circ A$ denotes $\mu \circ \chi_A$ and $A \circ B$ denotes $\chi_A \circ \chi_B$. A couple (H, \circ) , where \circ is an Fhyperoperation on H, is called an *F*-hypergroupoid. An *F*-hypergroupoid (H, \circ) is called an *F*-semihypergroup if \circ is associative, i.e., $x \circ (y \circ z) = (x \circ y) \circ z$, for all $x, y, z \in H$. An F-semihypergroup (H, \circ) is called an F-hypergroup if $\operatorname{supp}(x \circ H) = \operatorname{supp}(H \circ x) = H$, for all $x \in H$. This condition is called the reproduction axiom. A non-empty subset K of an F-semihypergroup (H, \circ) is

called an *F*-subsemihypergroup if $supp(K \circ K) \subseteq K$. In the case that (H, \circ) is an

F-hypergroup, *K* is called an *F*-subhypergroup if $\operatorname{supp}(K \circ x) = \operatorname{supp}(x \circ K) = K$, for all $x \in K$. Whenever an *F*-hypergroup (H, \circ) contains an element *e* with the property that, for all $x \in H$, one has $x \in \operatorname{supp}(x \circ e)$ (resp. $x \in \operatorname{supp}(e \circ x)$), then we say that *e* is a *right identity* (resp. *left identity*) element of *H*. An identity element is a left and right identity element. If $\operatorname{supp}(x \circ e) = \{x\}$ (resp. $\operatorname{supp}(e \circ x) = \{x\}$), for all $x \in H$, then *e* is called a *right scalar identity* (resp. *left scalar identity*). Finally, an *F*-semihypergroup (H, \circ) is called an *F*-polygroup if the following three conditions are satisfied: (i) there exists $e \in H$ such that $x \in \operatorname{supp}(x \circ e \cap e \circ x)$, for every $x \in H$, (ii) for each $x \in H$, there exists a unique element $x^{-1} \in H$ such that $e \in \operatorname{supp}(x \circ x^{-1} \cap x^{-1} \circ x)$, (iii) $z \in \operatorname{supp}(x \circ y) \Rightarrow x \in \operatorname{supp}(z \circ y^{-1}) \Rightarrow y \in$ $\operatorname{supp}(x^{-1} \circ z)$, for every x, y, z in *H*. Clearly, each *F*-polygroup is an *F*-hypergroup.

2. F-Semihypergroups of Type U on the Right

In this section we introduce the notion of F-semihypergroups of type U on the right, giving several examples that illustrate the importance of this new fuzzy hyperstructure.

Definition 2.1. An *F*-semihypergroup (H, \circ) is said to be of type *U* on the right if it fulfills the following conditions:

- (1) H has a right scalar identity element e,
- (2) $x \in \operatorname{supp}(x \circ y)$ implies that y = e, for all $x, y \in H$.

We shall use the notation (H, \circ, e) to say that e is a right scalar identity element.

Example 2.2. Let (H, \circ) be an *F*-polygroup in which for all $x \in H$ we have $\operatorname{supp}(x \circ e) = \{x\}$ and $\operatorname{supp}(x^{-1} \circ x) = \{e\}$. Then, (H, \circ, e) is an *F*-hypergroup of type *U* on the right.

Example 2.3. Let $H = \{e, a, b\}$. Then, the following table shows an *F*-polygroup structure on *H* which is not an *F*-hypergroup of type *U* on the right.

0	e	a	b
e	$\frac{e}{1}, \frac{a}{0}, \frac{b}{0}$	$\frac{e}{0}, \frac{a}{1}, \frac{b}{0}$	$\frac{e}{0}, \frac{a}{0}, \frac{b}{1}$
a	$\frac{e}{0}, \frac{a}{1}, \frac{b}{0}$	$\frac{e}{0}, \frac{a}{1}, \frac{b}{0}$	$\frac{e}{1}, \frac{a}{1}, \frac{b}{1}$
b	$\frac{e}{0}, \frac{a}{0}, \frac{b}{1}$	$\frac{e}{1}, \frac{a}{1}, \frac{b}{1}$	$\frac{e}{0}, \frac{a}{0}, \frac{b}{1}$

Next example is a fuzzy version of an example of [14].

Example 2.4. Let *H* be a set with at least 2 elements and choose an element $e \in H$. Let $t \in (0, 1]$. We define an *F*-hyperoperation $*_t$ on *H* as follows:

$$(x *_t y)(z) = \begin{cases} t & \text{if } y = e, z = x \\ 0 & \text{if } y \neq e, z = x \\ 0 & \text{if } y = e, z \neq x \\ t & \text{if } y \neq e, z \neq x \end{cases}, \text{ for all } x, y, z \in H.$$

It is easy to check that $(H, *_t)$ is an *F*-hypergroup of type *U* on the right and that for all $y \in H \setminus \{e\}$ and all $x \in H$ we have $\operatorname{supp}(x *_t y) = H \setminus \{x\}$.

Example 2.5. Let $t_1, t_2, t_3 \in (0, 1]$. Then, the following tables denote *F*-hypergroups of type *U* on the right structure on \mathbb{Z}_2 and \mathbb{Z}_3 , respectively.

			0	0	1	2
0	0	1	0	$\frac{0}{t}, \frac{1}{0}, \frac{2}{0}$	$\frac{0}{0}, \frac{1}{t}, \frac{2}{0}$	$\frac{0}{0}, \frac{1}{0}, \frac{2}{t}$
0	$\frac{0}{t_1}, \frac{1}{0}$	$\frac{0}{0}, \frac{1}{t_0}$			$0 + \iota_2 + 0$	$0 \cdot 0 \cdot \iota_{3}$
	01 0	0 02	1	$\frac{0}{0}, \frac{1}{t_2}, \frac{2}{0}$	$\frac{0}{0}, \frac{1}{0}, \frac{2}{t_3}$	$\frac{0}{t_1}, \frac{1}{0}, \frac{2}{0}$
1	$\frac{0}{0}, \frac{1}{t_2}$	$\frac{0}{t_1}, \frac{1}{0}$				
	. –	-	2	$\left \begin{array}{c} \frac{0}{0}, \frac{1}{0}, \frac{2}{t_3} \right $	$\frac{0}{t_1}, \frac{1}{0}, \frac{2}{0}$	$\frac{0}{0}, \frac{1}{t_2}, \frac{2}{0}$

We denote them by $\mathbb{Z}_2(t_1, t_2)$ and $\mathbb{Z}_3(t_1, t_2, t_3)$, respectively.

Next example is a fuzzy version of an example in section 2-2 of [15].

Example 2.6. Let $\mathbb{S}_3/\mathbb{S}_2$ be the set of all cosets of the subgroup $\mathbb{S}_2 = \langle (1 \ 2) \rangle$ of the symmetric group \mathbb{S}_3 , i.e., $\mathbb{S}_3/\mathbb{S}_2 = \{\mathbb{S}_2, (1 \ 3)\mathbb{S}_2, (2 \ 3)\mathbb{S}_2\}$. Let t_1, t_2 and t_3 be arbitrary elements of (0, 1]. Set $e = \mathbb{S}_2$, $x = (1 \ 3)\mathbb{S}_2$, and $y = (2 \ 3)\mathbb{S}_2$. Then, $\mathbb{S}_3/\mathbb{S}_2$ with the following table is an *F*-hypergroup of type *U* on the right which we denote by $\mathbb{S}_3/\mathbb{S}_2(t_1, t_2, t_3)$.

0	e	x	y
e	$\frac{e}{t_1}, \frac{x}{0}, \frac{y}{0}$	$\frac{e}{0}, \frac{x}{t_2}, \frac{y}{t_3}$	$\frac{e}{0}, \frac{x}{t_2}, \frac{y}{t_3}$
x	$\frac{e}{0}, \frac{x}{t_2}, \frac{y}{0}$	$\frac{e}{t_1}, \frac{x}{0}, \frac{y}{t_3}$	$\frac{e}{t_1}, \frac{x}{0}, \frac{y}{t_3}$
y	$\frac{e}{0}, \frac{x}{0}, \frac{y}{t_3}$	$\frac{e}{t_1}, \frac{x}{t_2}, \frac{y}{0}$	$\frac{e}{t_1}, \frac{x}{t_2}, \frac{y}{0}$

Example 2.7. Let t be an arbitrary element of (0, 1] and G be a group. We define an F-hyperoperation \circ on G as follows:

$$(x \circ y)(z) = e_t(xyz^{-1}), \text{ for all } x, y, z \in G.$$

It is easy to check that \circ induces an *F*-hypergroup of type *U* on the right structure on *G*, where e_t is a fuzzy point of *G*.

Lemma 2.8. Let (H, \circ, e) be an *F*-hypergroup of type *U* on the right. Then, for all $x, y, z, t \in H$ the following assertions hold:

- (1) $supp(e \circ x) = supp(e \circ y)$ implies that $supp(z \circ x) = supp(z \circ y)$.
- (2) $x \in supp(e \circ y)$ implies that $supp(z \circ x) \subseteq supp(z \circ y)$.
- (3) If $supp(e \circ x) = \{x\}$ and $z \in supp(x \circ y)$, then $supp(e \circ z) \subseteq supp(x \circ y)$.
- (4) If $e \in supp(x \circ y)$, then $e \in supp(y \circ x)$.
- (5) If $y \in supp(x \circ z)$ and $x \in supp(y \circ t)$, then $e \in supp(z \circ t \cap t \circ z)$.

