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F-Hypergroups of Type U on the Right
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Abstract

In this paper, first we introduce F-hypergroups of type U on the right.
We will prove that every right scalar identity of an F-hypergroup of type
U on the right of size < 5 is also a left identity. Also, we will classify F-
hypergroups of type U on the right of order 2 or 3 up to an isomorphism.
Then, we will study cyclic F-semihypergroups and finally by using regular
relations we construct right reversible quotient F-hypergroups.
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1. Introduction and Basic Definitions

In this section, after expressing a short history of hyperstructure theory and fuzzy
set theory, we will offer all definitions we require of fuzzy hyperstructures. In
1934, F. Marty has introduced algebraic hyperstructures as a natural extension
of classical algebraic structures [18]. He defined hypergroups, investigated their
properties and applied them to groups and rational algebraic functions. The prin-
cipal notion of hypergroup theory and some examples can be found in [1, 2, 4, 20].
In 1984, hypergroups of type U on the right right were introduced in [16] to an-
alyze certain hypergroups obtained as quotient sets. That class includes that of
hypergroups of type C on the right, cogroups and that of quotient hypergroups
G /g of a group G with respect to a non-normal subgroup g C G (D-hypergroups).
In (D-hypergroups). In [19], the concept of the category of hypergroups of type U
on the right is introduced, and some result already known in the field of homology
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of abelian groups are extended to non-commutative groups, while in the latter, the
analysis of relationships existing between hypergroups of type U and hypergroups
of double cosets is furthered. Later, this topic studied by De Salvo, Fasino, Freni,
Lo Faro, etc (see [6, 7, 8, 10, 11]). The hypergroups H of type U on the right can
be classified in terms of the family P, = {ex | x € H}, where € € H is the right
scalar identity. If H has size six, then in [5] Davvaz and Bardestani showed that
there exist twelve cases for the family P..

Following the introduction of fuzzy set by Zadeh in 1965 [21], fuzzy set theory
has made remarkable progress. Many mathematicians have used this concept in
different branches of mathematics. The notion of fuzzy polygroup (F-polygroup)
has been introduced by Zahedi and Hasankhani in [22, 23|. In [3], Davvaz intro-
duced the notion of n-ary F-polygroups which is a generalization of ideas presented
by Zahedi and Hasankhani. Afterwards, Farshi and Davvaz, generalized the classi-
cal isomorphism theorems of groups to F"-polygroups [13]. In [12], the concept of
F"-hypergroups is introduced and some related properties are investigated. Now,
we express all definitions that we will use in this article.

Let H be a non-empty set. Each mapping p : H — [0, 1] is called a fuzzy
subset of H. We define the support of p by supp(u) = {x € H | u(xz) > 0}. An
empty fuzzy subset of H denoted by ) is the zero function from H to [0, 1]. Clearly,
we have supp(f)) = (0. The set of all non-empty fuzzy subsets of H will be denoted
by I*(H). If AC H and ¢ € [0, 1], then by A; we mean a fuzzy subset of H which

is defined as follows:
t ifxe€ A,

At(x):{ 0 ifze H\A

In particular, if A is a singleton set, say {a}, then {a}: is said to be a fuzzy

point and is denoted by ay, briefly. In fact xpg, the characteristic function of

H, is equal to H; whenever t = 1. For fuzzy subsets p and n of H we define

(11U v)(x) = max{a(x), v(x)} and (1N v)(z) = min{u(e), (@)} Let {io | a c

A} be a collection of fuzzy subsets of H, where A is a non-empty indexed set.

Then, we define ( |J po)(x) = V {ta(z)}, where \/ denotes supremum. An F'-
aEA aEN

hyperoperation (or fuzzy hyperoperation) on H is a function o : H x H — I*(H),
i.e., x oy is a non-empty fuzzy subset of H, for all z,y € H. Let u,v € I*(H) and

x € H. Then, pov denotes U woz and zov denotes  |J xoy.
wesupp(p),zEsupp(v) yEsupp(v)
Moreover, for non-empty subsets A and B of H, x o A denotes x o x4, po A

denotes p o x4 and A o B denotes x4 o xp. A couple (H,o), where o is an F-
hyperoperation on H, is called an F-hypergroupoid. An F-hypergroupoid (H, o)
is called an F-semihypergroup if o is associative, i.e., x o (y o z) = (zoy) o z,
for all x,y,2 € H. An F-semihypergroup (H,o) is called an F-hypergroup if
supp(xz o H) = supp(H o x) = H, for all x € H. This condition is called the
reproduction aziom. A non-empty subset K of an F-semihypergroup (H,o) is
called an F-subsemihypergroup if supp(K o K) C K. In the case that (H,o) is an
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F-hypergroup, K is called an F-subhypergroup if supp(K ox) = supp(zo K) = K,
for all x € K. Whenever an F-hypergroup (H, o) contains an element e with the
property that, for all z € H, one has z € supp(zoe) (resp. = € supp(eox)), then we
say that e is a right identity (vesp. left identity) element of H. An identity element
is a left and right identity element. If supp(zoe) = {z} (resp. supp(eox) = {z}),
for all x € H, then e is called a right scalar identity (resp. left scalar identity).
Finally, an F-semihypergroup (H, o) is called an F-polygroup if the following three
conditions are satisfied: (i) there exists e € H such that « € supp(zoenNeox),
for every x € H, (ii) for each = € H, there exists a unique element =1 € H such
that e € supp(zox~ ' Nzt ox), (iii) 2 € supp(zoy) =z € supp(zoy™!) =y €
supp(z~toz), for every z,y, z in H. Clearly, each F-polygroup is an F-hypergroup.

2. F-Semihypergroups of Type U on the Right

In this section we introduce the notion of F-semihypergroups of type U on the
right, giving several examples that illustrate the importance of this new fuzzy
hyperstructure.

Definition 2.1. An F-semihypergroup (H, o) is said to be of type U on the right
if it fulfills the following conditions:

(1) H has a right scalar identity element e,
(2) = € supp(z o y) implies that y = e, for all z,y € H.
We shall use the notation (H, o, e) to say that e is a right scalar identity element.

Example 2.2. Let (H,o) be an F-polygroup in which for all z € H we have
supp(zoe) = {z} and supp(z~! oz) = {e}. Then, (H,o,e) is an F-hypergroup of

type U on the right.

Example 2.3. Let H = {e, a,b}. Then, the following table shows an F-polygroup
structure on H which is not an F-hypergroup of type U on the right.

o e a b
el e ad eab ead
1°0°0 0°1°0 0°0°1
ale ab eabd eabd
0°1°0 0°1°0 1°1°1
pleadb eabdb ead
00001 T°1°T 0°0°1

Next example is a fuzzy version of an example of [14].
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Example 2.4. Let H be a set with at least 2 elements and choose an element
e € H. Let t € (0,1]. We define an F-hyperoperation *; on H as follows:

t if y=ez==x

_J 0 if y#ez==x
(x*:y)(2) = 0 if ymezta for all z,y,z € H.

t if y#ez#x

It is easy to check that (H, ;) is an F-hypergroup of type U on the right and that
for all y € H\{e} and all € H we have supp(z *; y) = H\{z}.

