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Abstract

The eccentric connectivity coindex has recently been introduced (Hua and
Miao, 2019) as the total eccentricity sum of all pairs of non-adjacent vertices
in a graph. Considering the total eccentricity product of non-adjacent vertex
pairs, we introduce here another invariant of connected graphs called the
second Zagreb eccentricity coindex. We study some mathematical properties
of the eccentric connectivity coindex and second Zagreb eccentricity coindex.
We also determine the extremal values of the second Zagreb eccentricity
coindex over some specific families of graphs such as trees, unicyclic graphs,
connected graphs, and connected bipartite graphs and describe the extremal
graphs. Moreover, we compare the second Zagreb eccentricity coindex with
the eccentric connectivity coindex and give directions for further studies.
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1. Introduction

A graph invariant or topological index is a real value directly derived from the
structural graph of a molecule. It has been applied in theoretical chemistry for
modelling different properties of molecules such as physico-chemical, biological,
and pharmaceutical properties. Various graph invariants related to graph theoret-
ical concept of eccentricity have already been suggested and used in QSAR/QSPR
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researches. Most of them have been recognized as efficient tools in predicting phar-
maceutical properties. Here, we concentrate to two of these invariants known as
the eccentric connectivity and second Zagreb eccentricity indices. These invariants
are respectively expressed as the sum of eccentricity sum and the sum of eccentric-
ity product of all pairs of adjacent vertices in a graph. Recently, Hua and Miao
[21] introduced the eccentric connectivity coindex as the sum of eccentricity sum of
all pairs of non-adjacent vertices. Considering the sum of eccentricity product of
all pairs of non-adjacent vertices, we suggest here another graph invariant namely
the second Zagreb eccentricity coindex. The idea of introducing the coindex re-
lated to a topological index was put forward by Došlić [10] in 2008 with the aim of
improving the ability of quantifying the contributions of non-adjacent vertex pairs
to different properties of molecules. The first and second Zagreb indices [17, 18]
are the first topological indices for which the concept of coindex was applied. The
motivation for introducing the eccentric connectivity coindex (second Zagreb ec-
centricity coindex, resp.) is that this invariant has a parallel form to the first
(second, resp.) Zagreb coindex.

Hua and Miao [21] studied some extremal problems related to the eccentric
connectivity coindex and gave several lower bounds on this invariant based on
different parameters of graphs. The present author [6] investigated the behavior
of the eccentric connectivity coindex for various product graphs. Several bounds
on the eccentric connectivity coindex in terms of some existing invariants and the
values of this coindex for some constructions on graphs were presented in [7].

The rest of the paper is as follows. In Section 2, we remind a number of
preliminary definitions and lemmas. In Section 3, exact values of the eccentric
connectivity and second Zagreb eccentricity coindices for some familiar graphs are
derived and certain fundamental properties of these invariants are described. In
Section 4, extremal graphs with respect to the second Zagreb eccentricity coindex
among connected graphs, connected bipartite graphs, trees and unicyclic graphs
with fixed number of vertices and among connected graphs with fixed number of
vertices and edges are characterized and a Nordhaus-Gaddum-type result for this
invariant is given. In Section 5, we compare the eccentric connectivity coindex
and second Zagreb eccentricity coindex with each other and eventually in Section
6, we provide a conclusion and give directions for subsequent studies.

2. Definitions and Preliminaries

All over this section, Γ is considered to be a simple connected graph with order
n and size m. The vertex and edge sets of Γ are respectively shown by V (Γ) and
E(Γ). The complement Γ of Γ is a graph in which V (Γ) = V (Γ) and uΓvΓ ∈
E(Γ) if and only if uΓvΓ /∈ E(Γ). The notation m represents the size of Γ which
equals