Proof. 1) Let $x, y \in H$ be arbitrary elements and $supp(e \circ x) = supp(e \circ y)$. Then, for each $z \in H$ we have

$$\begin{aligned} \operatorname{supp}(z \circ x) &= \operatorname{supp}((z \circ e) \circ x) = \operatorname{supp}(z \circ (e \circ x)) &= \operatorname{supp}(z \circ (e \circ y)) \\ &= \operatorname{supp}((z \circ e) \circ y) \\ &= \operatorname{supp}(z \circ y). \end{aligned}$$

2) Let $x, y \in H$ be arbitrary elements and $x \in \operatorname{supp}(e \circ y)$. Then, for each $z \in H$ we have $\operatorname{supp}(z \circ x) \subseteq \operatorname{supp}(z \circ (e \circ y)) = \operatorname{supp}((z \circ e) \circ y) = \operatorname{supp}(z \circ y)$. 3) Let $x, y, z \in H$ be arbitrary elements, $\operatorname{supp}(e \circ x) = \{x\}$ and $z \in \operatorname{supp}(x \circ y)$. Then, we have

$$supp(e \circ z) \subseteq supp(e \circ (x \circ y)) = supp((e \circ x) \circ y) = supp(x \circ y).$$

4) Let $x, y \in H$ be arbitrary elements and $e \in \operatorname{supp}(x \circ y)$. Then, we have

$$y \in \{y\} = \operatorname{supp}(y \circ e) \subseteq \operatorname{supp}(y \circ (x \circ y)) = \operatorname{supp}((y \circ x) \circ y).$$

So, there exists $w \in \operatorname{supp}(y \circ x)$ such that $y \in \operatorname{supp}(w \circ y)$. This implies that $w \in \operatorname{supp}(y \circ x) \subseteq \operatorname{supp}((w \circ y) \circ x) = \operatorname{supp}(w \circ (y \circ x))$. Hence, there exists $w' \in \operatorname{supp}(y \circ x)$ such that $w \in \operatorname{supp}(w \circ w')$. Since (H, \circ) is of type U on the right, we conclude that w' = e and therefore we have $e \in \operatorname{supp}(y \circ x)$.

5) Let $x, y, z, t \in H$ be arbitrary elements, $y \in \operatorname{supp}(x \circ z)$ and $x \in \operatorname{supp}(y \circ t)$. Then, we have $y \in \operatorname{supp}(x \circ z) \subseteq \operatorname{supp}((y \circ t) \circ z) = \operatorname{supp}(y \circ (t \circ z))$ and so there exists $w \in \operatorname{supp}(t \circ z)$ such that $y \in \operatorname{supp}(y \circ w)$. Since (H, \circ) is of type U on the right, we conclude that w = e and therefore we have $e \in \operatorname{supp}(t \circ z)$. In a similar manner we have $e \in \operatorname{supp}(z \circ t)$. This implies that $e \in \operatorname{supp}(t \circ z) \cap \operatorname{supp}(z \circ t) = \operatorname{supp}(t \circ z \cap z \circ t)$.

Lemma 2.9. Let (H, \circ) be an *F*-hypergroup of type *U* on the right and $x \in H$. Then, the following assertions are equivalent:

(1) $|supp(e \circ x)| = 1.$

(2) $supp(e \circ x) = \{x\}.$

Proof. $1 \Rightarrow 2$) Let supp $(e \circ x) = \{y\}$. Then, we have

$$\operatorname{supp}(e \circ y) = \operatorname{supp}(e \circ (e \circ x)) = \operatorname{supp}(e \circ x) = \{y\}.$$

On the other hand, by reproduction axiom, there exists $w \in H$ such that $y \in \operatorname{supp}(x \circ w)$ and so we have $\{y\} = \operatorname{supp}(e \circ y) \subseteq \operatorname{supp}((e \circ x) \circ w) = \operatorname{supp}(y \circ w)$. Since (H, \circ) is of type U on the right, we conclude that w = e and therefore $y \in \operatorname{supp}(x \circ e) = \{x\}$. Hence, x = y. $2 \Rightarrow 1$) It is trivial.

Lemma 2.10. Let (H, \circ, e) be an *F*-hypergroup of type *U* on the right. Then, for each $x \in H \setminus \{e\}$ the following assertions are equivalent:

- (1) $x \notin supp(e \circ (H \setminus \{x\})).$
- (2) $supp(e \circ x) = \{x\}.$

Proof. $1 \Rightarrow 2$) Let $x \notin \operatorname{supp}(e \circ (H \setminus \{x\}))$. Thus, $x \in \operatorname{supp}(e \circ x)$. Let $y \in \operatorname{supp}(e \circ x)$ be an arbitrary element. We have to show that y = x. By reproduction axiom, there exists $z \in H$ such that $x \in \operatorname{supp}(y \circ z)$. Whence,

$$x \in \operatorname{supp}(y \circ z) \subseteq \operatorname{supp}((e \circ x) \circ z) = \operatorname{supp}(e \circ (x \circ z)).$$

So, there exists $t \in \operatorname{supp}(x \circ z)$ such that $x \in \operatorname{supp}(e \circ t)$. Since $x \notin \operatorname{supp}(e \circ (H \setminus \{x\}))$, we obtain x = t. Thus, $x \in \operatorname{supp}(x \circ z)$. Since (H, \circ) is of type U on the right, we conclude that z = e. Now, since $x \in \operatorname{supp}(y \circ z)$ we have y = x.

 $2 \Rightarrow 1$) By way of contradiction, suppose that there exists $z \in H \setminus \{x\}$ such that $x \in \text{supp}(e \circ z)$. By reproduction axiom, there exists $y \in H \setminus \{e\}$ such that $z \in \text{supp}(x \circ y)$ and so,

$$\operatorname{supp}(e \circ z) \subseteq \operatorname{supp}(e \circ (x \circ y)) = \operatorname{supp}((e \circ x) \circ y) = \operatorname{supp}(x \circ y).$$

Whence, $x \in \text{supp}(x \circ y)$. This implies that y = e and from $z \in \text{supp}(x \circ y)$ it follows that z = x, which is a contradiction.

Lemma 2.11. Let (H, \circ, e) be an *F*-hypergroup of type *U* on the right with at least two elements. Then, the following assertions hold:

- (1) If $supp(e \circ y) = H \setminus \{e\}$ for some $y \in H$, then $supp(x \circ y) = H \setminus \{x\}$, for all $x \in H$.
- (2) If there exists $y \in H \setminus \{e\}$ such that $supp(x \circ y) = H \setminus \{x\}$ for some $x \in H$, then $e \in supp(y \circ z)$, for all $z \in H \setminus \{e\}$.

Proof. 1) Let $x, y \in H$ be arbitrary elements and $supp(e \circ y) = H \setminus \{e\}$. Then, we have

 $\operatorname{supp}(x \circ y) = \operatorname{supp}((x \circ e) \circ y) = \operatorname{supp}(x \circ (e \circ y)) = \operatorname{supp}(x \circ (H \setminus \{e\})).$

This implies that $x \notin \operatorname{supp}(x \circ y)$. On the other hand, by using reproduction axiom we have

$$(H \setminus \{x\}) \cup \{x\} = H = \operatorname{supp}(x \circ H) = \operatorname{supp}(x \circ ((H \setminus \{e\}) \cup \{e\}))$$
$$= \operatorname{supp}(x \circ (H \setminus \{e\})) \cup \operatorname{supp}(x \circ e)$$
$$= \operatorname{supp}(x \circ (H \setminus \{e\})) \cup \{x\}$$
$$= \operatorname{supp}(x \circ y) \cup \{x\}.$$

This implies that $\operatorname{supp}(x \circ y) = H \setminus \{x\}.$

2) Let $\operatorname{supp}(x \circ y) = H \setminus \{x\}$, where $x \in H$ and $y \in H \setminus \{e\}$. By way of contradiction, suppose that there exists $z \in H \setminus \{e\}$ such that $e \notin \operatorname{supp}(y \circ z)$. Then,

$$x \notin \operatorname{supp}(x \circ (y \circ z)) = \operatorname{supp}((x \circ y) \circ z) = \operatorname{supp}((H \setminus \{x\}) \circ z).$$

By reproduction axiom, we have $H = \operatorname{supp}((H \setminus \{x\}) \circ z) \cup \operatorname{supp}(x \circ z)$. This implies that $x \in \operatorname{supp}(x \circ z)$. So, we have z = e which is a contradiction.

Theorem 2.12. Let (H, \circ, e) be an *F*-hypergroup of type *U* on the right with |H| < 6. Then, *e* is a left identity element.

Proof. In the case that |H| = 1 we have $H = \{e\}$ and obviously e is a left scalar identity element. Let $H = \{e, x\}$. By way of contradiction, suppose that $x \notin \operatorname{supp}(e \circ x)$. By reproduction axiom, we have $\operatorname{supp}(e \circ x) \cup \operatorname{supp}(x \circ x) = H$. This implies that $x \in \operatorname{supp}(x \circ x)$. Since (H, \circ) is of type U on the right, we have x = e which is a contradiction. Now, assume that $H = \{e, x, y\}$. By reproduction axiom, we have $\operatorname{supp}(e \circ e) \cup \operatorname{supp}(e \circ x) \cup \operatorname{supp}(e \circ y) = H$. This implies that $x \in \operatorname{supp}(e \circ y)$ and $y \in \operatorname{supp}(e \circ x)$. Hence, $x \in \operatorname{supp}(e \circ y) \subseteq \operatorname{supp}(e \circ (e \circ x)) = \operatorname{supp}(e \circ x)$, which is a contradiction. Let $H = \{e, x, y, z\}$. By way of contradiction, suppose that $x \notin \operatorname{supp}(e \circ x)$. By using reproduction axiom, $x \in \operatorname{supp}(e \circ y)$ or $x \in \operatorname{supp}(e \circ z)$. Without loss of generality, we can assume that $x \in \operatorname{supp}(e \circ y)$. Thus, $\operatorname{supp}(e \circ x)$. Thus, $\operatorname{supp}(e \circ x)$. Thus, $\operatorname{supp}(e \circ x)$. Thus, $\operatorname{supp}(e \circ x) = \{z\}$ and $\operatorname{supp}(e \circ z) = \operatorname{supp}(e \circ (e \circ x)) = \operatorname{supp}(e \circ x) = \{z\}$. By reproduction axiom, there exists $w \in H$ such that $x \in \operatorname{supp}(z \circ w)$ and therefore we have

$$z \in \operatorname{supp}(e \circ x) \subseteq \operatorname{supp}(e \circ (z \circ w)) = \operatorname{supp}((e \circ z) \circ w) = \operatorname{supp}(z \circ w).$$

