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Abstract

In this paper, we introduce a subcategory S̃h∗ of Sh∗ and obtain some
results in this subcategory. First we show that there is a natural bijection
Sh(Σ(X,x), (Y, y)) ∼= Sh((X,x), Sh((I, İ), (Y, y))), for every (Y, y) ∈ S̃h∗
and (X,x) ∈ Sh∗. By this fact, we prove that for any pointed topological
space (X,x) in S̃h∗, π̌top

n (X,x) ∼= π̌top
n−k(Sh((S

k, ∗), (X,x)), ex), for all 1 ≤
k ≤ n− 1.
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1. Introduction and Motivation
Morón et al. [11] gave a complete, non-Archimedean metric (or ultrametric) on the
set of shape morphisms between two unpointed compacta (compact metric spaces)
X and Y , Sh(X,Y ). They mentioned that this construction can be translated to
the pointed case. Consequently, as a particular case, they obtained a complete
ultrametric induces a norm on the shape groups of a compactum Y and then
presented some results on these topological groups [12]. Also, Cuchillo-Ibanez et
al. [5] constructed several generalized ultrametrics in the set of shape morphisms

⋆Corresponding author (E-mail: h_mirebrahimi@um.ac.ir)
Academic Editor: Ali Reza Ashrafi
Received 17 October 2020, Accepted 29 March 2021
DOI: 10.22052/mir.2021.240322.1246

c⃝2021 University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.



24 T. Nasri, B. Mashayekhy and H. Mirebrahimi

between topological spaces and obtained semivaluations and valuations on the
groups of shape equivalences and kth shape groups. On the other hand, Cuchillo-
Ibanez et al. [6] introduced a topology on the set Sh(X,Y ), where X and Y
are arbitrary topological spaces, in such a way that it extended topologically the
construction given in [11]. Also, Moszyńska [10] showed that the kth shape group
π̌k(X,x), k ∈ N, is isomorphic to the set Sh((Sk, ∗), (X,x)) consists of all shape
morphisms (Sk, ∗) → (X,x) with a group operation, for all compact Hausdorff
space (X,x). Note that, Bilan [1] mentioned that this fact is true for all topological
spaces.

The authors [13] applied this topology on the set of shape morphisms between
pointed spaces and proved that the kth shape group π̌k(X,x), k ∈ N, with the
above topology is a Hausdorff topological group, denoted by π̌top

k (X,x). In this
paper, we introduce a subcategory S̃h∗ of Sh∗ and obtain some results in this
subcategory. It is well-known that the pair (Σ,Ω) is an adjoint pair of func-
tors on hTop∗ and therefore, there is a natural bijection Hom(Σ(X,x), (Y, y)) ∼=
Hom((X,x),Ω(Y, y)), for every pointed topological spaces (X,x) and (Y, y). In
this paper, we show that there is a natural bijection

Sh(Σ(X,x), (Y, y)) ∼= Sh((X,x), (Sh((I, İ), (Y, y)), ey)),

for every (Y, y) ∈ S̃h∗ and (X,x) ∈ Sh∗. By this fact we conclude that the functor
Sh((I, İ),−) preserves inverse limits such as products, pullbacks, kernels, nested
intersections and completions, provided inverse limit exists in the subcategory S̃h∗.
Also, the functor Σ preserves direct limits of connected spaces in this subcategory.
As a consequence, if (X×Y, (x, y)) is a product of pointed spaces (X,x) and (Y, y)

in the subcategory S̃h∗, then

π̌1(X × Y, (x, y)) ∼= π̌1(X,x)× π̌1(Y, y).

It is well-known that for any pointed space (X,x) and for all 1 ≤ k ≤ n −
1, πn(X,x) ∼= πn−k(Ω(X,x), ex). In this paper, we show that for any pointed
topological space (X,x) in S̃h∗, π̌n(X,x) ∼= π̌n−k(Sh((S

k, ∗), (X,x)), ex), for all
1 ≤ k ≤ n− 1. We then exhibit an example in which this result dose not hold in
the category Sh∗.