(
n
2

)
− m. For vertices uΓ, vΓ ∈ V (Γ), the degree of uΓ and the distance

between uΓ, vΓ in Γ are denoted by dΓ(uΓ) and dΓ(uΓ, uΓ), respectively. The
eccentricity εΓ(uΓ) of uΓ ∈ V (Γ) is defined as εΓ(uΓ) = maxvΓ∈V (Γ) dΓ(uΓ, vΓ).
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The radius (diameter, resp.) r(Γ) (d(Γ), resp.) of Γ is the smallest (greatest,
resp.) eccentricity of all vertices in Γ. If d(Γ) = r(Γ), then Γ is self-centered. If Γ
is self-centered and d(Γ) = 2, then it is called 2-self-centered. A vertex uΓ ∈ V (Γ)
with dΓ(uΓ) = n − 1 is known as a universal vertex. A spanning tree of Γ is a
subgraph T of Γ with V (T ) = V (Γ) which is a tree. For eΓ ∈ E(Γ), Γ − eΓ is a
graph made from Γ by deleting the edge eΓ and preserving the end-vertices of eΓ.

The invariants M1(Γ) and M2(Γ) defined as

M1(Γ) =
∑

uΓ∈V (Γ)

dΓ(uΓ)
2 =

∑
uΓvΓ∈E(Γ)

(dΓ(uΓ) + dΓ(vΓ)),

M2(Γ) =
∑

uΓvΓ∈E(Γ)

dΓ(uΓ)dΓ(vΓ),

are called the first and second Zagreb indices of Γ (see [17]). The coindices of
Zagreb indices were put forward by Doslić [10] as

M1(Γ) =
∑

uΓvΓ ̸∈E(Γ)

(
dΓ(uΓ) + dΓ(vΓ)

)
,

M2(Γ) =
∑

uΓvΓ ̸∈E(Γ)

dG(uΓ)dG(vΓ).

More details on Zagreb indices and coindices can be searched in the survey [1], the
papers [3, 16, 20, 24], and the references quoted therein.

In 1997, Sharma et al. [25] suggested the eccentric connectivity index of Γ as

ξc(Γ) =
∑

uΓ∈V (Γ)

dΓ(uΓ)εΓ(uΓ) =
∑

uΓvΓ∈E(Γ)

(
εΓ(uΓ) + εΓ(vΓ)

)
.

The invariants ζ(Γ) and ξ(2)(Γ) defined as ζ(Γ) =
∑

uΓ∈V (Γ) εΓ(uΓ) and

ξ(2)(Γ) =
∑

uΓ∈V (Γ)

dΓ(uΓ)εΓ(uΓ)
2 =

∑
uΓvΓ∈E(Γ)

(
εΓ(uΓ)

2 + εΓ(vΓ)
2
)
,

are respectively called the total eccentricity and second eccentric connectivity index
[5] of Γ. Some properties of the eccentric connectivity index have been investigated
in [2, 4, 11, 26, 28].

The first, second, and third Zagreb eccentricity indices ([27, 29]) of Γ are re-
spectively defined as

E1(Γ) =
∑

uΓ∈V (Γ)

εΓ(uΓ)
2
,

E2(Γ) =
∑

uΓvΓ∈E(Γ)

εΓ(uΓ)εΓ(vΓ),

E3(Γ) =
∑

uΓvΓ∈E(Γ)

|εΓ(uΓ)− εΓ(vΓ)| .
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Further information regarding the Zagreb eccentricity indices can be found in
[5, 8, 19, 23].

In 2019, Hua and Miao [21] proposed the eccentric connectivity coindex (or
ECC for short) of Γ as

ξ
c
(Γ) =

∑
uΓvΓ /∈E(Γ)

(
εΓ(uΓ) + εΓ(vΓ)

)
.

An alternative formula for ECC was given in [21] as

ξ
c
(Γ) =

∑
uΓ∈V (Γ)

(
n− 1− dΓ(uΓ)

)
εΓ(uΓ). (1)

By considering the sum of eccentricity product of non-adjacent pairs of vertices
in Γ, we introduce here another invariant of Γ which we call the second Zagreb
eccentricity coindex (or SZEC for short). More formally, the SZEC of Γ is defined
as

E2(Γ) =
∑

uΓvΓ ̸∈E(Γ)

εΓ(uΓ)εΓ(vΓ).