Since (H, \circ) is an *F*-hypergroup of type *U* on the right, we have w = e. This implies that $x \in \text{supp}(z \circ e) = \{z\}$ which is a contradiction. Finally, assume

that $H = \{e, x, y, z, t\}$ and by way of contradiction, let $x \notin \operatorname{supp}(e \circ x)$. By using reproduction axiom, $x \in \operatorname{supp}(e \circ y)$ or $x \in \operatorname{supp}(e \circ z)$ or $x \in \operatorname{supp}(e \circ t)$. Without loss of generality, we can assume that $x \in \operatorname{supp}(e \circ y)$. Thus, $\operatorname{supp}(e \circ y) \not\subseteq$ $\operatorname{supp}(e \circ x)$ and so by Lemma 2.8 (2), $y \notin \operatorname{supp}(e \circ x)$. Therefore, $\operatorname{supp}(e \circ x) \subseteq \{z, t\}$. If $\operatorname{supp}(e \circ x) = \{z\}$, then we have $\operatorname{supp}(e \circ z) = \operatorname{supp}(e \circ (e \circ x)) = \operatorname{supp}(e \circ x) = \{z\}$. On the other hand, by using reproduction axiom, there exists $w \in H$ such that $x \in \operatorname{supp}(z \circ w)$ and therefore we have

$$z \in \operatorname{supp}(e \circ x) \subseteq \operatorname{supp}(e \circ (z \circ w)) = \operatorname{supp}((e \circ z) \circ w) = \operatorname{supp}(z \circ w).$$

Since (H, \circ) is an *F*-hypergroup of type *U* on the right, we have w = e. This implies that $x \in \text{supp}(z \circ e) = \{z\}$ which is a contradiction. In a similar manner, in the case that $\text{supp}(e \circ x) = \{t\}$ we will have a contradiction. So, $\text{supp}(e \circ x) = \{z, t\}$. From

$$\operatorname{supp}(e \circ z) \cup \operatorname{supp}(e \circ t) = \operatorname{supp}(e \circ \{z, t\}) = \operatorname{supp}(e \circ (e \circ x)) = \operatorname{supp}(e \circ x) = \{z, t\},$$

and reproduction axiom, it follows that $y \in \operatorname{supp}(e \circ y)$. Moreover, since $x \in \operatorname{supp}(e \circ y)$, by Lemma 2.8 (2), we have $\{z,t\} = \operatorname{supp}(e \circ x) \subseteq \operatorname{supp}(e \circ y)$ which implies that $\operatorname{supp}(e \circ y) = \{x, y, z, t\}$. Thus, by Lemma 2.11 (1), we have $\operatorname{supp}(x \circ y) = H \setminus \{x\}$ and $\operatorname{supp}(y \circ y) = H \setminus \{y\}$. So,

$$\begin{array}{rcl} y \in \mathrm{supp}(x \circ y) & \subseteq & \mathrm{supp}((e \circ y) \circ y) = \mathrm{supp}(e \circ (y \circ y)) \\ & \subseteq & \{e\} \cup \mathrm{supp}(e \circ x) \cup \mathrm{supp}(e \circ z) \cup \mathrm{supp}(e \circ t) = \{e, z, t\}, \end{array}$$

which is a contradiction.

In the next example, which is a fuzzy version of Remark 4.1 of [6], we will offer a right identity element of an F-hypergroup of type U on the right which is not a left identity element.

Example 2.13. Let $H = \{e, a, b, c, d, f\}$ and $t \in (0, 1]$. Then, H with the following table is an F-hypergroup of type U on the right. It is easy to check that e is not a left identity element.

0	e	a,b,c	d, f
e	e_t	$\{c,d\}_t$	$\{a,b,c,d,f\}_t$
a	a_t	$\{e, d, f\}_t$	$\{e,b,c,d,f\}_t$
b	e_t	$\{e,a,c,d\}_t$	$\{e,a,c,d,f\}_t$
c	e_t	$\{e,a,b,f\}_t$	$\{e,a,b,d,f\}_t$
d	e_t	$\{e, a, f\}_t$	$\{e,a,b,c,f\}_t$
f	e_t	$\{e, a, d\}_t$	$\{e,a,b,c,d\}_t$

Theorem 2.14. Let (H, \circ, e) be an *F*-hypergroup of type *U* on the right and $P \subset H$. Let (P, \circ, e) be an *F*-polygroup such that $supp(x^{-1} \circ x \cap x \circ x^{-1}) = \{e\}$, for all $x \in P$. Then,

- (1) $supp((H \setminus P) \circ P) = H \setminus P$,
- (2) $supp((H \setminus P) \circ x) = H \setminus P$, for all $x \in P$,
- (3) $supp(x \circ P \cap x \circ (H \setminus P)) = \emptyset$, for all $x \in H$,
- (4) $|supp(x \circ y)| = 1$, for all $x \in H \setminus P$ and all $y \in P$.

Proof. 1) It is obvious that $H \setminus P = \operatorname{supp}((H \setminus P) \circ e) \subseteq \operatorname{supp}((H \setminus P) \circ P)$. Conversely, let $z \in H \setminus P$ and $y \in P$ be arbitrary elements. We prove that $\operatorname{supp}(z \circ y) \subseteq H \setminus P$ which will imply that $\operatorname{supp}((H \setminus P) \circ P) \subseteq H \setminus P$. By way of contradiction, suppose that $\operatorname{supp}(z \circ y) \not\subseteq H \setminus P$. Then, there exists $x \in P$ such that $x \in \operatorname{supp}(z \circ y)$ and so we have

$$\operatorname{supp}(x \circ y^{-1}) \subseteq \operatorname{supp}((z \circ y) \circ y^{-1}) = \operatorname{supp}(z \circ (y \circ y^{-1})) = \operatorname{supp}(z \circ e) = \{z\}.$$

Hence, $z \in P$ which is a contradiction.

2) Let $x \in P$ be an arbitrary element. By using reproduction axiom we have

$$\begin{array}{lll} H = \mathrm{supp}(H \circ x) &=& \mathrm{supp}((H \backslash P) \circ x \cup P \circ x) \\ &=& \mathrm{supp}((H \backslash P) \circ x) \cup \mathrm{supp}(P \circ x) \\ &=& \mathrm{supp}((H \backslash P) \circ x) \cup P. \end{array}$$

Hence, we have $H \setminus P \subseteq \operatorname{supp}((H \setminus P) \circ x)$. On the other hand, by using (1) we have $\operatorname{supp}((H \setminus P) \circ x) \subseteq \operatorname{supp}((H \setminus P) \circ P) = H \setminus P$.

3) By way of contradiction, suppose that $\operatorname{supp}(x \circ P \cap x \circ (H \setminus P)) \neq \emptyset$, for some $x \in H$. Then, there exist $y \in P$ and $z \in H \setminus P$ such that $\operatorname{supp}(x \circ y) \cap \operatorname{supp}(x \circ z) \neq z$ and $z \in U \setminus P$ such that $w \in \operatorname{supp}(x \circ y) \cap \operatorname{supp}(x \circ z)$. Then, we have

$$\operatorname{supp}(w \circ y^{-1}) \subseteq \operatorname{supp}(x \circ y \circ y^{-1}) = \operatorname{supp}(x \circ e) = \{x\}$$

So, $\{x\} = \operatorname{supp}(w \circ y^{-1}) \subseteq \operatorname{supp}((x \circ z) \circ y^{-1}) = \operatorname{supp}(x \circ (z \circ y^{-1}))$. Thus, by condition (2) of Definition 2.1 we have $e \in \operatorname{supp}(z \circ y^{-1})$. Therefore,

$$\operatorname{supp}(e \circ y) \subseteq \operatorname{supp}((z \circ y^{-1}) \circ y) = \operatorname{supp}(z \circ (y \circ y^{-1})) = \operatorname{supp}(z \circ e) = \{z\}.$$

Consequently, we have $z \in \text{supp}(e \circ y) \subseteq P$ which is a contradiction.

4) Let $x \in H \setminus P$ and $y \in P$ be arbitrary elements. Suppose that $\{t, w\} \subseteq \sup (x \circ y)$. Then, we have

$$\operatorname{supp}(t \circ y^{-1}) \subseteq \operatorname{supp}((x \circ y) \circ y^{-1}) = \operatorname{supp}(x \circ (y \circ y^{-1})) = \operatorname{supp}(x \circ e) = \{x\}.$$

Similarly, we have $supp(w \circ y^{-1}) \subseteq \{x\}$. Hence, $supp(t \circ y^{-1}) = supp(w \circ y^{-1}) = \{x\}$. This implies that

$$\{t\} = \operatorname{supp}(t \circ e) = \operatorname{supp}(t \circ (y^{-1} \circ y)) = \operatorname{supp}((w \circ y^{-1}) \circ y) = \operatorname{supp}(w \circ e) = \{w\}.$$

Therefore, we have $|\operatorname{supp}(x \circ y)| = 1.$

Definition 2.15. Let (H, \circ) be an *F*-hypergroup of type *U* on the right with at least two elements. Then, an element $x \in H$ is said to be *total* or a T_F -element if $\operatorname{supp}(x \circ y) = H \setminus \{x\}$, for all $y \in H \setminus \{e\}$.

Example 2.16. Let (H, \circ) be the *F*-hypergroup of type *U* on the right which is defined in Example 2.6. Then, each element of *H* is a T_F -element while (\mathbb{Z}_3, \circ) defined in Example 2.5 has no T_F -element.

Example 2.17. Let $H = \{e, a, b, c, d\}$ and $t \in (0, 1]$. Then, H with the following table is an F-hypergroup of type U on the right. It is easy to check that b, c, d are T_F -elements while a is not a T_F - element.