Endowed with the quotient topology induced by the natural surjective map
q : Ωn(X,x)→ πn(X,x), where Ωn(X,x) is the nth loop space of (X,x) with the
compact-open topology, the familiar homotopy group πn(X,x) becomes a qua-
sitopological group which is called the quasitopological nth homotopy group of
the pointed space (X,x), denoted by πqtop

n (X,x) (See [2, 3, 4, 8]). Nasri et
al. [14], showed that for any pointed topological space (X,x), πqtop

n (X,x) ∼=
πqtop
n−k(Ω

k(X,x), ex), for all 1 ≤ k ≤ n − 1. In this paper, we prove that for any
pointed topological space (X,x) in S̃h∗, π̌top

n (X,x) ∼= π̌top
n−k(Sh((S

k, ∗), (X,x)), ex),
for all 1 ≤ k ≤ n− 1.
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2. Preliminaries
In this section, we recall some of the main notions concerning the shape category
and the pro-HTop (See [9]). Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be two
inverse systems in HTop. A pro-morphism of inverse systems, (f, fµ) : X → Y,
consists of an index function f : M → Λ and of mappings fµ : Xf(µ) → Yµ, µ ∈M ,
such that for every related pair µ ≤ µ′ in M , there exists a λ ∈ Λ, λ ≥ f(µ), f(µ′)
so that

qµµ′fµ′pf(µ′)λ ≃ fµpf(µ)λ.

The composition of two pro-morphisms (f, fµ) : X → Y and (g, gν) : Y →
Z = (Zν , rνν′ , N) is also a pro-morphism (h, hν) = (g, gν)(f, fµ) : X → Z, where
h = fg and hν = gνfg(ν). The identity pro-morphism on X is pro-morphism
(1Λ, 1Xλ

) : X → X, where 1Λ is the identity function. A pro-morphism (f, fµ) :
X → Y is said to be equivalent to a pro-morphism (f ′, f ′

µ) : X → Y, denoted by
(f, fµ) ∼ (f ′, f ′

µ), provided every µ ∈M admits a λ ∈ Λ such that λ ≥ f(µ), f ′(µ)
and

fµpf(µ)λ ≃ f ′
µpf ′(µ)λ.

The relation ∼ is an equivalence relation. The category pro-HTop has as ob-
jects, all inverse systems X in HTop and as morphisms, all equivalence classes
f = [(f, fµ)]. The composition of f = [(f, fµ)] and g = [(g, gν)] in pro-HTop is well
defined by putting

gf = h = [(h, hν)].

An HPol-expansion of a topological space X is a morphism p : X → X in pro-
HTop, where X belongs to pro-HPol characterised by the following two properties:
(E1) For every P ∈ HPol and every map h : X → P in HTop, there is a λ ∈ Λ
and a map f : Xλ → P in HPol such that fpλ ≃ h.
(E2) If f0, f1 : Xλ → P satisfy f0pλ ≃ f1pλ, then there exists a λ′ ≥ λ such that
f0pλλ′ ≃ f1pλλ′ .

Let p : X → X and p′ : X → X′ be two HPol-expansions of an space X in
HTop, and let q : Y → Y and q′ : Y → Y′ be two HPol-expansions of an space Y
in HTop. Then there exist two natural isomorphisms i : X→ X′ and j : Y → Y′

in pro-HTop. A morphism f : X → Y is said to be equivalent to a morphism
f ′ : X′ → Y′, denoted by f ∼ f ′, provided the following diagram in pro-HTop
commutes:

X
i−−−−→ X′yf f ′

y
Y

j−−−−→ Y′.

Now, the shape category Sh is defined as follows: The objects of Sh are topo-
logical spaces. A morphism F : X → Y is the equivalence class < f > of a
mapping f : X → Y in pro-HTop. The composition of F =< f >: X → Y and
G =< g >: Y → Z is defined by the representatives, i.e., GF =< gf >: X → Z.
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The identity shape morphism on a space X, 1X : X → X, is the equivalence class
< 1X > of the identity morphism 1X in pro-HTop.