We close this section with expressing two previously-proved lemmas.

Lemma 2.1. [30] If d(Γ) > 3 and Γ is connected, then d(Γ) = 2.

Lemma 2.2. [5] For any connected graph Γ,

ξ(2)(Γ) = E3(Γ) + 2E2(Γ). (2)

3. Some Properties of Coindices
Here, we explore some fundamental properties of the ECC and SZEC. The fol-
lowing results on the values of these invariants for r-vertex path, r-vertex cycle,
r-vertex star, r-vertex complete graph, and complete bipartite graph on r + s
vertices are deduced by an easy computation.

Lemma 3.1. The following relations hold:

(i) ξ
c
(Pr) =

{
1
4 (r − 2)(3r2 − 5r + 4) 2 | r,
1
4 (r − 1)2(3r − 5) 2 ∤ r,

E2(Pr) =

{
1
32r(r − 2)(9r2 − 22r + 28) 2 | r,
1
32 (r − 1)(9r3 − 31r2 + 35r − 5) 2 ∤ r,

(ii) ξ
c
(Cr) = r(r − 3)⌊ r

2⌋, E2(Cr) =
1
2r(r − 3)⌊ r

2⌋
2
,

(iii) ξ
c
(Sr) = E2(Sr) = 2(r − 1)(r − 2),
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(iv) ξ
c
(Kr) = E2(Kr) = 0,

(v) ξ
c
(Kr,s) = E2(Kr,s) = 2r(r − 1) + 2s(s− 1).

Theorem 3.2. For n-vertex connected graph Γ,

ξ
c
(Γ) = (n− 1)ζ(Γ)− ξc(Γ), (3)

E2(Γ) =
1

2

(
ζ(Γ)

2 − E1(Γ)
)
− E2(Γ). (4)

Proof. Equation (3) follows from Equation (1), straightforwardly. To prove Equa-
tion (4), we start with the identity∑

uΓ∈V (Γ)

∑
vΓ∈V (Γ)

εΓ(uΓ)εΓ(vΓ) = ζ(Γ)
2
.

The left-hand side summation in the above relation can be partitioned as follows.∑
uΓ∈V (Γ)

∑
vΓ∈V (Γ)

εΓ(uΓ)εΓ(vΓ) =2
∑

uΓvΓ∈E(Γ)

εΓ(uΓ)εΓ(vΓ)

+ 2
∑

uΓvΓ /∈E(Γ)

εΓ(uΓ)εΓ(vΓ) +
∑

uΓ∈V (Γ)

εΓ(uΓ)
2

=2E2(Γ) + 2E2(Γ) + E1(Γ).

Combining the above relations, we arrive at ζ(Γ)
2
= 2E2(Γ) + 2E2(Γ) + E1(Γ),

from which Equation (4) is deduced.

Theorem 3.3. Let both Γ and Γ be connected, Γ be of size m and d(Γ) > 3. Then

ξc(Γ) = E2(Γ) = 4m, ξ
c
(Γ) = E2(Γ) = 4m.

Proof. The graph Γ has no universal vertices as Γ is connected. Now by Lemma
2.1, one can deduce that Γ is 2-self-centered. So

ξc(Γ) =
∑

uΓvΓ ∈E(Γ)

(
εΓ(uΓ) + εΓ(vΓ)

)
=

∑
uΓvΓ ∈E(Γ)

(2 + 2) = 4m,

ξ
c
(Γ) =

∑
uΓvΓ ̸∈E(Γ)

(
εΓ(uΓ) + εΓ(vΓ)

)
=

∑
uΓvΓ ∈E(Γ)

(2 + 2) = 4m.

Similarly, we can prove that E2(Γ) = 4m and E2(Γ) = 4m.
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4. Extremal Results
In this section, some extremal problems related to the SZEC are studied.