0	e	a	b	c	d
e	e_t	$\{a,b\}_t$	$\{a,b\}_t$	$\{c,d\}_t$	$\{c,d\}_t$
a	a_t	$\{e,b,c\}_t$	$\{e,b,c\}_t$	$\{e,b,c,d\}_t$	$\{e,b,c,d\}_t$
b	b_t	$\{e,a,c,d\}_t$	$\{e,a,c,d\}_t$	$\{e,a,c,d\}_t$	$\{e,a,c,d\}_t$
с	c_t	$\{e,a,b,d\}_t$	$\{e,a,b,d\}_t$	$\{e,a,b,d\}_t$	$\{e,a,b,d\}_t$
d	d_t	$\{e,a,b,c\}_t$	$\{e,a,b,c\}_t$	$\{e,a,b,c\}_t$	$\{e,a,b,c\}_t$

Proposition 2.18. Let (H, \circ) be an *F*-hypergroup of type *U* on the right such that $|H| \ge 2$. Let *x* be a *T*_{*F*}-element in *H* and $y, z \in H \setminus \{e\}$. Then, the following assertions hold:

- (1) $e \in supp(y \circ z)$.
- (2) If $|H| \ge 3$, then $|supp(y \circ z)| \ge 2$.

Proof. 1) It follows from Lemma 2.11 (2).

2) If x = e, then the result follows from Lemma 2.11 (1). So, suppose that $x \in H \setminus \{e\}$. By reproduction axiom, there exists $w \in H$ such that $x \in \text{supp}(w \circ y)$. It is obvious that $w \neq x$. Moreover, we have

$$H \setminus \{x\} = \operatorname{supp}(x \circ z) \subseteq \operatorname{supp}((w \circ y) \circ z) = \operatorname{supp}(w \circ (y \circ z)).$$

If $|\operatorname{supp}(y \circ z)| = 1$, then from the previous point we obtain $\operatorname{supp}(y \circ z) = \{e\}$. Whence, $H \setminus \{x\} = \operatorname{supp}(w \circ e) = \{w\}$. This is absurd because $|H| \ge 3$. Consequently, we have $|\operatorname{supp}(y \circ z)| \ge 2$.

Lemma 2.19. Let (H, \circ, e) be an *F*-hypergroup of type *U* on the right. Let $K \subset H$ be an *F*-subsemihypergroup such that $|K| \ge 2$. Then, |H - K| > 1.

Proof. By way of contradiction, suppose that $H \setminus K = \{x\}$, for some $x \in H$. Since $|K| \ge 2$, there exists an element a in $K \setminus \{e\}$. Now, by using reproduction axiom we have

$$\begin{aligned} x \in H = \mathrm{supp}(H \circ a) &= \mathrm{supp}((K \cup (H \setminus K)) \circ a) \\ &= \mathrm{supp}(K \circ a) \cup \mathrm{supp}((H \setminus K) \circ a) \\ &\subseteq K \cup \mathrm{supp}(x \circ a). \end{aligned}$$

Since $x \notin K$, we have $x \in \text{supp}(x \circ a)$ which implies that a = e, a contradiction. \Box

Lemma 2.20. Let (H, \circ, e) be an F-hypergroup of type U on the right and $K \subset H$ be an F-subhypergroup. If $|K| \ge 3$ and $|H \setminus K| = 2$, then $supp(x \circ y) \ne K \setminus \{x\}$, for every two distinct elements $x, y \in K$.

Proof. By way of contradiction, suppose that there exist two distinct elements x, y in K such that $\operatorname{supp}(x \circ y) = K \setminus \{x\}$. If y = e, then $\operatorname{supp}(x \circ e) = \{x\} = K \setminus \{x\}$, which is a contradiction. Thus, $y \neq e$. By hypothesis, there exist $u, v \in H$ such that $H \setminus K = \{u, v\}$. Suppose that $x \neq e$. By reproduction axiom, there exists $w \in H$ such that $u \in \operatorname{supp}(w \circ y)$. If $w \in K$, then we have $u \in \operatorname{supp}(w \circ y) \subseteq K$, which is absurd. Thus, $w \notin K$. On the other hand, since $u \notin \operatorname{supp}(u \circ y)$, we conclude that w = v and therefore $u \in \operatorname{supp}(v \circ y)$. From $x \neq e$ it follows that $v \notin \operatorname{supp}(v \circ x)$ and so we have $\operatorname{supp}(v \circ x) \subseteq H \setminus \{v\}$. We have

$$\begin{array}{rcl} u \in \mathrm{supp}(v \circ y) & \subseteq & \mathrm{supp}(v \circ (K \backslash \{x\})) = \mathrm{supp}(v \circ (x \circ y)) = \mathrm{supp}((v \circ x) \circ y) \\ & \subseteq & \mathrm{supp}((H \backslash \{v\}) \circ y) = \mathrm{supp}((K \cup \{u\}) \circ y) \\ & = & \mathrm{supp}(K \circ y) \cup \mathrm{supp}(u \circ y) = K \cup \mathrm{supp}(u \circ y), \end{array}$$

which is a contradiction. Thus, x = e and $\operatorname{supp}(e \circ y) = K \setminus \{e\}$. On the other hand, since $|K| \ge 3$, there exists $z \in H$ such that $\{e, y, z\} \subseteq K$. Therefore,

$$\begin{split} K &= \operatorname{supp}(z \circ K) = \operatorname{supp}(z \circ e \cup z \circ (K \setminus \{e\})) = \operatorname{supp}(z \circ e) \cup \operatorname{supp}(z \circ (K \setminus \{e\})) \\ &= \{z\} \cup \operatorname{supp}(z \circ (e \circ y)) \\ &= \{z\} \cup \operatorname{supp}(z \circ y). \end{split}$$

Hence, we have $supp(z \circ y) = K \setminus \{z\}$. By the above argument we have z = e which is a contradiction.

3. Isomorphism of F-Hypergrous of Type U on the Right

In this section, we begin with the definition of isomorphism of F-hypergroupoids. We use this notion to obtain characterizations of F-hypergroups of type U on the right of order 2 or 3. **Definition 3.1.** Let $(H_1, *)$ and (H_2, \circ) be two *F*-hypergroupoids. A one-to-one and onto mapping $\varphi : H_1 \longrightarrow H_2$ is called an *isomorphism* if there exists a positive real number *r* such that $(x * y)(a) = r(\varphi(x) \circ \varphi(y))(\varphi(a))$, for every $x, y, a \in H_1$. We say that H_1 is *isomorphic* to H_2 , denoted by $H_1 \cong H_2$, if there exists an isomorphism from H_1 to H_2 .

Example 3.2. Let $t \in (0,1]$ and $H = \{e, x, y\}$ be equipped with the *F*-hyperoperation $*_t$ defined in Example 2.4. If we define the mapping $\varphi : H \longrightarrow \mathbb{S}_3/\mathbb{S}_2(t_1, t_1, t_1)$ as follows:

$$\varphi(e) = \mathbb{S}_2, \quad \varphi(x) = (1 \ 3)\mathbb{S}_2 \quad \text{and} \quad \varphi(y) = (2 \ 3)\mathbb{S}_2,$$

where $t_1 \in (0,1]$ and $\mathbb{S}_3/\mathbb{S}_2(t_1,t_1,t_1)$ is the *F*-hypergroup of type *U* on the right defined in Example 2.6, then $H \cong \mathbb{S}_3/\mathbb{S}_2(t_1,t_1,t_1)$.

Lemma 3.3. Let $(H_1, *)$ and (H_2, \circ) be two *F*-hypergroupoids *F*-hypergroupoids and $\varphi : H_1 \longrightarrow H_2$ be a map. Then, φ is an isomorphism if and only if φ satisfies the following conditions:

- (1) $\varphi(supp(x * y)) = supp(\varphi(x) \circ \varphi(y)), \text{ for every } x, y \in H_1,$
- $(2) (x * y)(a)(\varphi(z) \circ \varphi(w))(\varphi(b)) = (\varphi(x) \circ \varphi(y))(\varphi(a))(z * w)(b), \text{ for every} \\ x, y, z, w, a, b \in H_1.$

Proof. Let $\varphi : H_1 \longrightarrow H_2$ be an isomorphism and $\varphi(a) \in \varphi(\operatorname{supp}(x * y))$ be an arbitrary element. Since φ is one-to-one, we have $a \in \operatorname{supp}(x * y)$ and therefore $(x*y)(a) \neq 0$. Thus, $(\varphi(x) \circ \varphi(y))(\varphi(a)) \neq 0$ which implies that $\varphi(a) \in \operatorname{supp}(\varphi(x) \circ \varphi(y))$. So, we have $\varphi(\operatorname{supp}(x * y)) \subseteq \operatorname{supp}(\varphi(x) \circ \varphi(y))$. To prove the reverse inclusion, suppose that $\varphi(a) \in \operatorname{supp}(\varphi(x) \circ \varphi(y))$ be an arbitrary element. Then, $(\varphi(x) \circ \varphi(y))(\varphi(a)) \neq 0$. So, we have $(x * y)(a) \neq 0$. Consequently, we have $a \in \operatorname{supp}(x * y)$ which implies that $\varphi(a) \in \varphi(\operatorname{supp}(x * y))$. Now, to prove (2), let $x, y, z, w, a, b \in H_1$ be arbitrary elements. If (x*y)(a) = 0 or (z*w)(b) = 0, then by using (1) we have $(\varphi(x) \circ \varphi(y))(\varphi(a)) = 0$ or $(\varphi(z) \circ \varphi(w))(\varphi(b)) = 0$ and so in this case the desired result holds. So, assume that $a \in \operatorname{supp}(x * y)$ and $b \in \operatorname{supp}(z * w)$. Since $\varphi : H_1 \longrightarrow H_2$ is an isomorphism, there exists a positive real number r such that $(x*y)(a) = r(\varphi(x) \circ \varphi(y))(\varphi(a))$ and $(z*w)(b) = r(\varphi(z) \circ \varphi(w))(\varphi(b))$. Hence, the desired result follows easily.