Let p : X → X and q : Y → Y be HPol-expansions of X and Y , respectively.
Then for every morphism f : X → Y in HTop, there is a unique morphism
f : X→ Y in pro-HTop such that the following diagram commutes in pro-HTop.

X ←−−−−
p

Xyf f

y
Y ←−−−−

q
Y.

If we take other HPol-expansions p′ : X → X′ and q′ : Y → Y′, we obtain
another morphism f ′ : X′ → Y′ in pro-HTop such that f ′p′∗ = q′f and so we have
f ∼ f ′. Hence every morphism f ∈ HTop(X,Y ) yields an equivalence class < [f ] >,
i.e., a shape morphism F : X → Y which is denoted by S(f). If we put S(X) = X
for every topological space X, then we obtain a functor S : HTop→ Sh, called the
shape functor. Also if Y ∈HPol, then every shape morphism F : X → Y admits a
unique morphism f : X → Y in HTop such that F = S(f) [9, Theorem 1.2.4].

Similarly, we can define the categories pro-HTop∗ and Sh∗ on pointed topolog-
ical spaces (See [9]).

3. Main Results

In this section, we introduce a subcategory S̃h∗ of Sh∗ consists of all pointed topo-
logical spaces having bi-expansions. Then we consider the well-known suspension
functor Σ : Sh∗ → Sh∗ (See [9]) and Sh((I, İ),−) : Sh∗ → Sh∗ and show that
there is a natural bijection Sh(Σ(X,x), (Y, y)) ∼= Sh((X,x), (Sh((I, İ), (Y, y)), ey)),
for every (Y, y) ∈ S̃h∗ and (X,x) ∈ Sh∗. Then using this bijection we conclude
some results in subcategory S̃h∗.

Definition 3.1. We say that a pointed topological space (X,x) has a bi-expansion
p : (X,x) → (X,x) whenever p is an HPol∗-expansion of (X,x) such that p∗ :
Sh((I, İ), (X,x))→ Sh((I, İ), (X,x)) is an HPol∗-expansion of Sh((I, İ), (X,x)).

In follow, we recall some conditions on topological space X under which X has
a bi-expansion.

Remark 1. [13, Remark 4.11]. If p : (X,x) → (X,x) is an HPol∗-expansion
of X, then p∗ : Sh((Sk, ∗), (X,x)) → Sh((Sk, ∗), (X,x)) is an inverse limit of
Sh((Sk, ∗), (X,x)) = (Sh((Sk, ∗), (Xλ, xλ)), (pλλ′)∗,Λ) (See [6, Theorem 2]). More-
over, if Sh((Sk, ∗), (X,x)) is compact and Sh((Sk, ∗), (Xλ, xλ)) is compact polyhe-
dron for all λ ∈ Λ, then by [7, Remark 1], p∗ is an HPol∗-expansion of
Sh((Sk, ∗), (X,x)).
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Lemma 3.2. [13, Lemma 4.12] Let (X,x) have an HPol∗-expansion p : (X,x)→
((Xλ, xλ), pλλ′ ,Λ) such that πk(Xλ, xλ) is finite, for every λ ∈ Λ. Then
p∗ : Sh((Sk, ∗), (X,x)) → Sh((Sk, ∗), (X,x)) is an HPol∗-expansion of
Sh((Sk, ∗), (X,x)), for all k ∈ N.

Example 3.3. [13, Example 4.13] (See also [9]). Let RP 2 be the real projective
plane. Consider the map f̄ : RP 2 → RP 2 induced by the following commutative
diagram:

D2 ←−−−−
f

D2yϕ ϕ

y
RP 2 ←−−−−

f̄
RP 2,

where D2 = {z ∈ C | |z| ≤ 1} is the unit 2-cell, f(z) = z3 and ϕ : D2 → RP 2

is the quotient map identifies pairs of points {z,−z} of S1. We consider X as the
inverse sequence

RP 2 f̄←− RP 2 f̄←− · · · .