Example 2.5. Let t1,t2,t3 € (0,1]. Then, the following tables denote F-hypergroups
of type U on the right structure on Zs and Zs, respectively.

o 0 1 2
o| 0 1 olo 12 o012 o012
t,°0°0 0°%3°0 070 ts
0 1 0 1
0170 0%
11012 012 012
07t 0 070 t3 t17070
0 1 0 1
Lon oo
9l01 2 012 0012
0’0 t3 t1270°0 0’ t270

We denote them by Zs(t1,t2) and Zs(t1, t2, t3), respectively.
Next example is a fuzzy version of an example in section 2-2 of [15].

Example 2.6. Let S3/Sy be the set of all cosets of the subgroup So = ((1 2))
of the symmetric group Ss, i.e., S3/S2 = {Sz, (1 3)Sz, (2 3)S2}. Let t1,t2 and t3
be arbitrary elements of (0,1]. Set e = Sy, x = (1 3)Ss, and y = (2 3)S;. Then,
S3/Se with the following table is an F-hypergroup of type U on the right which
we denote by S3/Sa(t1,t2,t3).

o € x Yy

e e z Yy e z Y ez Y
t170°0 07ty t3 07ty t3

r| £ £ y e z Y e z Y
07t270 t17 0 t3 t17 0 t3
e z Y e z Yy e z Yy

Y 0’0 t3 t17t2’ 0 t17t2’ 0

Example 2.7. Let ¢t be an arbitrary element of (0, 1] and G be a group. We define
an F-hyperoperation o on G as follows:

(xoy)(z) =es(xyzt), forall z,y,2€G.

It is easy to check that o induces an F-hypergroup of type U on the right structure
on G, where e, is a fuzzy point of G.
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Lemma 2.8. Let (H,o,¢e) be an F-hypergroup of type U on the right. Then, for
all x,y,z,t € H the following assertions hold:

(1) supp(eox) = supp(eoy) implies that supp(z o x) = supp(z o y).

(2) x € supp(e oy) implies that supp(z o x) C supp(z o y).

(3) If supp(eox) = {x} and z € supp(x oy), then supp(e o z) C supp(z oy).
(4) If e € supp(z oy), then e € supp(y o x).

(5) Ify € supp(x o z) and = € supp(y ot), then e € supp(zotNto z).

Proof. 1) Let x,y € H be arbitrary elements and supp(eoz) = supp(eoy). Then,
for each z € H we have

supp(z o (e 0 y))
supp((z o e) oy)
= supp(zoy).

supp(z o x) = supp((z o e) o z) = supp(z o (e o x))

2) Let z,y € H be arbitrary elements and x € supp(e o y). Then, for each
z € H we have supp(z o ) C supp(z o (e 0 y)) = supp((z o €) o y) = supp(z 0 y).

3) Let x,y,z € H be arbitrary elements, supp(eox) = {z} and z € supp(xoy).
Then, we have

supp(e o z) C supp(e o (x oy)) = supp((e o x) oy) = supp(z 0 y).

4) Let x,y € H be arbitrary elements and e € supp(z o y). Then, we have

y € {y} = supp(y o €) C supp(y o (z o y)) = supp((y c z) o y).

So, there exists w € supp(y o ) such that y € supp(w o y). This implies that
w € supp(y o x) C supp((w o y) o x) = supp(w o (y o x)). Hence, there exists
w’ € supp(y o x) such that w € supp(w o w’). Since (H,o) is of type U on the
right, we conclude that w’ = e and therefore we have e € supp(y o z).

5) Let x,y, z,t € H be arbitrary elements, y € supp(x o z) and = € supp(y ot).
Then, we have y € supp(z o z) C supp((y o t) o z) = supp(y o (t o z)) and so there
exists w € supp(t o z) such that y € supp(y o w). Since (H, o) is of type U on the
right, we conclude that w = e and therefore we have e € supp(t o z). In a similar
manner we have e € supp(z o t). This implies that e € supp(t o z) Nsupp(zot) =
supp(to zNzot). O

Lemma 2.9. Let (H,o0) be an F-hypergroup of type U on the right and x € H.
Then, the following assertions are equivalent:

(1) Jsupp(e o )| = 1.
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(2) supp(eox) = {x}.

Proof. 1= 2) Let supp(e o z) = {y}. Then, we have

supp(e o y) = supp(e o (e o)) = supp(e o z) = {y}.

On the other hand, by reproduction axiom, there exists w € H such that y €
supp(z o w) and so we have {y} = supp(e oy) C supp((e o x) o w) = supp(y o w).
Since (H,o) is of type U on the right, we conclude that w = e and therefore
y € supp(z o e) = {x}. Hence, z = y.

2= 1) It is trivial. O

Lemma 2.10. Let (H,o,e) be an F-hypergroup of type U on the right. Then, for
each x € H\{e} the following assertions are equivalent:

(1) ¢ supp(eo (H\{z})).
(2) supp(eox)={x}.

Proof. 1= 2) Let z ¢ supp(eo(H\{z})). Thus, 2 € supp(eoz). Let y € supp(eox)
be an arbitrary element. We have to show that y = x. By reproduction axiom,
there exists z € H such that z € supp(y o z). Whence,

x € supp(y o z) C supp((e o z) o z) = supp(e o (x o 2)).

So, there exists ¢ € supp(z o z) such that x € supp(e o). Since = ¢ supp(e o
(H\{z})), we obtain & = t. Thus, x € supp(x o z). Since (H,o) is of type U on
the right, we conclude that z = e. Now, since x € supp(y o z) we have y = x.

2 = 1) By way of contradiction, suppose that there exists z € H\{z} such
that « € supp(e o z). By reproduction axiom, there exists y € H\{e} such that
z € supp(z o y) and so,

supp(e o z) C supp(e o (z o y)) = supp((e o z) o y) = supp(z o y).

Whence, € supp(x o y). This implies that y = e and from z € supp(z o y) it
follows that z = x, which is a contradiction. O

Lemma 2.11. Let (H,o,e) be an F-hypergroup of type U on the right with at
least two elements. Then, the following assertions hold:

(1) If supp(e oy) = H\{e} for some y € H, then supp(x oy) = H\{z}, for all
r € H.

(2) If there exists y € H\{e} such that supp(xz oy) = H\{z} for some x € H,
then e € supp(y o z), for all z € H\{e}.
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Proof. 1) Let x,y € H be arbitrary elements and supp(e oy) = H\{e}. Then, we
have

supp(z o y) = supp((z o e) o y) = supp(z o (e o y)) = supp(z o (H\{e})).

This implies that = ¢ supp(zoy). On the other hand, by using reproduction axiom
we have

(H\{z})U{z} = H =supp(zo H) = supp(zo ((H\{e})U {e}))
xo (H\{e})) Usupp(z ce)
zo (H\{e})) U{z}

oy) U{z}.

|
w0
=
o
o]

This implies that supp(z o y) = H\{z}.

2) Let supp(z oy) = H\{z}, where z € H and y € H\{e}. By way of
contradiction, suppose that there exists z € H\{e} such that e ¢ supp(y o 2).
Then,

a ¢ supp(z o (y 0 2)) = supp((x 0 y) 0 z) = supp((H\{z}) o 2).