Conversely, suppose that φ satisfies conditions (1) and (2). Let $x, y, a \in H_1$ be arbitrary elements. We choose $z, w, b \in H_1$ such that $b \in \operatorname{supp}(z * w)$. By (1), we have $(\varphi(z) \circ \varphi(w))(\varphi(b)) \neq 0$. We set $r = (z * w)(b)/(\varphi(z) \circ \varphi(w))(\varphi(b))$. By (2), we have $(x * y)(a)(\varphi(z) \circ \varphi(w))(\varphi(b)) = (\varphi(x) \circ \varphi(y))(\varphi(a))(z * w)(b)$ which implies that $(x * y)(a) = r(\varphi(x) \circ \varphi(y))(\varphi(a))$.

Corollary 3.4. Let $(H_1, *)$ and (H_2, \circ) be two *F*-hypergroupoids *F*-hypergroupoids and $\varphi : H_1 \longrightarrow H_2$ be an (x * y)(a) = (z * w)(b) if and only if $(\varphi(x) \circ \varphi(y))(\varphi(a)) = (\varphi(z) \circ \varphi(w))(\varphi(b))$, for every $x, y, z, w, a, b \in H_1$. Next example shows that the converse of Corollary 3.4 does not hold in general.

Example 3.5. We equip the sets $H_1 = \{0, 1\}$ and $H_2 = \{e, a\}$ with the *F*-hyperoperations * and \circ which are defined in the following tables:

*	0	1	0	,	e	a
0	$\frac{0}{0.4}, \frac{1}{0}$	$\frac{0}{0}, \frac{1}{0.3}$	e	2	$\frac{e}{0.8}, \frac{a}{0}$	$\frac{e}{0}, \frac{a}{0.1}$
1	$\frac{0}{0}, \frac{1}{0.5}$	$\frac{0}{0.6}, \frac{1}{0}$	a	ļ	$\frac{e}{0}, \frac{a}{0.9}$	$\frac{e}{0.3}, \frac{a}{0}$

We define $\varphi : H_1 \longrightarrow H_2$ by $\varphi(0) = e$ and $\varphi(1) = a$. We can see easily that for each $x, y, z, w, a, b \in H_1$ we have

$$(x * y)(a) = (z * w)(b)$$
 if and only if $(\varphi(x) \circ \varphi(y))(\varphi(a)) = (\varphi(z) \circ \varphi(w))(\varphi(b)).$

But φ is not an isomorphism because we have $(0 * 0)(0) = 0.5(\varphi(0) \circ \varphi(0))(\varphi(0))$ and $(1 * 1)(0) = 2(\varphi(1) \circ \varphi(1))(\varphi(0))$.

Lemma 3.6. Let $(H_1, *)$, (H_2, \circ) and (H_3, \bullet) be *F*-hypergroupoids such that $H_1 \cong H_2$ and $H_2 \cong H_3$. Then, $H_1 \cong H_3$.

Proof. It is straightforward.

Lemma 3.7. Let $(H_1, *)$ and (H_2, \circ) be two *F*-hypergroupoids and $\varphi : H_1 \longrightarrow H_2$ be an isomorphism. Then,

- (1) e is a right scalar element of $(H_1, *)$ if and only if $\varphi(e)$ is a right scalar element of (H_2, \circ) .
- (2) $\varphi^{-1}: H_2 \longrightarrow H_1$ is an isomorphism.

Proof. 1) Let e be a right scalar element of $(H_1, *)$ and $y \in H_2$ be an arbitrary element. Since φ is onto, there exists $x \in H_1$ such that $\varphi(x) = y$. So, by using Lemma 3.3 we have

$$\operatorname{supp}(y \circ \varphi(e)) = \operatorname{supp}(\varphi(x) \circ \varphi(e)) = \varphi(\operatorname{supp}(x * e)) = \{\varphi(x)\} = \{y\}.$$

Therefore, $\varphi(e)$ is a right scalar element of (H_2, \circ) . Conversely, let $\varphi(e)$ be a right scalar element of (H_2, \circ) . Then, for each element x of H_1 we have

$$\varphi(\operatorname{supp}(x * e)) = \operatorname{supp}(\varphi(x) \circ \varphi(e)) = \{\varphi(x)\}.$$

Since φ is one-to-one, we have $\operatorname{supp}(x * e) = \{x\}$ and therefore e is a right scalar element of $(H_1, *)$.

2) It is straightforward.

Lemma 3.8. Let $(H_1, *)$ and (H_2, \circ) be two *F*-semihypergroups and $\varphi : H_1 \longrightarrow H_2$ be an isomorphism. Then, the following assertions are equivalent:

- (1) $(H_1, *, e)$ is an *F*-hypergroup of type *U* on the right.
- (2) $(H_2, \circ, \varphi(e))$ is an *F*-hypergroup of type *U* on the right.

Proof. $1\Rightarrow 2$) Let $y \in H_2$ be an arbitrary element. Since φ is onto, there exists $x \in H_1$ such that $\varphi(x) = y$. By assumption we have $\operatorname{supp}(x*H_1) = \operatorname{supp}(H_1*x) = H_1$. Hence,

$$\operatorname{supp}(y \circ H_2) = \operatorname{supp}(\varphi(x) \circ \varphi(H_1)) = \varphi(\operatorname{supp}(x * H_1)) = \varphi(H_1) = H_2.$$

Similarly, we have $\operatorname{supp}(H_2 \circ y) = H_2$. Therefore, (H_2, \circ) is an *F*-hypergroup. By Lemma 3.7, $\varphi(e)$ is a right scalar element of (H_2, \circ) . Thus, condition (1) of Definition 2.1 holds. It is sufficient to show that condition (2) of Definition 2.1 is true. Let $y, z \in H_2$ be arbitrary elements and $y \in \operatorname{supp}(y \circ z)$. Since φ is onto, there exist $x, t \in H_1$ such that $\varphi(x) = y$ and $\varphi(t) = z$. Thus, by using Lemma 3.3 we have $\varphi(x) \in \operatorname{supp}(\varphi(x) \circ \varphi(t)) = \varphi(\operatorname{supp}(x * t))$. So, there exists $w \in \operatorname{supp}(x * t)$ such that $\varphi(x) = \varphi(w)$. Since φ is one-to-one, we have x = w and therefore $x \in \operatorname{supp}(x * t)$. Since $(H_1, *)$ is of type U on the right we have t = ewhich implies that $z = \varphi(t) = \varphi(e)$.

 $2 \Rightarrow 1$) Let $(H_2, \circ, \varphi(e))$ be an *F*-hypergroup of type *U* on the right. By Lemma 3.7 (2), $\varphi^{-1} : H_2 \longrightarrow H_1$ is an isomorphism and therefore by the above argument $(H_1, *, e)$ is an *F*-hypergroup of type *U* on the right. \Box

Theorem 3.9. Let (H, \circ, e) be an *F*-hypergroup of type *U* on the right with |H| = 2. Then, $H \cong \mathbb{Z}_2(t_1, t_2)$, for some $t_1, t_2 \in (0, 1]$. (See Example 2.5.)

Proof. Let $H = \{e, x\}$. By conditions (1) and (2) of Definition 2.1, \circ has the following table:

$$\begin{array}{c|ccc} \circ & e & x \\ \hline e & \frac{e}{t_1}, \frac{x}{0} & \frac{e}{0}, \frac{x}{t_2} \\ x & \frac{e}{0}, \frac{x}{t_3} & \frac{e}{t_4}, \frac{x}{0} \end{array}$$

where $t_1, t_2, t_3, t_4 \in (0, 1]$. Since (H, \circ) is an *F*-hypergroup of type *U* on the right, we have

$$t_2 = (e \circ x)(x) = ((x \circ x) \circ x)(x) = (x \circ (x \circ x))(x) = (x \circ e)(x) = t_3$$

and

$$t_4 = (x \circ x)(e) = ((e \circ x) \circ x)(e) = (e \circ (x \circ x))(e) = (e \circ e)(e) = t_1.$$

We define the mapping $\varphi : H \longrightarrow \mathbb{Z}_2$ by $\varphi(e) = 0$ and $\varphi(x) = 1$. Obviously, φ is an isomorphism and therefore the desired result holds.

Theorem 3.10. Let (H, \circ, e) be an *F*-hypergroup of type *U* on the right with |H| = 3. Then, either $H \cong \mathbb{Z}_3(t_1, t_2, t_3)$ or $H \cong \mathbb{S}_3/\mathbb{S}_2(t_1, t_2, t_3)$, for some $t_1, t_2, t_3 \in (0, 1]$. (See Examples 2.5 and 2.6.)

Proof. Let $H = \{e, x, y\}$. By condition (2) of Definition 2.1 we have

$$\operatorname{supp}(e \circ x) \cup \operatorname{supp}(e \circ y) \subseteq \{x, y\}.$$

We claim that $|\operatorname{supp}(e \circ x)| = |\operatorname{supp}(e \circ y)|$. If this is not the case, then without loss of generality we can assume that $|\operatorname{supp}(e \circ x)| = 1$ and $|\operatorname{supp}(e \circ y)| = 2$. Thus, we have $\operatorname{supp}(e \circ y) = \{x, y\}$ and by Lemma 2.9 we have $\operatorname{supp}(e \circ x) = \{x\}$. By reproduction axiom, there exists $z \in H$ such that $y \in \operatorname{supp}(x \circ z)$. Hence,

$$x \in \operatorname{supp}(e \circ y) \subseteq \operatorname{supp}(e \circ (x \circ z)) = \operatorname{supp}((e \circ x) \circ z) = \operatorname{supp}(x \circ z),$$

which implies that z = e and so we have $y \in \text{supp}(x \circ e) = \{x\}$, a contradiction. Thus, we have the following two cases.

