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On n-Nilpotent Groups and n-Nilpotency

of n-Abelian Groups
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Abstract

The concept of n-nilpotent groups was introduced by Moghaddam and
Mashayekhy in 1991 which is in a way a generalized version of the notion of
nilpotent groups. Using the n-center subgroup, a new series was constructed,
which is a generalization of the upper central series of a group. In this article
some properties of such groups will be studied. Finally more results for an
n-nilpotent group G are given based on the assumption that G is n-abelian.
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1. Introduction
Let G be a group and n a positive integer. In 1979 Fay and Waals [3] introduced
the notions of the n-potent and the n-center subgroups of a group G, respectively
as follows:

Gn = ⟨[x, yn]|x, y ∈ G⟩,

Zn(G) = {x ∈ G|xyn = ynx,∀y ∈ G},

where [x, yn] = x−1y−nxyn. It is easy to see that Gn is a fully invariant and Zn(G)
is a characteristic subgroup of the group G. In the case n = 1, these subgroups will
be G′ and Z(G), the drive and center subgroups of G, respectively. Moghaddam
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et al. in [6], introduced a general version of central series and derived series. Also
they defined n-nilpotent groups and explore some of their properties.
The following definition is vital in our investigation:

Definition 1.1 (6, Definition 1.2). A normal series 1 = G0 ≤ G1 ≤ · · · ≤ Gt = G
of a group G is termed an n-central series of length t if for any 0 ≤ i ≤ t− 1,

Gi+1

Gi
≤ Zn(

G

Gi
).

By using the notion of n-potent subgroup, a sequence of subgroups of a group
G, is defined, which is called the lower n-central series of G by the rules

γn
1 (G) = G, γn

2 (G) = [G,Gn] = Gn, γn
i (G) = [γn

i−1(G), Gn].

Let us mentioned that γn
i (G)/γn

i+1(G) is a subgroup of the n-center of G/γn
i+1(G).

In view of this, it is natural to consider a second sequence of subgroups of G, called
the upper n-central series of G, defined by the rules Zn

0 (G) = 1, Zn
1 (G) = Zn(G)

and for i > 1, Zn
i (G) is the inverse image of Zn(G/Zn

i−1(G)) in G.(See [6]).

In order to set up the contents of this survey, we begin by introducing n-
nilpotent groups, which is a generalization of nilpotent groups. It is noteworthy
that Baer [1] introduced another concept termed n-nilpotent group which is totally
different from the following.

Definition 1.2 (6, Definition 1.2). A group G is called n-nilpotent if it has at
least one n-central series of the length c such that c is the least of the lengths of
its n-central series. For brevity we write cln(G) = c.

Of course, if G is a nilpotent group of class c, then it is n-nilpotent for all
positive integer n. But its converse is not valid. For example consider S3. Also
the n-nilpotency of G implies that Gn is nilpotent.

A group G in which (xy)n = xnyn holds for all x, y ∈ G and some fixed integer n
has been called n-abelian. Furthermore, [xn, y] = [x, yn] = [x, y]n for any x, y ∈ G.
The origins of this concept may be traced back to 1944 and are associated with the
name of F. W. Levi [5]. Other self-evident fact about n-abelian groups are that
every n-abelian group is (1− n)-abelian, and conversely. Also G/Gn is n-abelian
and Gn is the smallest normal subgroup J of G such that G/J is n-abelian. A
detailed introduction to n-abelian groups can be found in Baer’s paper [1].

This article is a study of n-nilpotency of two disparate kinds, firstly general
remarks on n-nilpotent groups and secondly n-nilpotency of n-abelian groups.
In this section, we met n-nilpotent groups, defined in terms of n-central series.
Section 2 begins with some elementary properties of n-nilpotent groups in general.
Also, we introduce a great source of finite n-nilpotent groups. Moreover, we find
a criterion for a group to be residually n-nilpotent. It frequently happens that we
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have some information about a subgroup or a factor group of a group and we wish
to transfer this to other factor groups or subgroups. In this direction, we will show
that residually n-nilpotency of a group G, is equivalent to residually n-nilpotency
of G/Gn.