Theorem 4.1. For any connected graph Γ of order n and size m,

E2(Γ) ≥ 4m, (5)

and the equality case occurs if and only if d(Γ) ≤ 2.

Proof. Evidently, for any uΓvΓ /∈ E(Γ), εΓ(uΓ), εΓ(vΓ) ≥ 2. Now from the defini-
tion of the SZEC,

E2(Γ) =
∑

uΓvΓ /∈E(Γ)

εΓ(uΓ)εΓ(vΓ) ≥
∑

uΓvΓ /∈E(Γ)

(2× 2) = 4m,

and Equation (5) holds. The equality case occurs in Equation (5) if and only if
for any uΓvΓ /∈ E(Γ), εΓ(uΓ) = εΓ(vΓ) = 2, which is equivalent to d(Γ) ≤ 2.

As a consequence of Theorem 4.1, we arrive at:

Corollary 4.2. For any connected unicyclic graph Γ with n ≥ 6 vertices,

E2(Γ) ≥ 2n(n− 3),

and the equality case occurs if and only if Γ is made from Sn by joining two of its
pendent vertices with an edge.

Now we use Theorem 4.1 to give a Nordhaus-Gaddum-type result for the SZEC.

Corollary 4.3. For any connected graph Γ of order n with a connected complement
Γ,

E2(Γ) + E2(Γ) ≥ 2n(n− 1), (6)

and the equality case occurs if and only if Γ and Γ are 2-self centered.

Proof. Let |E(Γ)| = m. From Theorem 4.1, we get

E2(Γ) + E2(Γ) ≥ 4m+ 4m = 2n(n− 1),

and the inequality in Equation (6) holds. Based on Theorem 4.1, the equality
case occurs in Equation (6) if and only if d(Γ), d(Γ) ≤ 2. Since both Γ and Γ are
connected, they contain no universal vertices. Hence the equality case occurs in
Equation (6) if and only if Γ and Γ are 2-self centered.

Theorem 4.4. For any tree T of order n,

E2(Sn) ≤ E2(T ) ≤ E2(Pn). (7)

Moreover, the equality in left-hand side (right-hand side, resp.) of Equation (7)
happens if and only if T ∼= Sn (T ∼= Pn, resp.).
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Proof. Based on Theorem 4.1,

E2(T ) ≥ 4
((n

2

)
− (n− 1)

)
= 2(n− 1)(n− 2) = E2(Sn),

and the equality case occurs if and only if T has diameter at most 2. Since the
only tree of order n with diameter at most 2 is Sn, so the equality in left-hand
side of Equation (7) happens if and only if T ∼= Sn.

We proceed with the proof of the right-hand side inequality. Let d(T ) = d.
If T ∼= Pn, then the equality in right-hand side of Equation (7) occurs. Now let
T ≇ Pn. This implies that, n ≥ 4, d ≤ n − 2, and T contains at least three
pendent vertices. Let V (T ) = {v1, v2, . . . , vn} and v1v2 . . . vd+1 be a diametral
path in T . We denote by εi the eccentricity of vi in T , 1 ≤ i ≤ n. Hence
εi = max{dT (vi, v1), dT (vi, vd+1)}. Since T is a tree, both v1 and vd+1 are pendent
vertices. Thus for every vertex vi of T , εi ≤ d. Suppose vk (k ̸= 1, d + 1) is a
vertex of degree one adjacent to vj in T . We convert the tree T into the tree T ∗

by removing vkvj from E(T ) and adding vd+1vk to E(T ). Then v1v2 . . . vd+1vk is
the longest path in T ∗ with length d + 1. Denote the vertex eccentricities in T ∗

by ε∗1, ε
∗
2, . . . , ε

∗
n. Therefore for every t ̸= k, 1 ≤ t ≤ n, we have

ε∗t = max{dT ∗(vt, v1), dT ∗(vt, vk)} =max{dT (vt, v1), dT (vt, vd+1) + 1}
≥max{dT (vt, v1), dT (vt, vd+1)} = εt,

whereas ε∗k = d+ 1 > d ≥ εk. We define

A ={vrvs /∈ E(T ), r, s ̸= k} = {vrvs /∈ E(T ∗), r, s ̸= k},
B ={vrvk /∈ E(T ), r ̸= d+ 1} = {vrvk /∈ E(T ∗), r ̸= j}.