Case 1: Let $supp(e \circ x) = supp(e \circ y) = \{x, y\}$. Then, we have

$$supp(x \circ y) = supp((x \circ e) \circ y) = supp(x \circ (e \circ y)) = supp(x \circ (e \circ x))$$
$$= supp(x \circ x).$$

Since $x \notin \operatorname{supp}(x \circ y)$ we have $\operatorname{supp}(x \circ y) \subseteq \{e, y\}$. In the case that $\operatorname{supp}(x \circ y) = \{e\}$, we have

$$\{e, x\} = \operatorname{supp}(x \circ x) \cup \operatorname{supp}(x \circ y) \cup \operatorname{supp}(x \circ e) = \operatorname{supp}(x \circ H) = H,$$

which is a contradiction. In the case that $supp(x \circ y) = \{y\}$, we have

$$\{y\} = \operatorname{supp}(x \circ y) = \operatorname{supp}(x \circ (x \circ y)) = \operatorname{supp}((x \circ x) \circ y) = \operatorname{supp}(y \circ y).$$

This implies that y = e which is a contradiction. Thus, $\operatorname{supp}(x \circ y) = \{e, y\}$. In a similar manner we can show that $\operatorname{supp}(y \circ x) = \operatorname{supp}(y \circ y) = \{e, x\}$. So, \circ has the following table in which t_i 's are in (0, 1].

0	e	x	y
e	$\frac{e}{t_1}, \frac{x}{0}, \frac{y}{0}$	$\frac{e}{0}, \frac{x}{t_2}, \frac{y}{t_3}$	$\frac{e}{0}, \frac{x}{t_4}, \frac{y}{t_5}$
x	$\frac{e}{0}, \frac{x}{t_6}, \frac{y}{0}$	$\frac{e}{t_7}, \frac{x}{0}, \frac{y}{t_8}$	$\frac{e}{t_9}, \frac{x}{0}, \frac{y}{t_{10}}$
y	$\left \frac{e}{0}, \frac{x}{0}, \frac{y}{t_{11}} \right $	$\frac{e}{t_{12}}, \frac{x}{t_{13}}, \frac{y}{0}$	$\frac{e}{t_{14}}, \frac{x}{t_{15}}, \frac{y}{0}$

We have $t_{11} = \bigvee \{(e \circ e)(y), (y \circ e)(y)\} = ((x \circ y) \circ e)(y) = (x \circ y)(y) = t_{10}$. In a can show that $t_1 = t_7 = t_9 = t_{12} = t_{14}, t_2 = t_4 = t_6 = t_{13} = t_{15}$ and $t_3 = t_5 = t_8 = t_{11}$. Therefore, in this case we have $H \cong \mathbb{S}_3/\mathbb{S}_2(t_1, t_2, t_3)$.

Case 2: Let $|\operatorname{supp}(e \circ x)| = |\operatorname{supp}(e \circ y)| = 1$. By Lemma 2.9, we have $\operatorname{supp}(e \circ x) = \{x\}$ and $\operatorname{supp}(e \circ y) = \{y\}$. We claim that $\operatorname{supp}(x \circ x) = \{y\}$. If $\operatorname{supp}(x \circ x) = \{e\}$, then as $\operatorname{supp}(e \circ x) \cup \operatorname{supp}(x \circ x) \cup \operatorname{supp}(y \circ x) = \operatorname{supp}(H \circ x) = H$, we have $y \in \operatorname{supp}(y \circ x)$ which implies that x = e, a contradiction. If $\operatorname{supp}(x \circ x) = \{e, y\}$, then from the following equalities we conclude that $y \notin \operatorname{supp}(x \circ y)$.

$$\begin{aligned} \{x\} \cup \operatorname{supp}(y \circ x) &= \operatorname{supp}(e \circ x) \cup \operatorname{supp}(y \circ x) &= \operatorname{supp}((x \circ x) \circ x) \\ &= \operatorname{supp}(x \circ (x \circ x)) \\ &= \operatorname{supp}(x \circ e) \cup \operatorname{supp}(x \circ y). \end{aligned}$$

On the other hand, by condition (2) of Definition 2.1 we have $x \notin \operatorname{supp}(x \circ y)$. Thus, $\operatorname{supp}(x \circ y) = \{e\}$. Therefore,

$$y \in \operatorname{supp}(e \circ y) \cup \operatorname{supp}(y \circ y) = \operatorname{supp}((x \circ x) \circ y) = \operatorname{supp}(x \circ (x \circ y)) = \{x\},$$

that is a contradiction. Hence, $\operatorname{supp}(x \circ x) = \{y\}$. In a similar manner we have $\operatorname{supp}(y \circ y) = \{x\}$. From $\operatorname{supp}(x \circ y) = \operatorname{supp}(x \circ (x \circ x)) = \operatorname{supp}((x \circ x) \circ x) = \operatorname{supp}(y \circ x), x \notin \operatorname{supp}(x \circ y)$ and $y \notin \operatorname{supp}(y \circ x)$ we conclude that $\{x, y\} \notin \operatorname{supp}(x \circ y)$ and therefore $\operatorname{supp}(x \circ y) = \{e\}$. So, \circ has the following table in which t_i 's are in (0, 1].

We have $t_1 = (e \circ e)(e) = ((x \circ y) \circ e)(e) = (x \circ (y \circ e))(e) = (x \circ y)(e) = t_6$. In a similar way we can show that $t_1 = t_8$, $t_2 = t_4 = t_9$ and $t_3 = t_5 = t_7$. So, in this case we have $H \cong \mathbb{Z}_3(t_1, t_2, t_3)$.

Notice that, by Theorem 3.9, there are 2 different *F*-hypergroups of type *U* on the right of order two up to an isomorphism. One of them is $\mathbb{Z}_2(t_1, t_2)$ with $t_1 = t_2$ and the other one is $\mathbb{Z}_2(t_1, t_2)$ with $t_1 \neq t_2$. Also, by Theorem 3.10, there are 10 different *F*-hypergroups of type *U* on the right of order three up to an isomorphism depending on whether some t_i 's are equal or not.

Theorem 3.11. Let (H, \circ, e) be an *F*-semihypergroup of type *U* on the right. Assume that $K \subsetneq H$ is an *F*-subsemihypergroup of *H* isomorphic to $(K, *_t)$, for some $t \in (0, 1]$ (see Example 2.4) and let $e \in K$. Also, let $x \in H \setminus K$ and $a, b \in$ $K \setminus \{e\}$ be arbitrary elements. Then, the following assertions hold:

- (1) $supp(x \circ a) = supp(x \circ b),$
- (2) $supp(x \circ a) \cap K \neq \emptyset \ K \subseteq supp(x \circ a),$

- (3) $supp(x \circ a) \neq K$,
- (4) $supp(x \circ a) \cap (H \setminus a) \cap (H \setminus K) \neq \emptyset.$
- (5) $|supp(x \circ a)| > 1.$

Proof. 1) Let $\varphi : (K, *_t) \longrightarrow (K, \circ)$ be an isomorphism. Then, by Lemma 3.8, (K, \circ) is an *F*-hypergroup of type *U* on the right. By Lemma 3.7, we have $\varphi(e) = e$. Since φ is an onto mapping, there exists $c, d \in K$ such that $\varphi(c) = a$ and $\varphi(d) = b$. Therefore we have

 $\operatorname{supp}(e \circ a) = \operatorname{supp}(\varphi(e) \circ \varphi(c)) = \varphi(\operatorname{supp}(e *_t c)) = \varphi(K \setminus \{e\}) = K \setminus \{e\}.$

Similarly, we have $\operatorname{supp}(e \circ b) = K \setminus \{e\}$. So,

$$supp(x \circ a) = supp((x \circ e) \circ a)$$
$$= supp(x \circ (e \circ a))$$
$$= supp(x \circ (e \circ b))$$
$$= supp((x \circ e) \circ b)$$
$$= supp(x \circ b).$$

2) Let $c \in \operatorname{supp}(x \circ a) \cap K$. Since K is an F-hypergroup, we have

$$\begin{split} K = \mathrm{supp}(c \circ K) &\subseteq & \mathrm{supp}((x \circ a) \circ K) \\ &= & \mathrm{supp}(x \circ (a \circ K)) \\ &= & \mathrm{supp}(x \circ K) \\ &= & \mathrm{supp}(x \circ a) \cup \{x\}. \end{split}$$

This implies that $K \subseteq \operatorname{supp}(x \circ a)$.

3) By way of contradiction, suppose that $\operatorname{supp}(x \circ a) = K$. By assumption we have

$$\operatorname{supp}(a \circ b) = \operatorname{supp}(\varphi(c) \circ \varphi(d)) = \varphi(\operatorname{supp}(c *_t d)) = \varphi(K \setminus \{c\}) = K - \{a\}.$$

Therefore,

$$K = \operatorname{supp}(K \circ b) = \operatorname{supp}(x \circ a) \circ b)$$

= $\operatorname{supp}(x \circ (a \circ b))$
= $\operatorname{supp}(x \circ (K - \{a\}))$
= $\{x\} \cup \operatorname{supp}(x \circ b)$
= $\{x\} \cup \operatorname{supp}(x \circ a).$

This implies that $x \in K$ which is a contradiction.

4) By way of contradiction, suppose that $\operatorname{supp}(x \circ a) \cap (H \setminus K) = \emptyset$. Then, we have $\operatorname{supp}(x \circ a) \subseteq K$ and so by (2) we have $K \subseteq \operatorname{supp}(x \circ a)$ which implies that $K = \operatorname{supp}(x \circ a)$. By (3), this is a contradiction.

5) By way of contradiction, suppose that $|\operatorname{supp}(x \circ a)| = 1$. If $\operatorname{supp}(x \circ a) = \{e\}$, then by (2) we have $K \subseteq \operatorname{supp}(x \circ a) = \{e\}$ which is absurd. If $\operatorname{supp}(x \circ a) = \{y\} \neq \{e\}$, then we have

$$supp(y \circ b) = supp((x \circ a) \circ b)$$
$$= supp(x \circ (K - \{a\}))$$
$$= \{x\} \cup supp(x \circ b)$$
$$= \{x\} \cup supp(x \circ a)$$
$$= \{x, y\}.$$

This implies that $y \in \text{supp}(y \circ b)$. So, by condition (2) of Definition 2.1 we have b = e which is a contradiction.