In Section 3, we will concentrate on the structure of n-abelian n-nilpotent
groups. It is a trivial observation that an extension of one n-nilpotent group
by another need not be n-nilpotent. One of the most outstanding results of this
section is finding an important criterion for such an extension to be n-nilpotent. In
addition, we prove that an n-abelian n-nilpotent group G is torsion-free if and only
if Zn(G) is torsion-free. Also, we discuss the special role played by the Frattini
subgroup in an n-abelian group. Finally, we obtain the structures of verbal and
marginal subgroups of n-abelian groups, for the variety of n-nilpotent groups.

2. General Remarks on n-Nilpotent Groups
In the following lemma we list explicitly some crucial results of upper and lower
n-central series of a group. We omit the proof as the reader may not find any
difficulty in it.

Lemma 2.1. Let G be any group and let i and j be positive integers. Then:
(i) γn

i (G)◁f G, Zn
i (G) ◁c G;

(ii) γn
i (G) = 1 ⇐⇒ Zn

i−1(G) = G;
(iii) γn

i (G/N) = (γn
i (G)N)/N , Zn

i (G/N) ≥ (Zn
i (G)N/N);

(iv) γn
i (G) ≤ γi(G), Zi(G) ≤ Zn

i (G);
(v) γn

i (G×H) = γn
i (G)× γn

i (H);
(vi) Zn

i (G/Zn
j (G)) = Zn

i+j(G)/Zn
j (G).

Note that the n-nilpotency of a group G is equivalent to Zn
c (G) = G also by the

previous lemma, γn
c+1(G) = 1.

It can readily seen that the class of n-nilpotent groups is closed under subgroups
and direct product.

We exhibit here a number of basic results that we shall need.

Theorem 2.2. [6, Theorem 1.7] Let G be an n-nilpotent group and 1 ̸= H ◁ G.
Then H ∩ Zn(G) ̸= 1.

This is a fairly immediate consequence of Theorem 2.2.

Corollary 2.3. Let G be a n-nilpotent group and M be a normal minimal subgroup
of G. Then M ≤ Zn(G).

Another basic property of n-nilpotent groups is the following:

Proposition 2.4. Let G be an n-nilpotent group and let exp(Zn(G)) = e. Then
G has exponent dividing nec where c is the n-nilpotency class of G.
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Proof. First Gn is nilpotent that follows at once G is nilpotent and the class of
Gn is at most c. Furthermore exp(Z(Gn))|e; and we conclude exp(Gn)|ec. Finally
let y ∈ G, therefore (yn)e

c

= 1. So one can readily see that exp(G)|nec.

Theorem 2.5. Let G be an infinite n-nilpotent group and let Gn be finitely gen-
erated. Then Zn(G) contains an element of infinite order.

Proof. Since G is an n-nilpotent group thus Gn is nilpotent. Also by the fact Gn

is finitely generated and infinite we have Z(Gn) contains an element of infinite
order. Since Z(Gn) ≤ Zn(G) the proof is ended.

Lemma 2.6. For a nontrivial finite group G if Gn is a p-group, then |Zn(G)| > 1.

Proof. Let G be a finite group such that Gn is a p-group. If Gn = 1, then
[x, yn] = [x, 1] = 1 for any x, y ∈ G. Thus Zn(G) = G and so |Z(Gn)| > 1. If
|Gn| > 1, since Z(Gn) ≤ Zn(G) and |Z(Gn)| > 1 then |Zn(G)| > 1.

Now the following theorem gives us a great source of finite n-nilpotent groups.

Theorem 2.7. If G is a finite group such that Gn is a p-group, then G is n-
nilpotent.

Proof. By Lemma 2.6, |Zn(G)| > 1. Suppose that Zn(G) = G, then G is an
n-nilpotent group of class c = 2. Now let Zn(G) < G. Then since |G/Zn(G)| > 1
another application of Lemma 2.6 yields |Zn(G/Zn(G)| > 1. It follows therefore
that |Zn

2 (G)| > 1. Since G is finite this process is limited, so Zn
c (G) = G for some

c.