Then E(T ) = A∪B ∪ {vkvd+1} and E(T ∗) = A∪B ∪ {vkvj}. For each vrvs ∈ A,
ε∗rε

∗
s ≥ εrεs and for each vrvk ∈ B, ε∗rε∗k = ε∗r(d+ 1) > ε∗rd ≥ εrd ≥ εrεk. Also,

ε∗kε
∗
j − εkεd+1 =(d+ 1)ε∗j − (εj + 1)d = (ε∗j − εj)d+ (ε∗j − d)

≥ε∗j − d ≥ 2− (n− 2) = 4− n.

Thus

E2(T ∗)− E2(T ) =
∑

vrvs∈A

(ε∗rε
∗
s − εrεs) +

∑
vrvk∈B

(ε∗rε
∗
k − εrεk) + (ε∗kε

∗
j − εkεd+1)

≥|B|+ (4− n) = (n− 3) + (4− n) = 1.

So E2(T ∗) > E2(T ). By the procedure described above, the value of E2(T ) is
increased. If T ∗ ∼= Pn, then E2(T ) < E2(T ∗) = E2(Pn), and the inequality in
right-hand side of Equation (7) holds. If T ∗ ≇ Pn, then the procedure can be
continued as follows. Select a pendent vertex ( ̸= v1, vk) from T ∗, etc. Repeat the
process sufficiently, we get a tree having the maximum degree 2, which is the path
Pn.
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Lemma 4.5. For each edge eΓ = aΓbΓ ∈ E(Γ) for which Γ− eΓ is connected,

E2(Γ− eΓ) > E2(Γ).

Proof. It was proved in [22] that, for each uΓ ∈ V (Γ − eΓ) = V (Γ), εΓ−eΓ(uΓ) ≥
εΓ(uΓ). On the other hand, E(Γ− eΓ) = E(Γ)∪{eΓ} and εΓ−eΓ(aΓ), εΓ−eΓ(bΓ) ≥
2, as eΓ = aΓbΓ /∈ E(Γ− eΓ). Now from the definition of the SZEC, we have

E2(Γ− eΓ) =
∑

uΓvΓ /∈E(Γ−eΓ)

εΓ−eΓ(uΓ)εΓ−eΓ(vΓ)

=
∑

uΓvΓ /∈E(Γ)

εΓ−eΓ(uΓ)εΓ−eΓ(vΓ) + εΓ−eΓ(aΓ)εΓ−eΓ(bΓ)

≥
∑

uΓvΓ /∈E(Γ)

εΓ(uΓ)εΓ(vΓ) + 4 = E2(Γ) + 4 > E2(Γ),

and the proof is completed.

Theorem 4.6. For any connected graph Γ on n vertices,

E2(Kn) ≤ E2(Γ) ≤ E2(Pn). (8)

Moreover, the equality case in left-hand side (right-hand side, resp.) of Equation
(8) happens if and only if Γ ∼= Kn (Γ ∼= Pn, resp.).

Proof. The proof of the left-hand side inequality in Equation (8) is obvious by
considering the fact that E2(Γ) ≥ 0 = E2(Kn), with equality if and only if Γ ∼= Kn.
To prove the right-hand side inequality in Equation (8), suppose T is a spanning
tree of Γ. By Lemma 4.5, E2(Γ) ≤ E2(T ) and the equality case occurs if and only
if Γ = T . By Theorem 4.4, E2(T ) ≤ E2(Pn) and the equality case occurs if and
only if T ∼= Pn. Hence E2(Γ) ≤ E2(Pn) and the equality case occurs in Equation
(8) if and only if Γ ∼= Pn.