Since RP 2 is compact polyhedron, by [7, Remark 1] X is compact and p : X →
(RP 2, f̄ ,N) is an HPol-expansion of X. Since f̄ is onto and πk(RP 2) ∼= Z2 is
finite, p∗ : Sh((Sk, ∗), (X,x)) → Sh((Sk, ∗), (X,x)) is an HPol∗-expansion of
Sh((Sk, ∗), (X,x)), for all k ∈ N.

The well-known suspension functor Σ : HTop∗ → HTop∗ is extended to a
suspension functor Σ : Sh∗ → Sh∗ (See [9]). Note that, if (X,x) is a pointed topo-
logical space, then Σ(X,x) = (ΣX,Σx) is also a pointed topological space. There-
fore, whenever p : (X,x) → (X,x) is an HPol∗-expansion of (X,x), then Σp :
Σ(X,x)→ Σ(X,x) = (Σ(Xλ, xλ),Σpλλ′ ,Λ) is an HPol∗-expansion of Σ(X,x).

Remark 2. Let (X,x) be a connected topological space and p : (X,x)→ (X,x) =
((Xλ, xλ), pλλ′ ,Λ) be an HPol∗-expansion of (X,x). Since X is connected, one can
assume that all Xλ are connected, by [9, Remark 4.1.1] and so π1(Σ(Xλ, xλ)) = 0,
for all λ ∈ Λ (by Van Kampen Theorem). Therefore, the HPol∗-expansion Σp :

Σ(X,x)→ Σ(X,x) satisfies in the conditions of Lemma 3.2 and so Σ(X,x) ∈ S̃h∗.

Let F : Σ(X,x) → (Y, y) be a shape morphism represented by f : Σ(X,x) →
(Y,y) consists of f : M → Λ and fµ : Σ(Xf(µ), xf(µ)) → (Yµ, yµ). If (Y, y) has
a bi-expansion q : (Y, y) → (Y,y), then F determines a map F ♯ : (X,x) →
(Sh((I, İ), (Y, y)), ey) represented by f ♯ : (X,x) → (Sh((I, İ), (Y, y)), ey) consists
of f : M → Λ and f ♯

µ : (Xf(µ), xf(µ))→ (Sh((I, İ), (Yµ, yµ)), eyµ) which is defined
as f ♯

µ(x) = S(lxµ), where lxµ : (I, İ) → (Yµ, yµ) is a map in HTop∗ such that
lxµ(t) = fµ([x, t]).

In the following lemma we show that F ♯ is a shape morphism.

Lemma 3.4. The map F ♯ defined in the above is a shape morphism.
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Proof. With the above notation, first we show that f ♯
µ : Xf(µ) → Sh((I, İ), (Yµ, yµ))

is continuous. Since Yµ is a polyhedron, the space Sh((I, İ), (Yµ, yµ)) is discrete
by [6, Corollary 1]. Therefore, it is sufficient to show that f ♯

µ is locally constant.
Let x ∈ Xf(µ). Since Xf(µ) is polyhedron, there is an open neighborhood Vx of x
that is contractible to x in Xf(µ). We will show that f ♯

µ is constant on Vx. Let
x′ ∈ Vx, then by path connectedness of Vx, there exists a path α : I → Xf(µ)

such that α(0) = x and α(1) = x′. We define the map H : I × I → Yµ by
H(t, s) = fµ([α(s), t]). Since fµ and α are continuous and Vx is contractible to
x in Xf(µ), the map H is well-defined and continuous. Moreover, H is a relative
homotopy between fµ([x,−]) and fµ([x

′,−]). Hence lxµ ≃ lx′µ (rel{İ}) and so
S(lxµ) = S(lx′µ). Therefore f ♯

µ(x) = f ♯
µ(x

′) and so f ♯
µ is constant on Vx. Finally,

we conclude that f ♯
µ is continuous.