Our next result gives a simple, but important, criterion for a group to be
residually n-nilpotent.

Theorem 2.8. Let G be a group. Then G is residually n-nilpotent if and only if∩∞
t=1 γ

n
t (G) = 1.

Proof. Suppose that G is residually n-nilpotent and
∩∞

t=1 γ
n
t (G) ̸= 1. Therefore

there exists x ̸= 1 such that x ∈
∩∞

t=1 γ
n
t (G). Now let Nx ◁G such that x is not

in Nx and G/Nx is n-nilpotent. Therefore for an integer c > 0, γn
c (G/Nx) = 1 and

hence (γn
c (G)Nx)/Nx = 1 which means x ∈ Nx. This is a contradiction and the

assertion is shown. Conversely if
∩∞

t=1 γ
n
t (G) = 1, then for any x ∈ G there exists

a positive integer i such that x /∈ γn
i (G) and G/γn

i (G) is n-nilpotent. Thus G is
residually n-nilpotent.

As an immediate corollary we obtain

Corollary 2.9. Let G be a group. Then G/Gn is residually n-nilpotent if and
only if G is residually n-nilpotent.

Theorem 2.10. A principal factor of a locally n-nilpotent group G is n-central.
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Proof. Let N be a minimal normal subgroup of G. We argue that N is a subgroup
of Zn(G). If N ̸≤ Zn(G), there exist a ∈ N and g ∈ G such that b = [a, gn] ̸= 1.
Since b ∈ N , we have N = bG

n

by minimality of N . Thus a ∈ ⟨bgn
1 , . . . , bg

n
t ⟩ for

certain gni ∈ Gn. Let H = ⟨a, gn, gn1 , . . . , gnt ⟩ which is an n-nilpotent subgroup of
G and set A = aH

n

. It follows therefore that b ∈ [A,Hn], hence bg
n
i ∈ [A,Hn] for

any 1 ≤ i ≤ t and consequently a ∈ [A,Hn]. We could derive A = [A,Hn] and
A = [A,r H

n] = 1 for all r. Indeed, by n-nilpotency of H, we have A = 1 and
a = 1. But this means that [a, gn] = 1.

3. n-Nilpotency of n-Abelian Groups
In this section we derive some additional properties of the n-nilpotent groups
which are related to the n-abelian groups. Our first theorem deals with the case of
torsion-free groups. As we know the properties of the center of a nilpotent group
are often reflected in the entire group. Such result for n-nilpotent groups is the
following:

Theorem 3.1. Let an n-abelian group G be n-nilpotent. Then G is torsion-free
if and only if Zn(G) is torsion-free.

Proof. The direct side of the proof is clear. For the other side, let Zn(G) be
torsion-free. Since Z(Gn) ≤ Zn(G), then Z(Gn) is torsion-free. Moreover G is
n-nilpotent, thus Gn is nilpotent and so Gn is torsion-free. Now proof has been
completed if we show that for any x ∈ G and xn = 1, then x = 1. Let x ∈ G and
xn = 1. Then [xn, gn] = 1 for any g ∈ G. As G is n-abelian we have [x, gn] = 1
therefore x ∈ Zn(G) and the proposition follows at once.

Remark 1. Of course, if G is a n-nilpotent group of class c and exp(Zn(G)) = e,
then exp(G)|nec (see Proposition 2.4). Now let G be an n-abelian n-nilpotent
group of class at most c and let exp(Zn(G)) = e. Then by induction on i, we can
see exp(Zn

i (G))|ei. Hence it follows that exp(G)|ec.
The following proposition shows the relationship between n-nilpotency of two

normal n-nilpotent subgroups and their products.

Proposition 3.2. Let N and M be two normal n-nilpotent subgroups of an n-
abelian group G. If c and d are the n-nilpotent classes of N and M respectively,
then L = MN is n-nilpotent of class at most c+ d.

