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Abstract

Here, the existence of fixed points for weakly compatible maps is studied.
The results are new generalization of the results of [5]. Finally, we study the
new common fixed point theorems.
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1. Introduction

Huang et. al [5] extended the concept of the metric space (see [2, 10, 11, 12, 13]
and References therein). They introduced the cone metric space. After then many
authors studied some fixed point theorems in this setting (see [3, 4, 7, 8] and
references therein).

Here, we extend the recent results [1, 5]. In order to do this, we recall some
facts (see [1, 2, 4, 5]).

Definition 1.1. [5] Assume H is a real Bancah space. A subset C' C H is called
cone if

(I) C # ¢, C #0and C is closed.
(II) If u,—u € C, then u = 0.

(III) For every real positive «, 5 and u,v € C, then au + fv € C.
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A partial order < on ¢ can be defined by
u<viffv—uedl.

One can write
u<v ifu<wvanduz#v

u<Lv ifv—ueintC,

where intC' is the interior of C.
Definition 1.2. [6] The cone C is said to be normal if
3 M >0suchthat 0 <u<v = |u| <Ml (1)

for all u,v € H.

Definition 1.3. [6] One says the cone C is regular, if every bounded (from below)
decreasing sequence {z,} (in C) is convergent.

The above definition implies that if C' is a regular cone, then it is a normal
cone.

Definition 1.4. [6] A cone metric on a set Y, is a function p : ¥ xY — H,
satisfies

e for all u,v €Y, p(u,v) >0 and p(u,v) =0 iff u = 0.
o for all u,v €Y p(u,v) = p(v,u).
o for all u,v,w €Y p(u,v) < p(u,w) + p(v,w).

then (Y, p) is called a cone metric space.

Next we introduce the concept of the convergence of a sequence and then one
can write about Cauchy sequence.

Definition 1.5. [2] The sequence {u,} is called a convergent sequence,
Vo> 0€ H 3 M € Nsuch that ¥V n > M p(u,,u) < a,
for some fixed u € Y. The sequence {u,} is called a Cauchy sequence, if
Ya>>0€ H 3 M € Nsuch that Vm,n > M p(u,, un) < a.

Notice that a complete cone metric space is a space where every Cauchy se-
quence is convergent. Also, It is necessary to mention that in a normal cone,

{un} is a Cauchy sequence <= p(un,tm) — 0,

when (n,m — oco0) (see [1]).
About the uniqueness of the limit, the following Remark from [6] is recalled.
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Remark 1.

e Let C be a normal cone, the limit of a convergent sequence is unique.
o If u <w, where u,v € Y, and a > 0, then au < av.

e If for each n € N, w,, < v,, where {u,},{v,} are two sequences in ¥ and

limu, = u,limv, = v, then u < v.

e If any sequence u,, — ug implies T'(u,) — T(ugp), the function T: Y — Y is
continuous at ug € Y.

In the next definition we recall the concept of R-weakly commuting mapps.
Definition 1.6. Assume 7,5 :Y — Y if
3 R € R such that Vu € Y, p(TS(u), ST (u)) < Rp(T(u),S(u))
the mappings 7" and S are called R-weakly commuting maps on metric space (Y, p).

There is another concept which is called compatible and it can be as follows.

Definition 1.7. Assume 7,5 : Y — Y, if limy_00p(TS(un), ST (uy)) = 0, where
{un} € Y and there exists u in Y such that

limap oo T () = limp 00 S(upn) = u,
the mappings 7" and S are called compatible maps on (Y, p).

Remark 2. Notice that compatible maps aren’t weakly commuting mappings (see
[8])-

Jungck et. al. [9] in 1998 introduced the coincidentally commuting mappings
(this concept is recalled as weakly compatible mappings, too).

Definition 1.8. Suppose 7,5 :Y — Y, if
JueY, T(u) = S(u) then T'S(u) = ST (u),
then the mappings T and S are called weakly compatible.
Notice that
weakly commuting — compatible — weakly compatible

but the reverse of the above fact is not true.
Now, we recall a Theorem of [1], which will be used in the next section.

Theorem 1.9. Suppose T, S : Y — Y are weakly compatible maps and z = S(u) =
T(u) (i.e. T and S have a unique coincidence point). Then T and S have a unique
common fized point z.
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2. Weakly Compatible Maps

Here, two new generalization results of [5] will be presented.

Theorem 2.1. Assume (Y, p) is a complete cone metric space, T : Y =Y, C is
a normal cone and x : (0,00) — (0,1) s a monotonically decreasing function. If

p(T'(w), T(v)) < x([lp(u, v)[)p(u,v), ¥V u,v €Y,
then T has a unique fixed point in Y.