By reproduction axiom, we have H = supp((H\{z})oz)Usupp(zoz). This implies
that x € supp(x o z). So, we have z = e which is a contradiction. O

Theorem 2.12. Let (H,o,e) be an F-hypergroup of type U on the right with
|H| < 6. Then, e is a left identity element.

Proof. In the case that |H| = 1 we have H = {e} and obviously e is a left scalar
identity element. Let H = {e,z}. By way of contradiction, suppose that = ¢
supp(e o x). By reproduction axiom, we have supp(e o z) Usupp(x ox) = H. This
implies that « € supp(x oz). Since (H, o) is of type U on the right, we have z = ¢
which is a contradiction. Now, assume that H = {e, z,y}. By reproduction axiom,
we have supp(eoe)Usupp(eox)Usupp(eoy) = H. This implies that z € supp(eoy)
and y € supp(eox). Hence, z € supp(ecy) C supp(eo(eox)) = supp(eox), which
is a contradiction. Let H = {e,z,y,z}. By way of contradiction, suppose that
x ¢ supp(e o z). By using reproduction axiom, x € supp(e o y) or z € supp(e o 2).
Without loss of generality, we can assume that « € supp(eoy). Thus, supp(eoy) €
supp(eox) and so y ¢ supp(eox). By way of contradiction, let y € supp(eox).Then,
by Lemma 2.8 (2), supp(e oy) C supp(e o ) which is a contradiction. Thus,
supp(e o ) = {z} and supp(e o z) = supp(e o (e o x)) = supp(e o z) = {z}. By
reproduction axiom, there exists w € H such that z € supp(z o w) and therefore
we have

z € supp(e o z) C supp(e o (z0w)) = supp((e o z) o w) = supp(z o w).

Since (H,o) is an F-hypergroup of type U on the right, we have w = e. This
implies that = € supp(z o ¢) = {z} which is a contradiction. Finally, assume
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that H = {e,z,y,2,t} and by way of contradiction, let © ¢ supp(e o z). By
using reproduction axiom, x € supp(e oy) or x € supp(e o z) or & € supp(e o t).
Without loss of generality, we can assume that « € supp(eoy). Thus, supp(eoy) €
supp(eox) and so by Lemma 2.8 (2), y ¢ supp(eox). Therefore, supp(eox) C {z,t}.
If supp(eox) = {z}, then we have supp(eoz) = supp(eo(eox)) = supp(eox) = {z}.
On the other hand, by using reproduction axiom, there exists w € H such that
x € supp(z o w) and therefore we have

z € supp(e o z) C supp(e o (z0w)) = supp((e o z) o w) = supp(z o w).

Since (H, o) is an F-hypergroup of type U on the right, we have w = e. This implies
that « € supp(z o e) = {z} which is a contradiction. In a similar manner, in the
case that supp(e o 2) = {t} we will have a contradiction. So, supp(e o z) = {z,t}.
From

supp(eo z)Usupp(eot) = supp(eo{z,t}) = supp(eo(eox)) = supp(eox) = {z,t},

and reproduction axiom, it follows that y € supp(e o y). Moreover, since z €
supp(e o y), by Lemma 2.8 (2), we have {z,t} = supp(e o z) C supp(e o y) which
implies that supp(eoy) = {x,y, z,t}. Thus, by Lemma 2.11 (1), we have supp(z o
y) = H\{z} and supp(y o y) = H\{y}. So,

y esupp(zoy) < supp((ecy)oy)=supp(ec (yoy))
€ {e} Usupp(eox)Usupp(eoz)Usupp(eot) = {e, 2 1},

which is a contradiction. ]

In the next example, which is a fuzzy version of Remark 4.1 of [6] , we will
offer a right identity element of an F-hypergroup of type U on the right which is
not a left identity element.

Example 2.13. Let H = {e,a,b,c,d, f} and t € (0,1]. Then, H with the following
table is an F-hypergroup of type U on the right. It is easy to check that e is not
a left identity element.

ol e a,b,c d, f
e | e {07 d}t {a7 b7 ¢, d7 f}t

a | ag {e7d7f}t {eabv c, daf}t

b €t {G,Q,C, d}t {6,0,70, daf}t

C €t {e?a7b7f}t {evavba d7f}t
d| e {e;a, [} {e;a,bye, fh

f = {eaavd}t {e7aab7 c, d}t
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Theorem 2.14. Let (H,o,e) be an F-hypergroup of type U on the right and
P C H. Let (P,o,e) be an F-polygroup such that supp(x~toxNzozt) = {e},
for all x € P. Then,

(1) supp((H\P) o P) = H\P,
(2) supp((H\P)ox)= H\P, for allx € P,

(3) supp(xo PNxo(H\P)) =0, forallz € H,

(4) |supp(zoy)| =1, for allz € H\P and all y € P.

Proof. 1) Tt is obvious that H\P = supp((H\P) o e) C supp((H\P) o P). Con-
versely, let z € H\P and y € P be arbitrary elements. We prove that supp(zoy) C
H\P which will imply that supp((H\P) o P) C H\P. By way of contradiction,
suppose that supp(zoy) € H\P. Then, there exists € P such that x € supp(zoy)
and so we have

supp(z oy~ ") Csupp((zoy) oy~ ') =supp(zo (yoy ")) =supp(zoe) = {z}.

Hence, z € P which is a contradiction.
2) Let € P be an arbitrary element. By using reproduction axiom we have

H =supp(Hoxz) = supp((H\P)oxzUPozx)
= supp((H\P) ox)Usupp(P ox)
= supp((H\P)ox)UP.
Hence, we have H\P C supp((H\P) o z). On the other hand, by using (1) we
have supp((H\P) o z) C supp((H\P) o P) = H\P.
3) By way of contradiction, suppose that supp(zo PNz o (H\P)) # 0, for some
x € H. Then, there exist y € P and z € H\ P such that supp(zoy)Nsupp(xoz) #
z) # 0. Assume that w € supp(x o y) Nsupp(z o z). Then, we have
supp(w oy~ ') Csupp(zoyoy™') =supp(zoe) = {x}.
So, {z} = supp(w o y~!) C supp((z 0 2) o y~!) = supp(z o (2 0o y~1)). Thus, by
condition (2) of Definition 2.1 we have e € supp(z o y~*). Therefore,
supp(e o y) C supp((20y~") oy) =supp(z o (yoy~')) =supp(z 0 ) = {z}.

Consequently, we have z € supp(e o y) C P which is a contradiction.
4) Let x € H\P and y € P be arbitrary elements. Suppose that {t,w} C
supp(x o y). Then, we have

supp(toy ') Csupp((zoy)oy™') =supp(zo (yoy~')) =supp(zoe) = {z}.

Similarly, we have supp(w o y~*) C {x}. Hence, supp(t oy~ 1) = supp(woy~!) =
{z}. This implies that

{t} = supp(toe) = supp(to(y ' oy)) =supp((woy ') oy) =supp(woe) = {w}.
Therefore, we have |supp(z o y)| = 1. O
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Definition 2.15. Let (H,o0) be an F-hypergroup of type U on the right with at
least two elements. Then, an element x € H is said to be total or a Tr-element if

supp(z oy) = H\{z}, for all y € H\{e}.