Proof. By induction on i we can show that γn
i (L) equals the product of

[X1, X
n
2 , . . . , X

n
i ] such that for any 1 ≤ j ≤ i, Xj ’s are M or N . For i = 1

this is clear. Now for i+ 1 we have

γn
i+1(L) = [γn

i (L), L
n] = [γn

i (L),M
n][γn

i (L), N
n].

So by induction hypothesis γn
i (L) is equal to the product of all [X1, X

n
2 , . . . , X

n
i ].

Thus we have the same for γn
i+1(L). To complete the proof set i = c+d+1. Then
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in [X1, X
n
2 , . . . , X

n
i ] either M occurs at least d+1 times or N occurs at least c+1

which yields [X1, X
n
2 , . . . , X

n
i ] is contained in either γn

d+1(M) or γn
c+1(N). Since

both of which equal 1, γn
i (L) = 1 and L is n-nilpotent with class at most c+d.

An extensive class of generalized n-nilpotent groups is the class of locally n-
nilpotent groups. We assert an interesting result for this class as follows:

Theorem 3.3. Let n-abelian group G, be locally n-nilpotent. Then the elements
of finite order in G form a fully-invariant subgroup T (the torsion-subgroup of G)
such that G/T is torsion-free.

Proof. Since G is locally n-nilpotent therefore Gn is locally nilpotent so TGn that
containing all elements of finite order in Gn is a fully invariant subgroup of Gn.
Obviously if g ∈ T , then gn ∈ TGn . Consequently, g−1 ∈ T . All it remains is to
show that for g1, g2 ∈ T , g1g2 ∈ T . First gn1 , g

n
2 ∈ TGn and therefore gn1 g

n
2 ∈ TGn .

Directly from the definition of n-abelian groups,(g1g2)n ∈ TGn . So that g1g2 ∈ T
and T is a fully-invariant subgroup of G, as asserted.

Remark 2. Let G be an n-abelian group and let Fi = γn
i (G)/γn

i+1(G) for a positive
integer i. Define two maps f : Gab×Fi −→ Gab by the rule f(yG′, xγn

i+1) = yx
n

G′

and g : Fi×Gab −→ Fi+1 by the rule g(yG′, xγn
i+1) = xyn

γn
i+1 where yx

n

= x−nyxn

and xyn

= y−nxyn. So we can easily see that Fi and Gab act on each other trivially
for all i ≥ 0. Hence

Fi ⊗Gab
∼= (Fi)ab ⊗Z Gab.

Indeed we have faced to nonabelian tensor product with trivial actions which is
isomorphic to their abelian tensor product.

Proposition 3.4. Let G be an n-abelian group and let Fi = γn
i (G)/γn

i+1(G). Then
the mapping a(γn

i+1(G)) ⊗ gG′ 7−→ [a, gn]γn
i+2(G) is a well-defined epimorphism

from Fi ⊗Gab to Fi+1.

Proof. As G is n-abelian, the map f : Fi × Gab −→ Fi+1 by the rule
f(a(γn

i+1(G)), gG′) = [a, gn]γn
i+2(G) is well-defined. Now let a1, a2 ∈ γn

i (G) and
g ∈ G. Then we have

[a1a2, g
n] = [(a1a2)

n, g] = [an1a
n
2 , g]

= [an1 , g][a
n
1 , g, a

n
2 ][a

n
2 , g]

= [an1 , g][[a
n
1 , g], a

n
2 ][a

n
2 , g]

= [an1 , g][[a1, g
n], an2 ][a

n
2 , g]

≡ [a1, g
n][a2, g

n] mod γn
i+2(G).

Similarly for g1, g2 ∈ G and a ∈ γn
i (G) we obtain

[a, (g1g2)
n] = [a, gn1 g

n
2 ] ≡ [a, gn1 ][a, g

n
2 ] mod γn

i+2(G).

This shows that f is a bilinear map. Therefore it induces an epimorphism ωi :
Fi ⊗Gab −→ Fi+1 by the rule ωi(a(γ

n
i+1(G))⊗ gG′) = [a, gn]γn

i+2(G).
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In view of the previous proposition, we have the following important result:

Theorem 3.5. Let ℘ be a group-theoretical property which is inherited by images
of tensor products and extensions. If G is an n-abelian n-nilpotent group such that
G/Gn has ℘, then G has ℘.