Now, let p : (X,x)→ (X,x) be an HPol∗-expansion of (X,x) and q : (Y, y)→
(Y,y) be a bi-expansion of (Y, y). The map f ♯ is a morphism in pro-HTop∗.
Indeed, for any pair µ′ ≥ µ, there is a λ ≥ f(µ), f(µ′) such that

fµ ◦ Σpf(µ)λ ≃ qµµ′ ◦ fµ′ ◦ Σpf(µ′)λ (rel{Σxλ}). (1)

Also, for every x ∈ Xλ,

f ♯
µ(pf(µ)λ(x)) = S(lpf(µ)λ(x)µ),

and for every t ∈ I,

lpf(µ)λ(x)µ(t) = fµ([pf(µ)λ(x), t]) = fµ ◦ Σpf(µ)λ([x, t])

(qµµ′)∗ ◦ lpf(µ′)λ(x)µ
′(t) = qµµ′ ◦ fµ′([pf(µ′)λ(x), t]) = qµµ′ ◦ fµ′ ◦ Σpf(µ′)λ([x, t]).

By Equation (1), lpf(µ)λ(x)µ ≃ (qµµ′)∗ ◦ lpf(µ′)λ(x)µ
′ (rel{İ}). Therefore

f ♯
µ ◦pf(µ)λ(x) = S(lpf(µ)λ(x)µ) = S((qµµ′)∗ ◦ lpf(µ′)λ(x)µ

′) = (qµµ′)∗ ◦f ♯
µ′(pf(µ′)λ(x)).

On the other hand, let G : (X,x)→ (Sh((I, İ), (Y, y)), ey) be a shape morphism
represented by g : (X,x)→ (Sh((I, İ), (Y, y)), ey) consists of g : M → Λ and gµ :

(Xg(µ), xg(µ)) → (Sh((I, İ), (Yµ, yµ)), eyµ). Then we define G♭ : Σ(X,x) → (Y, y)

represented by g♭ : Σ(X,x) → (Y,y) in pro-HTop∗ consists of g : M → Λ and
g♭µ : Σ(Xg(µ), xg(µ)) → (Yµ, yµ) given by g♭µ([x, t]) = g′µx(t), where g′µx is a unique
morphism in HTop∗ with S(g′µx) = gµ(x) (See [9, Theorem 1.2.4]).

Lemma 3.5. The map G♭ defined in the above is a shape morphism.

Proof. First we show that g♭µ is continuous. It is sufficient to show that g♭µ :

(Xg(µ) × I, {xg(µ)} × İ) → (Yµ, yµ) is continuous. We claim that the map eµ :
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Sh((I, İ), (Yµ, yµ)) × I → Yµ given by eµ(F, t) = F ′(t) is continuous, where F ′

is a unique morphism in HTop∗ with S(F ′) = F (See [9, Theorem 1.2.4]). To
prove the continuity of eµ, let U be an open set containing an arbitrary point
eµ(F, t) = F ′(t). Since F ′ is continuous, there is an open neighbourhood V of t
in I such that F ′(V ) ⊆ U . Hence the set {F} × V is an open neighbourhood of
(F, t) in Sh((I, İ), (Yµ, yµ))× I such that eµ({F} × V ) ⊆ U . Now, the map g♭µ is
equal to the composition eµ ◦ (gµ × id) and so it is continuous.

Let p : (X,x)→ (X,x) and q : (Y, y)→ (Y,y) be HPol∗-expansions of (X,x)
and (Y, y), respectively. The map g♭ : Σ(X,x) → (Y,y) is a morphism in pro-
HTop∗. To prove this, let µ′ ≥ µ, then there is a λ ≥ g(µ), g(µ′) such that

(gµµ′)∗ ◦ gµ′ ◦ pg(µ′)λ ≃ gµ ◦ pg(µ)λ (rel{xλ}).