Example 2.16. Let (H,o) be the F-hypergroup of type U on the right which is
defined in Example 2.6. Then, each element of H is a Tr-element while (Z3,0)
defined in Example 2.5 has no Tr-element.

Example 2.17. Let H = {e,a,b,c,d} and t € (0,1]. Then, H with the following
table is an F-hypergroup of type U on the right. It is easy to check that b, ¢, d are
Tr-elements while a is not a Tg- element.

o| e a b c d
el et {a,b}s {a,b}: {c,d}+ {e,d}s

al|a {ebc}y {e,b,cy {e,b,c,d}y  {e,b,c,d}y

b|b {ea,cd}: {ea,c,d}y {ea,c,d}: {ea,cd}
cle {eabd} {eabd}y {ea,bd}s {e ,a,b,d};

d|d {eyab,c}t: {e,abec}s {e,abct {eab,ch

Proposition 2.18. Let (H,o) be an F-hypergroup of type U on the right such
that |H| > 2. Let x be a Tr-element in H and y,z € H\{e}. Then, the following
assertions hold:

(1) e € supp(y o z).
(2) If |H| > 3, then |supp(y o z)| > 2.

Proof. 1) It follows from Lemma 2.11 (2).

2) If x = e, then the result follows from Lemma 2.11 (1). So, suppose that
x € H\{e}. By reproduction axiom, there exists w € H such that = € supp(woy).
It is obvious that w # x. Moreover, we have

H\{z} = supp(z o 2) C supp((w oy) o z) =supp(w o (y o z)).

If |[supp(y o z)| = 1, then from the previous point we obtain supp(y o z) = {e}.
Whence, H\{z} = supp(w o e) = {w}. This is absurd because |H| > 3. Conse-
quently, we have |supp(y o 2)| > 2. O

Lemma 2.19. Let (H,o,e) be an F-hypergroup of type U on the right. Let K C H
be an F-subsemihypergroup such that |K| > 2. Then, |H — K| > 1.
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Proof. By way of contradiction, suppose that H\K = {z}, for some x € H. Since
|K| > 2, there exists an element a in K\{e}. Now, by using reproduction axiom
we have

x € H=supp(Hoa) = supp((KU(H\K))oa)
= supp(K ca)Usupp((H\K)ca)
K Usupp(z o a).

N

Since z ¢ K, we have « € supp(zoa) which implies that a = e, a contradiction. [

Lemma 2.20. Let (H,o,¢e) be an F-hypergroup of type U on the right and K C H
be an F-subhypergroup. If |K| > 3 and |H\K| = 2, then supp(zoy) # K\{x}, for
every two distinct elements z,y € K.

Proof. By way of contradiction, suppose that there exist two distinct elements x, y
in K such that supp(xz oy) = K\{x}. If y = e, then supp(z oe) = {z} = K\{«},
which is a contradiction. Thus, y # e. By hypothesis, there exist u,v € H such
that H\K = {u,v}. Suppose that x # e. By reproduction axiom, there exists
w € H such that u € supp(w o y). If w € K, then we have u € supp(woy) C K,
which is absurd. Thus, w ¢ K. On the other hand, since u ¢ supp(u o y), we
conclude that w = v and therefore v € supp(v o y). From z # e it follows that
v & supp(v o ) and so we have supp(v o xz) C H\{v}. We have

u €supp(voy) C supp(vo (K\{z}))=supp(vo (zoy))=supp((voz)oy)
C  supp((H\{v}) oy) = supp((K U {u}) oy)
= supp(K oy) Usupp(uoy) = K Usupp(uoy),

which is a contradiction. Thus, = e and supp(e o y) = K\{e}. On the other
hand, since |K| > 3, there exists z € H such that {e,y, z} C K. Therefore,

K =supp(z o K) = supp(z o e Uz o (K\{e})) =supp(z o e) Usupp(z o (K\{e}))
={z} Usupp(zo (eoy))
={z} Usupp(z o y).

Hence, we have supp(zoy) = K\{z}. By the above argument we have z = e which
is a contradiction. O

3. Isomorphism of F-Hypergrous of Type U on the Right
In this section, we begin with the definition of isomorphism of F-hypergroupoids.

We use this notion to obtain characterizations of F-hypergroups of type U on the
right of order 2 or 3.
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Definition 3.1. Let (Hy,#) and (Ha,0) be two F-hypergroupoids. A one-to-one
and onto mapping ¢ : H; — Ho is called an isomorphism if there exists a positive
real number r such that (z xy)(a) = r(v(x) o ¢(y))(¢(a)), for every z,y,a € H;.
We say that H, is isomorphic to Hs, denoted by H; = Hs, if there exists an
isomorphism from Hy to Hs.

Example 3.2. Let t € (0,1] and H = {e,z,y} be equipped with the
F-hyperoperation *; defined in Example 2.4. If we define the mapping ¢ : H —
S3/Sa(t1,t1,t1) as follows:

ple) =Sz, () =(13)S2 and  ¢(y) = (2 3)S,

where t; € (0,1] and S3/Sa(t1,t1,¢1) is the F-hypergroup of type U on the right
defined in Example 2.6, then H = Sg/SQ(tl,tl,tl).

Lemma 3.3. Let (Hi,*) and (Hz,0) be two F-hypergroupoids F-hypergroupoids
and ¢ : Hy — Hs be a map. Then, ¢ is an isomorphism if and only if ¢ satisfies
the following conditions:

(1) p(supp(z * y)) = supp(p(x) 0 p(y)), for every x,y € Hi,

(2) (z * y)(a)(p(2) o p(w))(p(b) = (#(x) o v(y))(p(a))(z * w)(b), for every

z,y,z,w,a,b € H.

Proof. Let ¢ : Hi — Hy be an isomorphism and ¢(a) € ¢(supp(z * y)) be an
arbitrary element. Since ¢ is one-to-one, we have a € supp(z * y) and therefore
(zxy)(a) # 0. Thus, (¢(x)op(y))(p(a)) # 0 which implies that ¢(a) € supp(p(z)o
©(y)). So, we have @(supp(z * y)) C supp(¢(x) o ¢(y)). To prove the reverse
inclusion, suppose that ¢(a) € supp(¢(z) o ¢(y)) be an arbitrary element. Then,
(p(z) o o(y))(¢(a)) # 0. So, we have (z * y)(a) # 0. Consequently, we have
a € supp(z * y) which implies that ¢(a) € ¢(supp(z *y)). Now, to prove (2), let
x,y,2,w,a,b € Hy be arbitrary elements. If (x*y)(a) = 0 or (z*w)(b) = 0, then by
using (1) we have (2(2) 0 (y))(¢(a)) = 0 or ((2) 0 @(w))((b)) = 0 and 5o in this
case the desired result holds. So, assume that a € supp(z *y) and b € supp(z *w).
Since ¢ : H; — H> is an isomorphism, there exists a positive real number r such
that (zxy)(a) = r(e(z)op(y))(p(a)) and (zxw)(b) = r(p(z)op(w))(p(b)). Hence,
the desired result follows easily.