Proof. Since there is natural epimorphism from G/Gn into G/G′, therefore G/G′

has ℘. Thus by Proposition 3.4, γn
i (G)/γn

i+1(G) has ℘ for any i ≥ 0. By n-
nilpotency of G, γn

c+1(G) = 1 for some c and γn
c (G)/γn

c+1(G) = γn
c (G) has ℘.

Furthermore, ℘ is inherited by extension hence G has ℘.

It is known that an extension of a nilpotent (1-nilpotent) group by another
nilpotent group may not be nilpotent in general. Hall [4] obtained a criterion
under which such an extension can be nilpotent. Thus, the following question
arises:

• Under what circumstances, an extension of a n-nilpotent group by another
is n-nilpotent?

Our next result gives simple, but important answer to this question.

Theorem 3.6. Let G be an n-abelian group and N a normal subgroup of G such
that N and G/Nn are n-nilpotent. Then G is n-nilpotent.

Proof. Since N and G/Nn are n-nilpotent, so Nn and (G/Nn)
n ∼= Gn/(Gn ∩Nn)

are nilpotent. Furthermore, G is n-abelian thus Gn ∩ Nn = (Nn)′. Hence Gn is
nilpotent and it follows evidently that G is n-nilpotent.

We now focus our attention on locally n-nilpotent groups that is a general-
ization of n-nilpotent groups. Recall that the product of two normal n-nilpotent
subgroups of an n-abelian group is n-nilpotent. In the following we show that the
corresponding statement holds for locally n-nilpotent groups. We begin with the
following lemma:

Lemma 3.7. Let G be an n-abelian group. Then G is a locally n-nilpotent group
if and only if Gn is a locally nilpotent group.

Proof. Let the n-abelian group G be locally n-nilpotent. It is easy to show that Gn

is locally nilpotent. On the other hand, for the locally nilpotent group Gn consider
a subgroup H generated by some elements g1, g2, . . . , gt. Since G is n-abelian, this
forces Hn to be a finitely generated subgroup of Gn and therefore Hn is nilpotent.
Thus H is n-nilpotent as we wanted to show.

Lemma 3.8. Let H and K be two normal locally n-nilpotent subgroups of an
n-abelian group G. Then J = HK is a locally n-nilpotent group.

Proof. By assumption Hn and Kn are normal locally nilpotent subgroups of Gn,
this reduces to Jn = HnKn is locally nilpotent. We could derive from Lemma 3.7
that J = HK is a locally n-nilpotent group.
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Theorem 3.9. In any n-abelian group G, there is a unique maximal locally n-
nilpotent subgroup containing all normal locally n-nilpotent subgroups of G.

Proof. Since the union of a chain of locally n-nilpotent subgroups is locally n-
nilpotent, each normal locally n-nilpotent subgroup is contained in a maximal
normal locally n-nilpotent subgroup, by Zorn’s Lemma. We could derive unique-
ness of this subgroup from Lemma 3.8.

Lemma 3.10. Let G be an n-abelian group, H ≤ G, N ⊴G and G = HNn. Then
G = Hγn

i (N) for any i ≤ 2.

Proof. Of course if G = Hγn
i (N), then N = (H∩N)γn

i (N). We prove our theorem
by induction on i. For i = 2 the statement is true. Assume that G = Hγn

i (N).
We shall prove that G = Hγn

i+1(N).

G = HNn = H[N,Nn] = H[(H ∩N)γn
i (N), Nn]

= H[N ∩H,Nn][γn
i (N), Nn]

= H[N ∩H,Nn]γn
i (N)

= H[N ∩H, (H ∩N)γn
i (N)]γn

i+1(N)

= H[N ∩H, (N ∩H)n][N ∩H, (γn
i (N))n]γn

i+1(N)

= Hγn
i+1(N).

The lemma has the following useful consequence:

Proposition 3.11. Let an n-abelian group G be locally n-nilpotent and let G/Gn

be finitely generated. Then γn
c (G) = γn

c+1(G) = · · · for some c and G/γn
c (G) is

n-nilpotent.