Proof. Due to prove the theorem, fixed ug € Y and define a sequence by
Up+1 = Tn(U()).
This implies

X(HP(Um Un—l)”)p(um un—l)
XUlp(un, un—1) )X p(n—1, un—2) ) (-1, Un—2)

P(Ung1,Un)

INININIA

15,25~ Xlo(ur, uka) D p(uo, ur).-

By x(s) < 1, for r > t we can conclude that

[p(ur, ue)|| < Kllp(tr, ur—1) + pur—1,ur—2) + - + pluey1, ue)||
M([lp(ur, ur—1)[| + |p(wr—1, ur—2)[| + -+ + [[p(ues1, w)l])  (2)
M2||p(U0,U1)H = Na

INIA

and

lp(uns wnsp) | < MIGZE™ XNl p(uns wiep) ) | (w0, wp) | for all p > 0. (3)

Now we show that {u,} is a Cauchy sequence or

€
Ve > 0,3N such that ||p(un, unip)| < M

for every p > 0.
If || p(uk, ugtp)|| > € for k=0,1,...,n — 1, then from monotonicity of x(s) we
have x([|p(uk, ukp)[l) < x(€), and (2) and (3) will imply

(s tnip) | < MN (x(€))" -
We have x(e) < 1, thus
lzmn—M)OXn(e) = 07

so there exists an integer N (independent of p) such that ||p(zn, zn4p)| < €/2M
for every p > 0.
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Thus by triangle property for n = N +p and m = N +¢
o(un, um)ll < M(llp(un, unip) |l + | p(un; un4q)ll)
< M(m + m)
= e

thus there exists u € Y such that

lim wu,, — u.
n—oo

Also u is a fixed point of T, because
p(T (), w)ll < M|lp(un, w)|| + M p(ttns1, ).
Suppose v # u are distinct fixed points of T'. Since x(u,v) =k < 1, then
p(u, v) < x(llp(u, v)[)p(u, v) < kp(u,v).
Thus the uniqueness is proved. O

In the next theorem, we study the existence of a fixed point in the sequentially
compact cone metric space.

Theorem 2.2. Suppose (Y, p) is a cone metric space and sequentially compact,
T:Y =Y, C is aregular cone, 9 : H— H is a continuous, 9(t) <t for allt #0
and 9(0) = 0. Suppose

p(Tu, Tv) < Ip(u,v)) for allu #v €Y,
then T has a unique fixed point in'Y .
Proof. Fixed ug € Y and define a sequence by
Upt1 = T™(up).
The assumption ¥(t) < ¢t shows
DT (ttn 1), T (1)) < pltn—1, ).
And since {p(un+1,u,)} is bounded from below, there is a € H such that
Mmoo p(Unt1, Un) = a.

Notice that the condition ¥(t) < t implies that a = 0.
On the other hand, there exists a subsequence {u,, } of {u,} (Y is sequentially
compactness) such that
Up;, — U.
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The contractive condition implies p(T'(u,,), T(v)) < 9(p(ur,,u)), so

(T (ur,), T(u))|| < M[[9(p(uwr, w))|

By the continuity of ¢, when i — oo ||p(T (., ), T'(u))|| — 0. Hence T'(z,,), = T(u).

Now [5, Lemma 5] implies p(T'(u.,), un) p(T(u),u) when ¢ — oo, therefore
Pt 41, Ur;) = p(T(u),u). Hence ||p(T(u),u)|| = 0 and u is a fixed point of T
The uniqueness of v is obvious. O

The two next Theorem 2.3 and Theorem 2.4 are new generalizations of the
results of [1].

Theorem 2.3. Suppose (Y,p) is a cone metric space, T,S :' Y = Y, C is a
normal cone, § : RY — (0,1) is a monotonically decreasing function. Assume
p(T(uw), T(v)) < O(||p(S(u), S(v)))p(S(u), S(v)). Let S(Y') be a sequentially com-
pact subspace of Y, T(Y) C S(Y), then T and S have a unique coincidence point
inY. In addition, S and T have a (unique) common fized point if they are weakly
compatible.