Conversely, suppose that ¢ satisfies conditions (1) and (2). Let x,y,a € H;
be arbitrary elements. We choose z,w,b € H; such that b € supp(z * w). By (1),

we have (0(z) o p(w))((b)) # 0. We set r = (z x w)(b)/((2) o p(w))(#(b)). By
(2), we have (z *y)(a)(p(2) o p(w))(p(b)) = (p(x) o (y))(p(a))(z * w)(b) which
implies that (2 y)(a) = r(p(x) © ¢ (y))(p(a))- m

Corollary 3.4. Let (Hy,*) and (Ha,0) be two F-hypergroupoids F-hypergroupoids
and ¢ : Hy — Hs be an (zxy)(a) = (z*xw)(b) if and only if (p(z)op(y))(¢(a)) =
(SD(Z) o w(w))(@(b)% fO’f' every x,y, z, w, a, be Hl-
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Next example shows that the converse of Corollary 3.4 does not hold in general.

Example 3.5. We equip the sets H; = {0,1} and Hs = {e,a} with the F-
hyperoperations * and o which are defined in the following tables:

x| 0 1 o| e a

o2 1 0 1 e| &£ a e a
04°0 0°03 08°0 0°0.1

11¢ L 0 1 al e @« e a
0’05 060 009 03’0

We define ¢ : Hi — Hz by ¢(0) = e and ¢(1) = a. We can see easily that for
each z,y, z,w,a,b € Hy we have

(z*y)(a) = (2 +w)(b) if and only if (p(z) 0 p(y))(p(a)) = (¢(2) o p(w))(p(b))-
But ¢ is not an isomorphism because we have (0 % 0)(0) = 0.5(¢(0) o ¢(0))((0))
and (1 x1)(0) = 2(p(1) 0 (1)) (0(0)).

Lemma 3.6. Let (Hy,x), (Hz2,0) and (Hs, ®) be F-hypergroupoids such that Hy =
H2 and HQ = Hg. Then, H1 = H3.

Proof. Tt is straightforward. O
Lemma 3.7. Let (Hy,*) and (Ha,0) be two F-hypergroupoids and ¢ : Hy — Ha
be an isomorphism. Then,

(1) e is a right scalar element of (Hi,*) if and only if (e) is a right scalar
element of (Ha,o0).

(2) o=t Hy — Hy is an isomorphism.

Proof. 1) Let e be a right scalar element of (Hi,*) and y € Hs be an arbitrary
element. Since ¢ is onto, there exists # € H; such that ¢(x) = y. So, by using
Lemma 3.3 we have

supp(y o p(e)) = supp(p(x) o p(e)) = p(supp(z * e)) = {p(x)} = {y}.

Therefore, ¢(e) is a right scalar element of (Hj,0). Conversely, let p(e) be a right
scalar element of (Ha, o). Then, for each element « of H; we have

¢ (supp(z * €)) = supp(p(z) © p(e)) = {p(x)}.

Since ¢ is one-to-one, we have supp(x * e¢) = {z} and therefore e is a right scalar
element of (Hy, *).
2) It is straightforward. O
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Lemma 3.8. Let (Hy,*) and (Ha,0) be two F-semihypergroups and ¢ : Hy — Hy
be an isomorphism. Then, the following assertions are equivalent:

(1) (Hy,*,e) is an F-hypergroup of type U on the right.
(2) (Ha,o0,¢(e)) is an F-hypergroup of type U on the right.

Proof. 1=2) Let y € Hs be an arbitrary element. Since ¢ is onto, there exists
x € Hy such that p(x) = y. By assumption we have supp(z*H1) = supp(H; *xx) =
H;. Hence,

supp(y o Ha) = supp(p(z) o p(H1)) = p(supp(z * H1)) = ¢(H1) = Ha.

Similarly, we have supp(Hsz o y) = Hy. Therefore, (Hs,0) is an F-hypergroup.
By Lemma 3.7, p(e) is a right scalar element of (Hg, o). Thus, condition (1) of
Definition 2.1 holds. It is sufficient to show that condition (2) of Definition 2.1
is true. Let y,z € Hs be arbitrary elements and y € supp(y o z). Since ¢ is
onto, there exist x,t € H; such that o(z) = y and p(¢t) = 2. Thus, by using
Lemma 3.3 we have p(z) € supp(¢(x) o p(t)) = @(supp(x * t)). So, there exists
w € supp(x *t) such that ¢(x) = p(w). Since ¢ is one-to-one, we have = w and
therefore x € supp(z * t). Since (Hy,*) is of type U on the right we have t = e
which implies that z = ¢(t) = ¢(e).

2=1) Let (Ha,0,p(e)) be an F-hypergroup of type U on the right. By Lemma
3.7 (2), o= : Hy — Hj is an isomorphism and therefore by the above argument
(Hy,*,e) is an F-hypergroup of type U on the right. O

Theorem 3.9. Let (H,o,e) be an F-hypergroup of type U on the right with |H| =
2. Then, H = Zs(t1,t2), for some t1,t2 € (0,1]. (See Example 2.5.)

Proof. Let H = {e,z}. By conditions (1) and (2) of Definition 2.1, o has the
following table:

t3 tg? 0

|G,
where t1,t9,t3,t4 € (0,1]. Since (H, o) is an F-hypergroup of type U on the right,
we have

tr = (co2)(x) = (wow)oa)() = (o (r0))(z) = (woe)(a) = ta
and
ty=(zoz)(e) = ((eox)ox)(e) = (eo(zox))(e) = (eoe)(e) = t1.

We define the mapping ¢ : H — Zy by ¢(e) = 0 and p(z) = 1. Obviously, ¢ is
an isomorphism and therefore the desired result holds. O
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Theorem 3.10. Let (H,o,¢) be an F-hypergroup of type U on the right with |H| =
3. Then, either H = Z3(t1,ta,t3) or H = S3/So(t1,ta,t3), for some ty1,ta,t3 €
(0,1]. (See Examples 2.5 and 2.6.)

Proof. Let H = {e,x,y}. By condition (2) of Definition 2.1 we have

supp(e o ) Usupp(eoy) C {z,y}.

We claim that |supp(e o z)| = |supp(e o y)|. If this is not the case, then without
loss of generality we can assume that |[supp(eox)| = 1 and |[supp(eoy)| = 2. Thus,
we have supp(e oy) = {z,y} and by Lemma 2.9 we have supp(e o 2) = {z}. By
reproduction axiom, there exists z € H such that y € supp(z o z). Hence,

a € supp(e o y) C supp(e o (0 2)) = supp((e o z) 0 2) = supp(z © 2),

which implies that z = e and so we have y € supp(z o e) = {z}, a contradiction.
Thus, we have the following two cases.
Case 1: Let supp(e o x) = supp(e oy) = {z,y}. Then, we have

supp(x o y) = supp((z oe) oy) =supp(zo(ecy)) = supp(zo(ecx))
= supp(z o).

Since z ¢ supp(z oy) we have supp(xzoy) C {e,y}. In the case that supp(zoy) =
{e}, we have

{e,x} = supp(z o x) Usupp(z o y) Usupp(z o €) = supp(z o H) = H,
which is a contradiction. In the case that supp(x o y) = {y}, we have
{y} = supp(z o y) = supp(z o (z 0 y)) = supp((z o z) o y) = supp(y o y).