Proof. Let X be a finite set such that G/Gn = ⟨X⟩ = H. Then G = HGn and
H is an n-nilpotent group of class c − 1, say. Furthermore by using the previous
lemma G = Hγn

i (G) for all positive integers i. Let “bars” denote the quotient
groups modulo γn

c+1(G). Then since G = Hγn
c+1(G), we have Ḡ = H̄ which means

that Ḡ has n-nilpotent class at most c − 1 and so γn
c (G) = γn

c+1(G) = · · · . Of
course G/γn

c (G) is n-nilpotent.

The Frattini subgroup Φ(G) of a group G is defined as the intersection of
all maximal proper subgroups of the group G, if G has any maximal subgroups;
otherwise Φ(G) = G. Our next results concern the Frattini subgroup, n-nilpotent
and locally n-nilpotent groups are worth noting.

Lemma 3.12. Let G be a group and H be a subgroup of G such that Φ(G) ≤ H◁G
and Hn be finite. If H/Φ(G) is n-nilpotent, then H is n-nilpotent.
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Proof. Since H/Φ(G) is n-nilpotent, so (H/Φ(G))n = (HnΦ(G))/Φ(G) is nilpo-
tent. Furthermore HnΦ(G) is nilpotent. Obviously Hn is nilpotent, thus H is
n-nilpotent.

Now we easily attain a necessary condition for n-nilpotency of a group G such
that Gn is finite.

Theorem 3.13. Let G be a group such that Gn is finite. If Gn ≤ Φ(G), then G
is n-nilpotent.

Proof. Certainly G/Gn is n-nilpotent and so there exists an epimorphism from
G/Gn onto G/Φ(G) which obligated G/Φ(G) to be n-nilpotent and by the previous
lemma, G is n-nilpotent.

Theorem 3.14. Let G be an n-abelian group.
(i) If G is locally n-nilpotent, then Gn ≤ Φ(G).
(ii) If G is finitely generated n-nilpotent, then Gn ≤ Φ(G).

Proof. (i) Clearly Gn is locally nilpotent and therefore (Gn)′ ≤ Φ(Gn) ≤ Φ(G).
Hence Gn ≤ Φ(G).
(ii) Let cln(G) = c. We use induction on c to achieve our aim. If c = 1, then
Gn = 1 ≤ Φ(G), as asserted. Putting

γn
c (G) = ⟨[u, vn]|u ∈ γn

c−1(G), v ∈ G⟩,

we have obviously G/γn
c (G) is n-nilpotent of class at most c − 1. Now if G =

⟨X,Gn⟩, then
G

γn
c (G)

= ⟨xγn
c (G), yγn

c (G)|x ∈ G, y ∈ Gn⟩.

So by the induction hypothesis G/γn
c (G) = ⟨xγn

c (G)|x ∈ X⟩. Hence G = ⟨X⟩.
Thus (ii) also holds.

In the following we determine the relationship between some subgroups of an
n-abelian group G.

Theorem 3.15. If G is an n-abelian group, then Gn ∩ Zn(G) ≤ Φ(G).

Proof. Set S = Gn ∩ Zn(G). Suppose that there exist a maximal subgroup M
of G such that S is not in M . Hence G = SM by maximality of M . So for any
x, y ∈ G, there is some elements s, s′ ∈ S and m,m′ ∈ M such that x = sm and
y = s′m′. Then we have

[x, yn] =[x, (s′m′)n]

=[x, (s′)n(m′)n]

=[x, (s′)n](m
′)n [x, (m′)n]

=[x, (m′)n]

=[sm, (m′)n]

=[m, (m′)n].
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Since [m, (m′)n] ∈ M therefore Gn ≤ M and this is contradiction.

Let X be a nonempty set, F a free group on X and V a variety with set of laws
S = {[x1, x

n
2 , . . . , x

n
c+1]}. We denote this variety by Nn

c . To close this section we
obtain the structures of verbal and marginal subgroups of n-abelian groups, for
the variety Nn

c .