Since Yµ is a polyhedron, the space Sh((I, İ), (Yµ, yµ)) is discrete by [6, Corollary
1]. But homotopic maps in a discrete space are equal, so

(gµµ′)∗ ◦ gµ′ ◦ pg(µ′)λ = gµ ◦ pg(µ)λ. (2)

Also, for every x ∈ Xλ and t ∈ I,

g♭µ ◦ Σpg(µ)λ([x, t]) = g♭µ([pg(µ)λ(x), t]) = g′µpg(µ)λ(x)
(t)

and

qµµ′ ◦ g♭µ′ ◦ Σpg(µ′)λ([x, t]) = qµµ′ ◦ g♭µ′([pg(µ′)λ(x), t]) = qµµ′ ◦ g′µ′pg(µ′)λ(x)
(t).

Also,
S(g′µpg(µ)λ(x)

) = gµ(pg(µ)λ(x))

and
S(qµµ′ ◦ g′µ′pg(µ)λ(x)

) = qµµ′ ◦ gµ′(pg(µ′)λ(x)).

Hence, using Equation (2) and [6, Theorem 1.2.4],

g′µpg(µ)λ(x)
≃ qµµ′ ◦ g′µ′pg(µ)λ(x)

(rel{İ})

and so g♭µ ◦ Σpg(µ)λ ≃ qµµ′ ◦ g♭µ′ ◦ Σpg(µ′)λ (rel{Σxλ}).

Let S̃h∗ be a subcategory of Sh∗ consists of all pointed topological spaces
having bi-expansions. In follow, we conclude some results in the subcategory S̃h∗.
It is well-known that the pair (Σ,Ω) is an adjoint pair of functors on hTop∗. In
the following theorem we prove similar result on subcategory S̃h∗.

Theorem 3.6. For every (Y, y) ∈ S̃h∗ and (X,x) ∈ Sh∗, there is a natural
bijection

Sh(Σ(X,x), (Y, y)) ∼= Sh((X,x), (Sh((I, İ), (Y, y)), ey)). (3)
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Proof. Let p : (X,x) → (X,x) be an HPol∗-expansion of (X,x) and q : (Y, y) →
(Y,y) be a bi-expansion of (Y, y). We define

τXY : Sh(Σ(X,x), (Y, y))→ Sh((X,x), (Sh((I, İ), (Y, y)), ey)),

by τXY (F ) = F ♯ and

θXY : Sh((X,x), (Sh((I, İ), (Y, y)), ey))→ Sh(Σ(X,x), (Y, y)),

by θXY (G) = G♭. By Lemmas 3.4 and 3.5, the maps τXY and θXY are well-
defined. It is easy to see that θXY ◦ τXY = id, τXY ◦ θXY = id and τXY is natural
in each variable. Hence the result holds.

Using natural bijection Equation (3), one can see that the functor Sh((I, İ),−)
preserves inverse limits such as products, pullbacks, kernels, nested intersections
and completions, provided inverse limit exists in the subcategory S̃h∗. Also, the
functor Σ preserves direct limits of connected spaces in this subcategory. Hence if
(X × Y, (x, y)) is a product of pointed spaces (X,x) and (Y, y) in the subcategory
S̃h∗, then

Sh((I, İ), (X × Y, (x, y))) = Sh((I, İ), (X,x))× Sh((I, İ), (Y, y)),

and so
π̌1(X × Y, (x, y)) = π̌1(X,x)× π̌1(Y, y).

Lemma 3.7. The mappings τXY and θXY are continuous.

Proof. First, we show that τXY is continuous. Let V F
µ be a basis element of

Sh((X,x), (Sh((I, İ), (Y, y)), ey)) containing F . We will show that τXY (V
F ♭

µ ) ⊆
V F
µ . Let G ∈ V F ♭

µ . By definition, qµ ◦ F ♭ = qµ ◦ G as homotopy classes to
Yµ, or equivalently f ♭

µ ◦ Σpf(µ) ≃ gµ ◦ Σpg(µ) (rel{Σx}). It is sufficient to show
that (qµ)∗ ◦ F = (qµ)∗ ◦ G♯ as homotopy classes to Sh(I, Yµ) or equivalently
fµ ◦ pf(µ) ≃ g♯µ ◦ pg(µ) (rel{x}). For every x ∈ X,

g♯µ ◦ pg(µ)(x) = S(lpg(µ)(x)µ),

and for every t ∈ I,

lpg(µ)(x)µ(t) = gµ([pg(µ)(x), t]) = gµ ◦ Σpg(µ)([x, t]).