This implies that y = e which is a contradiction. Thus, supp(z o y) = {e,y}. In
a similar manner we can show that supp(y o ) = supp(y o y) = {e,x}. So, o has
the following table in which ¢;’s are in (0, 1].

o e X y

e e z Y e z Y e z Y
t120°0 0’ to? tg 07ty ts

T e z Yy c z Y e z Y
02t 0 t7? 07 tg tg? 07 t10
ez Y e =z Y e =z Y

Y1607, t127 1137 0 t14? t15° 0

We have t11 = \/ {(eoe)(y), (yoe)(y)} = ((woy)oe)(y) = (xoy)(y) = t1o. Inacan
show that tl = t7 = tg = t12 = t14, tQ = t4 = t6 = tlg = t15 and t3 = t5 = tg = t11~
Therefore, in this case we have H 2 S3/So(t1, ta, t3).
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Case 2: Let |supp(eoz)| = [supp(eoy)| = 1. By Lemma 2.9, we have supp(e o
x) = {z} and supp(eoy) = {y}. We claim that supp(zox) = {y}. If supp(zrozx) =
{e}, then as supp(e o ) Usupp(z o z) Usupp(y o z) = supp(H o x) = H, we have
y € supp(y o x) which implies that = = e, a contradiction. If supp(z o z) = {e, y},
then from the following equalities we conclude that y & supp(z o y).

{z} Usupp(y o z) = supp(e o z) Usupp(y oxz) = supp((zoz)ox)
supp(z o (z o x))
= supp(zoe)Usupp(zoy).

On the other hand, by condition (2) of Definition 2.1 we have = ¢ supp(x o y).
Thus, supp(z o y) = {e}. Therefore,

y € supp(e o y) Usupp(y o y) = supp((z o x) oy) = supp(x o (z o y)) = {z},

that is a contradiction. Hence, supp(z o ) = {y}. In a similar manner we have
supp(y o y) = {«}. From supp(z o y) = supp(z o (x o x)) = supp((z o x) o x) =
supp(yox), z ¢ supp(zoy) and y ¢ supp(yox) we conclude that {z,y} ¢ supp(zoy)
and therefore supp(z o y) = {e}. So, o has the following table in which ¢;’s are in
(0,1].

o e x Yy
el ez y ez y ez y
t1°0°0 0°8°0 0200t
rlez vy ez y e zy
0°t4°0 0707t 1°0°0
ylez ¥ eczy exy
0°07% 070 07t9°0
We have t; = (ece)(e) = ((zoy)oe)(e) =(zo(yoe))(e) =(xoy)(e) =ts. Ina

similar way we can show that t| = tg, to = t4 = tg and t3 = t5 = t7. So, in this
case we have H = Zs(ty,to,t3). O

Notice that, by Theorem 3.9, there are 2 different F-hypergroups of type U
on the right of order two up to an isomorphism. One of them is Zo(t1,t2) with
t1 = t2 and the other one is Za(t1,t2) with ¢; # to. Also, by Theorem 3.10, there
are 10 different F-hypergroups of type U on the right of order three up to an
isomorphism depending on whether some t;’s are equal or not.

Theorem 3.11. Let (H,o,e) be an F-semihypergroup of type U on the right.
Assume that K & H is an F-subsemihypergroup of H isomorphic to (K, *;), for
some t € (0,1] (see Example 2.4) and let e € K. Also, let € H\K and a,b €
K\{e} be arbitrary elements. Then, the following assertions hold:

(1) supp(z o a) = supp(zob),

(2) supplaoa) N K # 0 K C supp(x o a),
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(3) supp(zoa) # K,
(4) supp(x o a) N (H\a) N (H\K) # 0.
(5) |supp(zoa)| > 1.

Proof. 1) Let ¢ : (K,*;) — (K,0) be an isomorphism. Then, by Lemma 3.8,
(K, o) is an F-hypergroup of type U on the right. By Lemma 3.7, we have ¢(e) =
Since ¢ is an onto mapping, there exists ¢,d € K such that ¢(c) = a and ¢(d) = b.
Therefore we have

supp(e o a) = supp(p(e) o (¢)) = p(supp(e *; ¢)) = p(K\{e}) = K\{e}.

Similarly, we have supp(e o b) = K\{e}. So,

—
8
o
8y

~—
o
S

supp(zoa) = supp

—
8
o
NS
o
N —

2) Let ¢ € supp(z oa) N K. Since K is an F-hypergroup, we have

K =supp(coK) C supp((zoa)oK)
supp(z o (a 0 K))
(
(

x
supp(z o K)
= supp(zoa)U{x}.
This implies that K C supp(x o a).

3) By way of contradiction, suppose that supp(z o a) = K. By assumption we
have

supp(a o b) = supp(p(c) o ¢(d)) = p(supp(c * d)) = p(K\{c}) = K — {a}.
Therefore,

K =supp(Kob) = supp((zoa)ob)
supp( 0 (a 0 b))
supp(z o (K — {a})
{z} Usupp(z 0 b)
{z} Usupp(z o a).

This implies that € K which is a contradiction.
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4) By way of contradiction, suppose that supp(z o a) N (H\K) = {. Then, we
have supp(z o a) C K and so by (2) we have K C supp(z o a) which implies that
K = supp(z o a). By (3), this is a contradiction.

5) By way of contradiction, suppose that |[supp(zoa)| = 1. If supp(xoa) = {e},
then by (2) we have K C supp(z o a) = {e} which is absurd. If supp(z o a) =
{y} # {e}, then we have

supp(yob) = supp((zoa)ob)
— supp(eo (K — {a})
= {z} Usupp(zob)
= {z}Usupp(zoa)

= {z,y}.

This implies that y € supp(y o b). So, by condition (2) of Definition 2.1 we have
b = e which is a contradiction. O

4. Cyclic F-Semihypergroups

What will happen in this section, is a fuzzy version of some parts of [14]. Let (H, o)
be an F-semihypergroup. Then, the intersection (),., S; of a family {S;}iea of
F-subsemihypergroups of H (if it is non-empty) is an F-subsemihypergroup. For
every non-empty subset A of H, there exists at least an F-subsemihypergroup of
H containing A (H itself). Hence, the intersection of all F-subsemihypergroups
of H containing A is an F-subsemihypergroup. We denote it by A. It is easy to
see that

(1) AC A4
(2) A C S, where S is an F-subsemihypergroup H containing A.

Furthermore, one easily checks that A = AU ( J supp(zi0...0 a:k)), where x;’s
k>2
are in A. In particular, if A is a singleton set, say {2}, then A will be denoted by
Zand & = {x} U supp(z¥)) in which z* means zo...ox. If |H| = n, then
{a} (kLZJ2 pp(a*)) ¢ - I |H]

k times
n

we have & = |J supp(z¥). It is obvious that x € § < & C g, for every z,y € H.
k=1

Definition 4.1. Let H be an F-semihypergroup. Then, H is called cyclic if there

exists an element x € H such that H = .