Proposition 3.16. By the above assumption V (G) = γn
c+1(G) and V ∗(G) =

Zn
c (G), for any n-abelian group G.

Proof. This is easy to show that V (G) = γn
c+1(G). We show that V ∗(G) = Zn

c (G).
let x ∈ V ∗(G), thus [x1, gn1 , . . . , g

n
c ] = [1, gn1 , . . . , g

n
c ] = 1, for any g1, . . . , gc ∈ G.

Therefore x ∈ Zn
c (G) and so V ∗(G) ≤ Zn

c (G). We use induction on c to show
that Zn

c (G) ≤ V ∗(G). For c = 1 if x ∈ Zn(G), then for any y, g ∈ G, we have
[xy, gn] = [x, gn]y[y, gn] = [y, gn], and

[y, (xg)n] = [yn, xg] = [yn, g][yn, x]g = [y, gn].

Therefore x ∈ V ∗(G).
Now suppose that, for all i < c, Zn

i (G) ≤ V ∗(G). We prove that Zn
c (G) ≤ V ∗(G).

Let x ∈ Zn
c (G). Then xZn(G) ∈ Zn

c−1(G/Zn(G)) and so by induction hypothesis,
xZn(G) ∈ V ∗(G/Zn(G)). It follows that, for all gj ∈ G, 1 ≤ j ≤ c and all
1 ≤ i < c, we have

[g1, g
n
2 , . . . , (gix)

n, . . . , gnc ] ≡ [g1, g
n
2 , . . . , g

n
i , . . . , g

n
c ] ( mod Zn(G)).

Now let X = [g1, g
n
2 , . . . , (gix)

n, . . . , gnc ] and Y = [g1, g
n
2 , . . . , g

n
i , . . . , g

n
c ]. Then

X = Y z, for an element z ∈ Zn(G). Thus

[X, gnc+1] = [Y z, gnc+1] = [Y, gnc+1]
z[z, gnc+1] = ([Y, gc+1]

n)z = [Y, gnc+1].

So

[g1, g
n
2 , . . . , (gix)

n, . . . , gnc , g
n
c+1] = [g1, g

n
2 , . . . , g

n
i , . . . , g

n
c , g

n
c+1] (1)

The missing case is i = c+ 1. Put y = g−1
c and z = [g1, g

n
2 , . . . , g

n
c−1] then

[g1, g
n
2 , . . . , g

n
c , x

n] = [z, y−n, xn],

and therefore by equality [z, y−1, x]y[y, x−1, z]x[x, z−1, y]z = 1 we have,

[z, y−n, xn] = (([xn, z−1, yn]z)−1([yn, x−n, z]x
n

)−1)y
−n

.

The equality Zn
c (G)/Zn

c−1(G) = Zn(G/Zn
c−1(G)) implies that

[Zn
c (G), Gn] ≤ Zn

c−1(G).
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It follows that

[g1, g
n
2 , . . . , g

n
c , x

n] = [z, y−n, xn] = 1. (2)

Now by (2) we are in a position to show that

[g1, g
n
2 , . . . , g

n
c , g

n
c+1x

n] = [g1, g
n
2 , . . . , g

n
c , g

n
c+1].

Of course

[g1, g
n
2 , . . . , g

n
c , g

n
c+1x

n] = [g1, g
n
2 , . . . , g

n
c , x

n][g1, g
n
2 , . . . , g

n
c , g

n
c+1]

xn

.

So
([g1, g

n
2 , . . . , g

n
c , g

n
c+1x

n])x
−n

= [g1, g
n
2 , . . . , g

n
c , g

n
c+1]

and

([g1, g
n
2 , . . . , g

n
c , g

n
c+1x

n])x
−n

= [gx
−n

1 , (gn2 )
x−n

, . . . , (gnc )
x−n

, (gnc+1)
x−n

(xn)x
−n

].

Therefore by (1), [g1, gn2 , . . . , gnc , xngnc+1] = [g1, g
n
2 , . . . , g

n
c , g

n
c+1]. This complete the

proof.
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