Proof. First, we define a sequence in S(Y'). Fixed uy € Y, since the range of S
contains the range of T, one takes u; € Y such that T'(ug) = S(u1). By induction,
assume {u,} €Y is obtained. One chooses u,+1 € Y such that T'(u,) = S(unt1)-
Then

p(S(unt1),S(un)) (Hp(umunfl)H) p(S(un), S(un-1))

(I (uns un—1) N0 p(un—1, un—2) 1) p(S(tn—1), S(tun—2))

=5~ 0l p (e, ur 1) DP(S (uo), S (1))

Since 6(s) < 1 for all s > 0, then for r > ¢

[p(S(ur), S(ue))ll < M||p(S(ur), S(ur—1)) + p(S(ur—1), S(ur—2))
+ -+ p(S(ue), S(ue))
M([|p(S(ur), S(ur—))|| + lp(S(ur—1), S(ur—2))
+ -+ [[p(S (uer1), S(ur))|
%2||p(5(uo)75(m))||

IANIA A A
S

|
|
y @

IA

I IA

Then

P (), S(ttn ) < TEZ3 0 ol i) )p(S (o), Suy)) for all p > 0. (5)

Notice that {S(u,)} is a Cauchy sequence. Due to prove this, for every e > 0 there
exists number NN, dependent on e such that ||p(S(un), S(unp))| < 537 for every
p> 0. If | p(S(uk), S(uktp))|| > €for k =0,1,...,n—1, then from monotonicity of

0(s) we have (|| p(ur, ur1,|)) < 6(e), and by (4) and (5), [|p(S(un), S (unip))| <
MN (6(e))". Notice that 6™(e) — 0, so there exists an integer N independent of p
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such that [|p(S(un), S(un+p))|l < 537 for every p > 0, and for n := N +p,m :=
N +g¢q

[o(S(un), S(um))| < M(|[p(S(un), S(un+p)) Il + [p(S(un), S(un-+q)))ll
< M55 + 5%7)

This shows {S(uy)} is Cauchy (see [1]) and there exists a w in S(Y") such that

nh_)ngo S(un) = u.

Thus one can find v in Y such that S(v) = u. Also

p(S(un), T(v)) = p(T(un—1), T(v)) < O([[p((un—1,0))[)p(S (un-1), S(v)).

The relation (1) implies

(S (un), T())I| < MO([|p(un—1,v)DIlp(S (Un-1), u())[| — 0.

Since S(u,) converges to S(v) then p(S(u,),T(v)) — 0 as n — oco. In adition
p(S(un),S(w)) = 0 as n — oo. Thus T'(v) = S(v).

Notice that T" and S have a unique point of coincidence. Suppose there exists
a point v'(# v) in Y such that T'(v') = S(v'). Since 8(||p(v/,v)|) = b < 1,
p(S(), S) = p(T(W),T()) < (o, )p(S(), Sw)) < bp(S(W), S()),
which implies ||p(S(v"), S(v))]| = 0 and S(v’) = S(v). Thus T and S (by Theorem
1.9) have a unique common fixed point. O

Remark 3. Theorem 2.3 remains true if one consider R-weakly commuting maps.

Theorem 2.4. Suppose (Y, p) is a cone metric space, T, S : Y =Y, C is a regular
cone, 0 is a continuous selfmap on H, 0(t) <t for allt # 0 and 6(0) = 0. Assume

p(T(u), T(v)) < 0(p(S(u),S(v))) for all u,v € Y, S(u) # S(v).

If S(Y) is a sequentially compact subspace of Y and T(Y) C S(Y), then T and
S have a unique coincidence point in Y. In addition, S and T have a (unique)
common fized point if they are weakly compatible.

Proof. Fixed ug € Y. Set uy € Y such that T'(ug) = S(u1). By induction, we have
{un} in Y. Define uy4+1 in Y such that T'(u,) = S(un+1). Since 0(t) < t,

P (), T(utn41)) < p(S(un), S(ttns1):

Notice that {p(S(un+1),S(un))} is bounded from below and is a decreasing se-
quence. Thus there exists a € E such that p(S(unt1),S(un)) — a as n — oo (P
is regular). The condition 6(¢) < ¢ implies a = 0.
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On the other hand, there exists subsequence {S(u,,)} of {S(u,)} (S(Y) is
sequentially compactness) such that S(u,,) — v when ¢ — oo such that v € S(Y).
Consequently, there is u in Y such that S(u) = v. Thus

p(S(ur,), T(uw) = p(T(ur,—1), T (u)
< 0(p(S(ur,—1), 5(u))),

S0
(S (ur,), T(u)[| < M[0(p(S (ur,—1), S(w)))]-
Then S(u,,) — S(u) and continuity of 6 imply
(S (ur,), T(w))[| = 0(i = o0).
Hence S(u,,) — T'(u). Also
p(S(ur,),S(u)) = 0 as i — oco.

Finally, T'(u) = S(u) (the uniqueness of the limit). The uniqueness of the coinci-
dence point is obvious. In fact, T and S (by Theorem 1.9) have a common fixed
point which is unique. O

Remark 4. Theorem 2.4 remains true if one consider R-weakly commuting maps.
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