Theorem 4.7. Let Γ be a connected bipartite graph on n vertices with bipartition
RΓ and SΓ, where |RΓ| = r > 1 and |SΓ| = s > 1. Then

E2(Kr,s) ≤ E2(Γ) ≤ E2(Pn). (9)

Moreover, the equality in left-hand side (right-hand side, resp.) of Equation (9)
happens if and only if Γ ∼= Kr,s (Γ ∼= Pn, resp.).

Proof. From Theorem 4.6, the inequality in right-hand side of Equation (9) holds
and the equality case occurs if and only if Γ ∼= Pn. If Γ ∼= Kr,s, then the equality
in left-hand side of Equation (9) holds trivially. If Γ ≇ Kr,s, then by Lemma 4.5,
E2(Γ) ≥ E2(Kr,s − e) > E2(Kr,s), for each e ∈ E(Kr,s) and hence the inequality
in left-hand side of Equation (9) holds.
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5. Comparison Between Coindices
In this section, we make a comparison between the SZEC and ECC.

Theorem 5.1. For any connected graph Γ,

E2(Γ) ≥ ξ
c
(Γ), (10)

and the equality case occurs if and only if d(Γ) ≤ 2.

Proof. Since for any uΓvΓ /∈ E(Γ), εΓ(uΓ), εΓ(vΓ) ≥ 2, so εΓ(uΓ)εΓ(vΓ) ≥ εΓ(uΓ)+
εΓ(vΓ), for each uΓvΓ /∈ E(Γ), and the equality case occurs if and only if εΓ(uΓ) =
εΓ(vΓ) = 2. The inequality in Equation (10) now follows by summing both sides of
the previous inequality over all non-adjacent vertex pairs of Γ. The equality case
occurs in Equation (10) if and only if for any uΓvΓ /∈ E(Γ), εΓ(uΓ) = εΓ(vΓ) = 2,
which is equivalent to d(Γ) ≤ 2.

Theorem 5.2. For any connected graph Γ,

E2(Γ) ≤
d(Γ)

2
ξ
c
(Γ), (11)

and the equality case occurs if and only if Γ is self-centered or r(Γ) = 1 and
d(Γ) = 2.

Proof. Evidently, for each uΓ ∈ V (Γ), εΓ(uΓ) ≤ d(Γ). Now by arithmetic-
geometric mean inequality, we get

E2(Γ) =
∑

uΓvΓ /∈E(Γ)

εΓ(uΓ)εΓ(vΓ) =
∑

uΓvΓ /∈E(Γ)

√
εΓ(uΓ)εΓ(vΓ)

√
εΓ(uΓ)εΓ(vΓ)

≤
∑

uΓvΓ /∈E(Γ)

√
d(Γ)d(Γ)

√
εΓ(uΓ)εΓ(vΓ)

≤ d(Γ)
∑

uΓvΓ /∈E(Γ)

εΓ(uΓ) + εΓ(vΓ)

2
=

d(Γ)

2
ξ
c
(Γ).

The equality case occurs if and only if for each uΓvΓ /∈ E(Γ), εΓ(uΓ) = εΓ(vΓ) =
d(Γ). In case Γ is self-centered or r(Γ) = 1 and d(Γ) = 2, the equality case occurs
in Equation (11). Now let the equality hold in Equation (11). If r(Γ) = d(Γ) = 1,
then Γ is self-centered. If r(Γ) = 1 and d(Γ) = 2, then there exists nothing
to prove. Now suppose that, r(Γ) ≥ 2. Let uΓ denote a vertex of Γ such that
εΓ(uΓ) = r(Γ) ≥ 2. Then there is a vertex vΓ ∈ V (Γ) with uΓvΓ /∈ E(Γ). Thus
r(Γ) = εΓ(uΓ) = εΓ(vΓ) = d(Γ), which means that Γ is self-centered.