Also

f ♭
µ ◦ Σpf(µ)([x, t]) = f ♭

µ([pf(µ)(x), t])

= f ′
µpf(µ)(x)

(t),
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where S(f ′
µpf(µ)(x)

) = fµ(pf(µ)(x)). Since f ♭
µ ◦Σpf(µ) ≃ gµ ◦Σpg(µ) (rel{Σx}), by

the above equalities, lpg(µ)(x)µ ≃ f ′
µpf(µ)(x)

(rel{İ}). Thus

g♯µ ◦ pg(µ)(x) = S(lpg(µ)(x)µ) = S(f
′
µpf(µ)(x)

) = fµ(pf(µ)(x)).

So τXY (G) = G♯ ∈ V F
µ , and therefore τXY is continuous. Similarly, θXY is

continuous.

In particular, we can conclude that for any pointed topological space (X,x),
Sh((I, İ), (Sh((I, İ), (X,x)), ex)) ∼= Sh((I2, İ2), (X,x)). We know that for any
pointed space (X,x) and for all 1 ≤ k ≤ n− 1, πn(X,x) ∼= πn−k(Ω(X,x), ex). As
a result of Theorem 3.6, we have the following corollary:

Corollary 3.8. Let (X,x) be a pointed topological space in S̃h∗. Then for all
1 ≤ k ≤ n− 1

π̌n(X,x) ∼= π̌n−k(Sh((S
k, ∗), (X,x)), ex).

Proof. By the definition of the shape homotopy group and using Theorem 3.6 and
Lemma 3.7, we have

π̌n(X,x) = Sh((Sn, ∗), (X,x)) ∼= Sh((ΣnS0, ∗), (X,x))

∼= Sh((Σn−kS0, ∗), (Sh((Sk, ∗), (X,x)), ex))

∼= Sh((Sn−k, ∗), (Sh((Sk, ∗), (X,x)), ex))

= π̌n−k(Sh((S
k, ∗), (X,x)), ex),

as desired.

In follow, we exhibit an example in which the above corollary and therefore
Theorem 3.6 do not hold in the category Sh∗.
Remark 3. The pair (Σ, Sh((I, İ),−)) is not an adjoint pair of functors on the
category Sh∗. By contrary, if the pair (Σ, Sh((I, İ),−)) is an adjoint pair on Sh∗,
with the same argument we obtain π̌n(X,x) ∼= π̌n−k(Sh((S

k, ∗), (X,x)), ex), for all
1 ≤ k ≤ n− 1 and for all pointed topological space (X,x). But this isomorphism
does not hold in general. Put X = S2 and n = 2, we have π̌2(S

2) = π2(S
2) = Z

while π̌1(Sh(S
1, S2)) is trivial. Note that, S2 is a polyhedron and so Sh(S1, S2)

is discrete by [13, Theorem 4.4]. Hence π̌1(Sh(S
1, S2)) is trivial.

Nasri et al. in [14] showed that for any pointed topological space (X,x),
πqtop
n (X,x) ∼= πqtop

n−k(Ω
k(X,x), ex), for all 1 ≤ k ≤ n− 1. In the following corollary

we prove this result for π̌top
n . The following result is an immediate consequence of

Corollary 3.8 and Lemma 3.7.

Corollary 3.9. Let (X,x) be a pointed topological space in S̃h∗. Then for all
1 ≤ k ≤ n− 1

π̌top
n (X,x) ∼= π̌top

n−k(Sh((S
k, ∗), (X,x)), ex).
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