4. Cyclic *F*-Semihypergroups

What will happen in this section, is a fuzzy version of some parts of [14]. Let (H, \circ) be an *F*-semihypergroup. Then, the intersection $\bigcap_{i \in \Lambda} S_i$ of a family $\{S_i\}_{i \in \Lambda}$ of *F*-subsemihypergroups of *H* (if it is non-empty) is an *F*-subsemihypergroup. For every non-empty subset *A* of *H*, there exists at least an *F*-subsemihypergroup of *H* containing *A* (*H* itself). Hence, the intersection of all *F*-subsemihypergroups of *H* containing *A* is an *F*-subsemihypergroup. We denote it by \check{A} . It is easy to see that

- (1) $A \subseteq \check{A};$
- (2) $\check{A} \subseteq S$, where S is an F-subsemihypergroup H containing A.

Furthermore, one easily checks that $\check{A} = A \cup \left(\bigcup_{k \ge 2} \operatorname{supp}(x_1 \circ \ldots \circ x_k)\right)$, where x_i 's are in A. In particular, if A is a singleton set, say $\{x\}$, then \check{A} will be denoted by \check{x} and $\check{x} = \{x\} \cup \left(\bigcup_{k \ge 2} \operatorname{supp}(x^k)\right)$ in which x^k means $\underbrace{x \circ \ldots \circ x}_{k \text{ times}}$. If |H| = n, then we have $\check{x} = \bigcup_{k=1}^n \operatorname{supp}(x^k)$. It is obvious that $x \in \check{y} \Leftrightarrow \check{x} \subseteq \check{y}$, for every $x, y \in H$.

Definition 4.1. Let H be an F-semihypergroup. Then, H is called *cyclic* if there exists an element $x \in H$ such that $H = \check{x}$.

Example 4.2. Let G be the Klein 4-group. If we equip G with the F-hyperoperation \circ defined in Example 2.7, then (G, \circ) is not cyclic while (H, \circ) defined in Example 2.4 is a cyclic F-hypergroup of type U on the right.

Theorem 4.3. Let (H, \circ) be a finite *F*-semihypergroup of type *U* on the right. If there exists an element *x* in *H* such that $\check{x} \neq H$ and \check{x} is isomorphic to $\mathbb{S}_3/\mathbb{S}_2(t, t, t)$, for some $t \in (0, 1]$, then $|H| \ge 6$.

Proof. Since \check{x} is isomorphic to $\mathbb{S}_3/\mathbb{S}_2(t, t, t)$, for some $t \in (0, 1]$, we have $|\check{x}| = 3$ (see Example 2.6). Set $\check{x} = \{e, x, y\}$. By Lemma 3.6, (\check{x}, \circ) is isomorphic to $(\check{x}, *_t)$ (see Example 3.2). From $\check{x} \neq H$ it follows that $|H| \geq 4$. If |H| = 4, then we can assume that $H \setminus \check{x} = \{z\}$ and so by Theorem 3.11 (4), we have $z \in \operatorname{supp}(z \circ x)$. This implies x = e which is a contradiction. If |H| = 5, then we set $H = \{e, x, y, w, z\}$. So, we have $H \setminus \check{x} = \{w, z\}$. Since $y \in \check{x}$ we have $\check{y} \subseteq \check{x}$. On the other hand, by assumption we have $x \in \check{y}$ which implies that $\check{x} \subseteq \check{y}$. Thus $\check{x} = \check{y}$. Since $w \notin \operatorname{supp}(w \circ x)$ and $z \notin \operatorname{supp}(z \circ x)$, $z \notin \operatorname{supp}(z \circ x)$, by using (2), (4) and (5) of Theorem 3.11, we have $\supp(w \circ x) = \check{x} \cup \{z\}$ and $\operatorname{supp}(z \circ x) = \check{x} \cup \{w\}$. Similarly, we have $\supp(w \circ y) = \check{y} \cup \{z\}$ and

$$H = \{w\} \cup \operatorname{supp}(w \circ x) = \operatorname{supp}(w \circ e) \cup \operatorname{supp}(w \circ x)$$
$$= \operatorname{supp}(w \circ \{e, x\})$$
$$= \operatorname{supp}(w \circ (y \circ y))$$
$$= \operatorname{supp}((w \circ y) \circ y)$$
$$= \bigcup_{t \in \operatorname{supp}(w \circ y)} \operatorname{supp}(t \circ y)$$
$$= \operatorname{supp}(\check{y} \circ y) \cup \operatorname{supp}(z \circ y)$$
$$= \check{y} \cup \{w\} = H \setminus \{z\}.$$

This contradiction completes the proof.

5. Regular Relations over *F*-Hypergroups

In this section, inspired by [9], after defining the notion of regular F-hypergroups containing a right identity element, we define right reversible F-hypergroups. Then, by using regular relations on an F-hypergroup we construct right reversible quotient F-hypergroups.

Definition 5.1. Let (H, \circ, e) be an *F*-hypergroup (not necessarily an *F*-hypergroup of type *U* on the right) where *e* is a right identity element. Let $x, y \in H$. Then, *y* is called an *inverse* of *x* if

$$e \in \operatorname{supp}(x \circ y \cap y \circ x)$$

The set of all inverses of x will be denoted by x^{-1} . (H, \circ, e) is called *regular* if e is an identity element and $x^{-1} \neq \emptyset$, for every $x \in H$. A regular F-hypergroup (H, \circ, e) is said to be *right reversible* if for every $x, y, z \in H$ with $x \in \operatorname{supp}(y \circ z)$, there exists $t \in z^{-1}$ such that $y \in \operatorname{supp}(x \circ t)$.

Theorem 5.2. Let (H, \circ, e) be an *F*-hypergroup of type *U* on the right. Then, the following assertions are equivalent:

- (1) e is a left identity element,
- (2) (H, \circ, e) is right reversible.

Proof. $1 \Rightarrow 2$) Let x be an arbitrary element of H. By reproduction axiom, there exists y in H such that $e \in \operatorname{supp}(x \circ y)$. By Lemma 2.8 (4), we $e \in \operatorname{supp}(y \circ x)$. This implies that (H, \circ, e) is regular. Now, let x, y, z be arbitrary elements of H such that $x \in \operatorname{supp}(y \circ z)$. By reproduction axiom, there exists an element $t \in H$ such that $y \in \operatorname{supp}(x \circ t)$. By t).ByLemma2.8(5), wehavet $\circ z$). This means that $t \in z^{-1}$ and so there is nothing to prove.

 $2 \Longrightarrow 1$) It is trivial.

Lemma 5.3. Let (H, \circ, e) be an *F*-hypergroup of type *U* on the right such that $P_e = \{supp(e \circ x) \mid x \in H\}$ is a partition of *H*. Then, *e* is a left identity element.

Proof. Let $x \in H$ be an arbitrary element. By reproduction axiom, there exists $y \in H$ such that $x \in \text{supp}(e \circ y)$ and so we have

$$\operatorname{supp}(e \circ x) \subseteq \operatorname{supp}(e \circ (e \circ y)) = \operatorname{supp}(e \circ y).$$

Since P_e is a partition of H, we deduce that $\operatorname{supp}(e \circ x) = \operatorname{supp}(e \circ y)$ and therefore $x \in \operatorname{supp}(e \circ x)$.

In what follows, we denote by m_e the maximum size of the elements of P_e

Proposition 5.4. Let (H, \circ, e) be an *F*-hypergroup of type *U* on the right. Then, the following assertions hold:

- (1) $m_e = 1$ if and only if e is a left scalar identity element.
- (2) If $2 \le m_e < \infty$, then there exist two distinct elements $x, y \in H \setminus \{e\}$ such that $supp(e \circ x) = supp(e \circ y)$ and $|supp(e \circ x)| = |supp(e \circ y)| = m_e$.

Proof. 1) By using Lemma 2.9, the proof is trivial.

2) Let $m_e \geq 2$. Then, there exists $x \in H \setminus \{e\}$ such that $|\operatorname{supp}(e \circ x)| = m_e$. By Lemma 2.10, there exists $y \in H \setminus \{x\}$ such that $x \in \operatorname{supp}(e \circ y)$. Consequently, $\operatorname{supp}(e \circ x) \subseteq \operatorname{supp}(e \circ y)$ and $m_e = |\operatorname{supp}(e \circ x)| \leq |\operatorname{supp}(e \circ y)|$. Since m_e is maximal, we obtain $|\operatorname{supp}(e \circ x)| = |\operatorname{supp}(e \circ y)|$ and therefore $\operatorname{supp}(e \circ x) = \operatorname{supp}(e \circ y)$. \Box

Let R be a relation on a non-empty set X and $A, B \subseteq X$. Then, $A\overline{R}B$ means that for each a in there exists $b \in B$ such that aRb and for each b in B, there exists $a \in A$ such that bRa. For an equivalence relation R on X, we may use R(x) to denote the equivalence class of $x \in X$. We let H/R denote the family $\{R(x) \mid x \in X\}$ of classes of R. Let (H, \circ) be an F-hypergroup of type U on the right. An equivalence relation R on H is called regular if

$$xRy \Longrightarrow \operatorname{supp}(z \circ x)\overline{R}\operatorname{supp}(z \circ y)$$
 and $\operatorname{supp}(x \circ z)\overline{R}\operatorname{supp}(y \circ z)$,

for every $x, y, z \in H$.

Theorem 5.5. Let (H, \circ, e) be an *F*-hypergroup of type *U* on the right such that P_e is a partition of *H*. Then, the following assertions hold:

(1) The relation $R \subseteq H^2$ defined as follows is a regular relation.