Example 4.2. Let G be the Klein 4-group. If we equip G with the F-hyperoperation
o defined in Example 2.7, then (G, o) is not cyclic while (H, o) defined in Example
2.4 is a cyclic F-hypergroup of type U on the right.
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Theorem 4.3. Let (H,o) be a finite F-semihypergroup of type U on the right.
If there exists an element x in H such that & # H and & is isomorphic to
Ss/Sa(t,t,t), for somet € (0,1], then |H| > 6.

Proof. Since % is isomorphic to S3/Sa(t,t,t), for some t € (0, 1], we have |Z| = 3
(see Example 2.6). Set @ = {e,z,y}. By Lemma 3.6, (&, o) is isomorphic to (Z, *;)
(see Example 3.2). From & # H it follows that |H| > 4. If |[H| = 4, then we can
assume that H\Z = {z} and so by Theorem 3.11 (4) , we have z € supp(zox). This
implies © = e which is a contradiction. If |H| = 5, then we set H = {e, z,y,w, z}.
So, we have H\& = {w,z}. Since y € & we have § C &. On the other hand,
by assumption we have x € ¢ which implies that £ C . Thus £ = g. Since
w ¢ supp(w o x) and z ¢ supp(z o ), z ¢ supp(z o x), by using (2), (4) and (5)
of Theorem 3.11 , we have supp(w o ) = & U {z} and supp(z o z) = Z U {w}.
Similarly, we have supp(w oy) = g U {z} and

H={w}Usupp(woz) = supp(woe)Usupp(woz)
— supp(wo {e,2})
= supp(wo (yoy))

= supp((woy)oy)

_ U supp(toy)
tesupp(woy)

supp(y o y) Usupp(z o y)
= gU{w}=H\{z}.

This contradiction completes the proof. O

5. Regular Relations over F-Hypergroups

In this section, inspired by [9], after defining the notion of regular F-hypergroups
containing a right identity element, we define right reversible F-hypergroups.
Then, by using regular relations on an F-hypergroup we construct right reversible
quotient F-hypergroups.

Definition 5.1. Let (H, o, ¢) be an F-hypergroup (not necessarily an F-hypergroup
of type U on the right) where e is a right identity element. Let x,y € H. Then, y
is called an inverse of x if

e € supp(xoyNyox).
The set of all inverses of 2 will be denoted by z~!. (H,o,e) is called regular if
e is an identity element and x~! # (), for every z € H. A regular F-hypergroup
(H,o,e) is said to be right reversible if for every xz,y,z € H with & € supp(y o 2),
there exists ¢ € 27! such that y € supp(z ot).
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Theorem 5.2. Let (H,o,¢e) be an F-hypergroup of type U on the right. Then, the
following assertions are equivalent:

(1) e is a left identity element,
(2) (H,o,e) is right reversible.

Proof. 1= 2) Let x be an arbitrary element of H. By reproduction axiom, there
exists y in H such that e € supp(z oy). By Lemma 2.8 (4), we e € supp(y o ).
This implies that (H,o,e) is regular. Now, let z,y, z be arbitrary elements of H
such that « € supp(y o z). By reproduction axiom, there exists an element ¢t € H
such that y € supp(z ot). By t).ByLemma2.8(5), wehavet o z). This means that
t € 271 and so there is nothing to prove.

2 = 1) It is trivial. O

Lemma 5.3. Let (H,o,¢e) be an F-hypergroup of type U on the right such that
P, = {supp(eox) | x € H} is a partition of H. Then, e is a left identity element.

Proof. Let x € H be an arbitrary element. By reproduction axiom, there exists
y € H such that = € supp(e oy) and so we have

supp(e o z) C supp(eo (eoy)) = supp(e o y).

Since P, is a partition of H, we deduce that supp(eoz) = supp(eoy) and therefore
x € supp(e o x). O

In what follows, we denote by m, the maximum size of the elements of P,

Proposition 5.4. Let (H,o,¢) be an F-hypergroup of type U on the right. Then,
the following assertions hold:

(1) me =1 if and only if e is a left scalar identity element.

(2) If 2 < me < oo, then there exist two distinct elements x,y € H\{e} such
that supp(e o x) = supp(e oy) and |supp(e o x)| = |supp(e o y)| = me.

Proof. 1) By using Lemma 2.9, the proof is trivial.

2) Let m. > 2. Then, there exists © € H\{e} such that [supp(e o z)| = me..
By Lemma 2.10, there exists y € H\{x} such that x € supp(e o y). Consequently,
supp(eox) C supp(eoy) and m, = |[supp(eoz)| < |supp(eoy)|. Since m, is maximal,
we obtain |supp(e o z)| = |supp(eoy)| and therefore supp(eox) = supp(eoy). O

Let R be a relation on a non-empty set X and A, B C X. Then, ARB means
that for each a in there exists b € B such that aRb and for each b in B, there
exists a € A such that bRa. For an equivalence relation R on X, we may use
R(z) to denote the equivalence class of © € X. We let H/R denote the family
{R(z) | x € X} of classes of R.
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Let (H, o) be an F-hypergroup of type U on the right. An equivalence relation
R on H is called regular if

xRy = supp(z o x) Rsupp(z o y) and supp(z o z) Rsupp(y o 2),
for every z,y,z € H.

Theorem 5.5. Let (H,o,e) be an F-hypergroup of type U on the right such that
P. is a partition of H. Then, the following assertions hold:

(1) The relation R C H? defined as follows is a regular relation.

TRy <= supp(e o x) = supp(e o y).
(2) The set H/R endowed with the following F -hyperoperation is right reversible.
R(IE) © R(y) = X{R(t) | t€supp(zoy)}-

(3) Let R(y) = R(u) and R(z) = R(v), for some y, z,u,v € H. Then,

(a) the following statements are equivalent, for some x € H:
(i) R(x) € supp(R(y) © R(z)).
(i) R(z) N supp(uowv) # 0.
(iii) R(z) C supp(eouow).
(b) if |R(z)| =1, for some x € H, then

R(z) € supp(R(y) ® R(z)) < =z € supp(uow).

Proof. 1) Obviously, R is an equivalence relation. Let xRy and a € H. We
show that supp(z o R supp(y o a). Assume that z is an an arbitrary element of
supp(z o a). By Lemma 5.3 we have z € supp(e o z). Since

supp(eoz) C supp(eo (zoa))=supp((ecx)oa)
= supp((eoy)oa)=supp(eo (yoa)),

there exists w € supp(y o a) such that z € supp(e o w). Since P, is a partition of
H, we have supp(e o z) = supp(e o w). Hence, zRw. In a similar manner, we can
show that for each z € supp(y o a) there exists w € supp(z o a) such that zRw.
Thus, supp(z o a)R supp(y o a). On the other hand, we have

supp(a o ) =supp((ace)ox) = supp(ao (eox))=supp(ac (eoy))
= supp((ace)oy)=supp(acy).

Hence, supp(a o x) Rsupp(a o y) and the desired result follows.
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2) By Theorem 3.1 of [12], (H/R,®) is an F-hypergroup. By Lemma 5.3, e is
a left identity element, so we have x € supp(z o ox), for every € H. Thus, for
each R(x) € H/R, we have

R(z) € supp(R(z) ® R(e)) Nsupp(R(e) ® R(x)).