 $xRy \iff supp(e \circ x) = supp(e \circ y).$

(2) The set H/R endowed with the following F-hyperoperation is right reversible.

$$R(x) \odot R(y) = \chi_{\{R(t) \mid t \in supp(x \circ y)\}}.$$

- (3) Let R(y) = R(u) and R(z) = R(v), for some $y, z, u, v \in H$. Then,
 - (a) the following statements are equivalent, for some $x \in H$:
 - (i) $R(x) \in supp(R(y) \odot R(z)).$
 - (ii) $R(x) \cap supp(u \circ v) \neq \emptyset$.
 - (iii) $R(x) \subseteq supp(e \circ u \circ v).$
 - (b) if |R(x)| = 1, for some $x \in H$, then

$$R(x) \in supp(R(y) \odot R(z)) \iff x \in supp(u \circ v).$$

Proof. 1) Obviously, R is an equivalence relation. Let xRy and $a \in H$. We show that $\operatorname{supp}(x \circ \overline{R} \operatorname{supp}(y \circ a))$. Assume that z is an an arbitrary element of $\operatorname{supp}(x \circ a)$. By Lemma 5.3 we have $z \in \operatorname{supp}(e \circ z)$. Since

$$\begin{aligned} \operatorname{supp}(e \circ z) &\subseteq & \operatorname{supp}(e \circ (x \circ a)) = \operatorname{supp}((e \circ x) \circ a) \\ &= & \operatorname{supp}((e \circ y) \circ a) = \operatorname{supp}(e \circ (y \circ a)), \end{aligned}$$

there exists $w \in \operatorname{supp}(y \circ a)$ such that $z \in \operatorname{supp}(e \circ w)$. Since P_e is a partition of H, we have $\operatorname{supp}(e \circ z) = \operatorname{supp}(e \circ w)$. Hence, zRw. In a similar manner, we can show that for each $z \in \operatorname{supp}(y \circ a)$ there exists $w \in \operatorname{supp}(x \circ a)$ such that zRw. Thus, $\operatorname{supp}(x \circ a)\overline{R} \operatorname{supp}(y \circ a)$. On the other hand, we have

$$supp(a \circ x) = supp((a \circ e) \circ x) = supp(a \circ (e \circ x)) = supp(a \circ (e \circ y))$$
$$= supp((a \circ e) \circ y) = supp(a \circ y).$$

Hence, $\operatorname{supp}(a \circ x)\overline{R}\operatorname{supp}(a \circ y)$ and the desired result follows.

2) By Theorem 3.1 of [12], $(H/R, \odot)$ is an F-hypergroup. By Lemma 5.3, e is a left identity element, so we have $x \in \operatorname{supp}(x \circ x)$, for every $x \in H$. Thus, for each $R(x) \in H/R$, we have

$$R(x) \in \operatorname{supp}(R(x) \odot R(e)) \cap \operatorname{supp}(R(e) \odot R(x)).$$

Hence, R(e) is an identity element of $(H/R, \odot)$. Let R(x) be an arbitrary element of H/R. By reproduction axiom, there exists $y \in H$ such that $e \in \operatorname{supp}(x \circ y)$ and so by Lemma 2.8 (4) we have $e \in \operatorname{supp}(y \circ x)$. This implies that

 $R(e) \in \operatorname{supp}(R(x) \odot R(y)) \cap \operatorname{supp}(R(y) \odot R(y)) \cap \operatorname{supp}(R(y) \odot R(x)).$

Hence, $R(y) \in (R(x))^{-1}$. So, $(H/R, \odot)$ is regular. Finally, let R(x), R(y), R(z)be arbitrary elements of H/R such that $R(x) \in \operatorname{supp}(R(y) \odot R(z))$. Then, there exists $t \in \text{supp}(y \circ z)$ such that R(x) = R(t). By using Lemma 5.3 and Theorem 5.2, (H, \circ, e) is right reversible. So, there exists $w \in z^{-1}$ such that $y \in \operatorname{supp}(t \circ w)$. Therefore,

$$R(y) \in supp(R(t) \odot R(w)) = supp(R(x) \odot R(w)).$$

Clearly, $R(w) \in (R(z))^{-1}$. This proves that $(H/R, \odot)$ is right reversible. 3) First, we prove (a).

 $i \Rightarrow ii$ Let $R(x) \in \operatorname{supp}(R(y) \odot R(z))$. As R(y) = R(u) and R(z) = R(v), we have $R(x) \in \operatorname{supp}(R(u) \odot R(v))$. Thus, there exists $a \in \operatorname{supp}(u \circ v)$ such that R(x) = R(a). So, $a \in R(x) \cap \operatorname{supp}(u \circ v)$.

 $ii \Rightarrow iii$) We claim that $R(x) = \operatorname{supp}(e \circ x)$. For each $w \in R(x)$, by Lemma 5.3, we have $w \in \operatorname{supp}(e \circ w) = \operatorname{supp}(e \circ x)$. So, $R(x) \subseteq \operatorname{supp}(e \circ x)$. Conversely, for each $w \in \operatorname{supp}(e \circ x)$ we have $\operatorname{supp}(e \circ w) \subseteq \operatorname{supp}(e \circ (e \circ x)) = \operatorname{supp}(e \circ x)$. Since P_e is a partition of H, we have $\operatorname{supp}(e \circ w) = \operatorname{supp}(e \circ x)$ that is $w \in R(x)$. So, $\operatorname{supp}(e \circ x) \subset R(x)$. Therefore, $R(x) = \operatorname{supp}(e \circ x)$. Now, let $a \in R(x) \cap \operatorname{supp}(u \circ v)$. Then.

$$R(x) = R(a) = \operatorname{supp}(e \circ a) \subseteq \operatorname{supp}(e \circ u \circ v).$$

 $iii \Rightarrow i$) According to hypothesis, we have $x \in \text{supp}(e \circ u \circ v)$. Thus, there exists $a \in \operatorname{supp}(u \circ v)$ such that $x \in \operatorname{supp}(e \circ a)$. Now, from $R(a) = \operatorname{supp}(e \circ a)$ it R(x) = R(a). On the other hand, $R(a) \in \operatorname{supp}(R(u) \odot R(v))$ which implies that $R(x) \in \operatorname{supp}(R(y) \odot R(z)).$

The proof of (b) is trivial.

6. Conclusion

By an F-hypergroup of type U on the right, we mean an F-hypergroup (H, \circ) which has a right scalar identity element e such that for all $x, y \in H$, from $x \in \text{supp}(x \circ y)$ it follows that y = e. In the resent paper, we classified F-hypergroups of type U on the right of order 2 or 3 up to an isomorphism. An interested reader can think about classifying F-hypergroups of higher orders and think about ternary F-hypergroups of type U.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication of this article.

References

- P. Corsini, Prolegomena of Hypergroup Theory, Aviani editor, Second edition, 1993.
- [2] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003.
- [3] B. Davvaz, Construction of n-ary F-polygroups, Inform. Sci. 275 (2014) 199– 212.
- [4] B. Davvaz, *Polygroup Theory and Related Systems*, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
- [5] B. Davvaz, F. Bardestani, Hypergroups of type U on the right of size six, Arab. J. Sci. Eng. 36 (2011) 487 – 499.
- [6] M. De Salvo, D. Fasino, D. Freni and G. Lo Faro, Hypergroups with a strongly unilateral identity, J. Mult.-Valued Logic Soft Comput. 21 (1-2) (2013) 165 – 182.
- [7] M. De Salvo, D. Fasino, D. Freni and G. Lo Faro, Isomorphism classes of the hypergroups of type U on the right of size five, *Comput. Math. Appl.* 58 (2) (2009) 390 - 402.
- [8] M. De Salvo, D. Fasino, D. Freni and G. Lo Faro, On strongly conjugable extensions of hypergroups with scalar identity, *Filomat* 27 (6) (2013) 977 – 994.
- [9] M. De Salvo, D. Freni and G. Lo Faro, A new family of hypergroups and hypergroups of type U on the right of size five, Far East J. Math. Sci. (FJMS) 26 (2) (2007) 393 418.
- [10] M. De Salvo, D. Freni and G. Lo Faro, Hypergroups of type U on the right of size five. II, Mat. Vesnik 60 (1) (2008) 23 – 45.
- [11] M. De Salvo, D. Freni and G. Lo Faro, On the hypergroups of type U on the right of size five, with scalar identity, J. Mult.-Valued Logic Soft Comput. 17 (5-6) (2011) 425 - 441.
- [12] M. Farshi and B. Davvaz, Fⁿ-Hypergroups based on fuzzy hyperoperations and fundamental relations, J. Intell. Fuzzy Systems 26 (2014) 1453 – 1464.
- [13] M. Farshi and B. Davvaz, On isomorphism theorems of Fⁿ-polygroups, J. Sci. I. R. Iran 24 (3) (2013) 259 – 267.

- [14] D. Fasino and D. Freni, Existence of proper semihypergroups of type U on the right, Discrete Math. 307 (22) (2007) 2826 - 2836.
- [15] D. Fasino and D. Freni, Minimal order semihypergroups of type U on the right, Mediterr. J. Math. 5 (3) (2008) 295 - 314.
- [16] D. Freni, Structure des hypergroupes quotients et des hypergroupes de type U (Structure of quotient hypergroups and of hypergroups of type U), Ann. Sci. Univ. Clermont-Ferrand II Math. **22** (1984) 51 77.
- [17] D. Freni and M. Gutan, Sur les hypergroupes de type U, Mathematica (Cluj) **36** (59) (1994) 25 32.
- [18] F. Marty, Sur une generalization de la notion de group, In 8th Congress Math. Scandenaves (1934) 45 – 49.
- [19] Y. Sureau and D. Freni, Hypergroupes de type U et homologie de complexes, Algebra Universalis 35 (1) (1996) 34 - 62.
- [20] T. Vougiouklis, Hyperstructures and Their Representations, Aviani editor, Hadronic Press, Palm Harbor, USA, 1994.
- [21] L. A. Zadeh, Fuzzy sets, Inf. and Control 8 (1965) 338 353.
- [22] M. Zahedi and A. Hasankhani, F-polygroups. I, J. Fuzzy Math. 4 (3) (1996) 533 – 548.
- [23] M. Zahedi and A. Hasankhani, F-polygroups. II, Inform. Sci. 89 (3-4) (1996) 225 - 243.

Mehdi Farshi Department of Mathematics, Yazd University, Yazd, I. R. Iran e-mail: m.farshi@yahoo.com

Bijan Davvaz Department of Mathematics, Yazd University, Yazd, I. R. Iran e-mail: davvaz@yazd.ac.ir

Fatemeh Dehghan Department of Mathematics, Yazd University, Yazd, I. R. Iran e-mail: fdehghan@stu.yazd.ac.ir