Hence, R(e) is an identity element of (H/R,®). Let R(x) be an arbitrary element
of H/R. By reproduction axiom, there exists y € H such that e € supp(z oy) and
so by Lemma 2.8 (4) we have e € supp(y o ). This implies that

R(e) € supp(R(z) © R(y)) Nsupp(R(y) © R(y)) Nsupp(R(y) © R(z)).

Hence, R(y) € (R(z))"!. So, (H/R,®) is regular. Finally, let R(x), R(y), R(2)
be arbitrary elements of H/R such that R(x) € supp(R(y) ® R(z)). Then, there
exists t € supp(y o z) such that R(x) = R(t). By using Lemma 5.3 and Theorem
5.2, (H,o,e) is right reversible. So, there exists w € z~! such that y € supp(tow).
Therefore,

R(y) € supp(R(t) © R(w)) = supp(R(z) © R(w)).

Clearly, R(w) € (R(z))~!. This proves that (H/R,®) is right reversible.

3) First, we prove (a).

i = ii) Let R(z) € supp(R(y) ® R(z)). As R(y) = R(u) and R(z) = R(v),
we have R(z) € supp(R(u) ® R(v)). Thus, there exists a € supp(u o v) such that
R(z) = R(a). So, a € R(x) Nsupp(u o v).

i1 = 4ii) We claim that R(x) = supp(eox). For each w € R(z), by Lemma 5.3,
we have w € supp(e o w) = supp(e o z). So, R(x) C supp(e o x). Conversely, for
each w € supp(e o z) we have supp(e o w) C supp(e o (e o x)) = supp(e o x). Since
P, is a partition of H, we have supp(e o w) = supp(e o x) that is w € R(x). So,
supp(eoz) C R(z). Therefore, R(z) = supp(eox). Now, let a € R(x)Nsupp(uov).
Then,

R(z) = R(a) = supp(eoa) C supp(eouow).

i1t = 1) According to hypothesis, we have x € supp(e o u o v). Thus, there exists
a € supp(u o v) such that z € supp(e o oa). Now, from R(a) = supp(e o a) it
R(z) = R(a). On the other hand, R(a) € supp(R(u) ® R(v)) which implies that
R(x) € supp(R(y) ® R(2).

The proof of (b) is trivial. O

6. Conclusion

By an F-hypergroup of type U on the right, we mean an F-hypergroup (H, o) which
has a right scalar identity element e such that for all z,y € H, from = € supp(zoy)
it follows that y = e. In the resent paper, we classified F-hypergroups of type U
on the right of order 2 or 3 up to an isomorphism. An interested reader can
think about classifying F-hypergroups of higher orders and think about ternary
F-hypergroups of type U.



F-Hypergroups of Type U on the Right 343

Conflicts of Interest. The authors declare that there are no conflicts of interest
regarding the publication of this article.

References

[1] P. Corsini, Prolegomena of Hypergroup Theory, Aviani editor, Second edition,
1993.

[2] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Advances
in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003.

[3] B. Davvaz, Construction of n-ary F-polygroups, Inform. Sci. 275 (2014) 199—
212.

[4] B. Davvaz, Polygroup Theory and Related Systems, World Scientific Publish-
ing Co. Pte. Ltd., Hackensack, NJ, 2013.

[5] B. Davvaz, F. Bardestani, Hypergroups of type U on the right of size six,
Arab. J. Sci. Eng. 36 (2011) 487 — 499.

[6] M. De Salvo, D. Fasino, D. Freni and G. Lo Faro, Hypergroups with a strongly
unilateral identity, J. Mult.- Valued Logic Soft Comput. 21 (1-2) (2013) 165 —
182.

[7] M. De Salvo, D. Fasino, D. Freni and G. Lo Faro, Isomorphism classes of the
hypergroups of type U on the right of size five, Comput. Math. Appl. 58 (2)
(2009) 390 — 402.

[8] M. De Salvo, D. Fasino, D. Freni and G. Lo Faro, On strongly conjugable
extensions of hypergroups with scalar identity, Filomat 27 (6) (2013) 977 —
994.

[9] M. De Salvo, D. Freni and G. Lo Faro, A new family of hypergroups and
hypergroups of type U on the right of size five, Far Fast J. Math. Sci. (FJMS)
26 (2) (2007) 393 — 418.

[10] M. De Salvo, D. Freni and G. Lo Faro, Hypergroups of type U on the right
of size five. II, Mat. Vesnik 60 (1) (2008) 23 — 45.

[11] M. De Salvo, D. Freni and G. Lo Faro, On the hypergroups of type U on the
right of size five, with scalar identity, J. Mult.- Valued Logic Soft Comput. 17
(5-6) (2011) 425 — 441.

[12] M. Farshi and B. Davvaz, F"-Hypergroups based on fuzzy hyperoperations
and fundamental relations, J. Intell. Fuzzy Systems 26 (2014) 1453 — 1464.

[13] M. Farshi and B. Davvaz, On isomorphism theorems of F™-polygroups, J.
Sci. I. R. Iran 24 (3) (2013) 259 — 267.



344 M. Farshi, B. Davvaz and F. Dehghan
I ——

[14] D. Fasino and D. Freni, Existence of proper semihypergroups of type U on
the right, Discrete Math. 307 (22) (2007) 2826 — 2836.

[15] D. Fasino and D. Freni, Minimal order semihypergroups of type U on the
right, Mediterr. J. Math. 5 (3) (2008) 295 — 314.

[16] D. Freni, Structure des hypergroupes quotients et des hypergroupes de type
U (Structure of quotient hypergroups and of hypergroups of type U), Ann.
Sci. Univ. Clermont-Ferrand II Math. 22 (1984) 51 — 77.

[17] D. Freni and M. Gutan, Sur les hypergroupes de type U, Mathematica (Cluj)
36 (59) (1994) 25 — 32.

[18] F. Marty, Sur une generalization de la notion de group, In 8th Congress Math.
Scandenaves (1934) 45 — 49.

[19] Y. Sureau and D. Freni, Hypergroupes de type U et homologie de complexes,
Algebra Universalis 35 (1) (1996) 34 — 62.

[20] T. Vougiouklis, Hyperstructures and Their Representations, Aviani editor,
Hadronic Press, Palm Harbor, USA, 1994.

[21] L. A. Zadeh, Fuzzy sets, Inf. and Control 8 (1965) 338 — 353.
[22] M. Zahedi and A. Hasankhani, F-polygroups. I, J. Fuzzy Math. 4 (3) (1996)

533 — H48.
[23] M. Zahedi and A. Hasankhani, F-polygroups. II, Inform. Sci. 89 (3-4) (1996)
225 — 243.

Mehdi Farshi

Department of Mathematics,
Yazd University,

Yazd, I. R. Iran

e-mail: m.farshi@yahoo.com

Bijan Davvaz

Department of Mathematics,
Yazd University,

Yazd, I. R. Iran

e-mail: davvaz@Qyazd.ac.ir

Fatemeh Dehghan

Department of Mathematics,
Yazd University,

Yazd, I. R. Iran

e-mail: fdehghan@stu.yazd.ac.ir