Theorem 5.3. For any connected graph Γ on n vertices and m edges,

ξ
c
(Γ)

2
≤ m

(
(n− 1)E1(Γ)− ξ(2)(Γ) + 2E2(Γ)

)
, (12)

and the equality case occurs if and only if Γ is self-centered or r(Γ) = 1 and
d(Γ) = 2.
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Proof. By definition of ECC and Cauchy-Schwartz inequality, we get

ξ
c
(Γ)

2
=
( ∑

uΓvΓ /∈E(Γ)

(
εΓ(uΓ) + εΓ(vΓ)

))2

≤ m
∑

uΓvΓ /∈E(Γ)

(
εΓ(uΓ) + εΓ(vΓ)

)2
=m

∑
uΓvΓ /∈E(Γ)

(
εΓ(uΓ)

2 + εΓ(vΓ)
2 + 2εΓ(uΓ)εΓ(vΓ)

)
=m

( ∑
uΓvΓ /∈E(Γ)

(
εΓ(uΓ)

2 + εΓ(vΓ)
2
)
+ 2E2(Γ)

)
=m

( ∑
uΓ∈V (Γ)

(
n− 1− dΓ(uΓ)

)
εΓ(uΓ)

2 + 2E2(Γ)
)

=m
(
(n− 1)E1(Γ)− ξ(2)(Γ) + 2E2(Γ)

)
.

By Cauchy-Schwartz inequality, the equality case occurs in Equation (12) if
and only if for any uΓvΓ, zΓtΓ /∈ E(Γ), εΓ(uΓ) + εΓ(vΓ) = εΓ(zΓ) + εΓ(tΓ). If Γ
is self-centered or r(Γ) = 1 and d(Γ) = 2, then the equality case in Equation(12)
occurs. Now let the equality hold in Equation (12). If r(Γ) = d(Γ) = 1, then
Γ is self-centered. If r(Γ) = 1 and d(Γ) = 2, then there exists nothing to prove.
Now consider the case that, r(Γ) ≥ 2. Then there are xΓ, yΓ ∈ V (Γ) such that
xΓyΓ /∈ E(Γ) and εΓ(xΓ) = r(Γ). On the other hand, there exist aΓ, bΓ ∈ V (Γ)
with aΓbΓ /∈ E(Γ) and εΓ(aΓ) = εΓ(bΓ) = d(Γ). Since the equality holds in
Equation (12), εΓ(aΓ) + εΓ(bΓ) = εΓ(xΓ) + εΓ(yΓ), and we obtain

[d(Γ)− r(Γ)] + [d(Γ)− εΓ(yΓ)] =[εΓ(aΓ)− εΓ(xΓ)] + [εΓ(bΓ)− εΓ(yΓ)]

=[εΓ(aΓ) + εΓ(bΓ)]− [εΓ(xΓ) + εΓ(yΓ)] = 0.

Using the fact that d(Γ) − r(Γ), d(Γ) − εΓ(yΓ) ≥ 0, we get d(Γ) = r(Γ), hence Γ
is self-centered.

By substituting Equation (2) in Equation (12), we arrive at:

Corollary 5.4. For any connected graph Γ on n vertices and m edges,

ξ
c
(Γ)

2
≤ m

(
(n− 1)E1(Γ)− 2(E2(Γ)− E2(Γ))− E3(Γ)

)
,

and the equality case occurs if and only if Γ is self-centered or r(Γ) = 1 and
d(Γ) = 2.

6. Concluding Remarks

In this paper, we introduced the SZEC as the eccentricity version of the second
Zagreb coindex. We also considered the recently-introduced ECC which is the
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eccentricity version of the first Zagreb coindex and studied some primary math-
ematical properties of these invariants. Furthermore, we studied the extremal
problems of the SZEC for connected graphs, connected bipartite graphs, trees,
and unicyclic graphs of a given number of vertices and for connected graphs of a
given number of vertices and edges, and made a comparison between the SZEC and
ECC. In particular, we prove that, among all n-vertex trees, the SZEC uniquely
gets its maximum value at Pn and its minimum value at Sn. From this fact,
this new invariant satisfies a necessary condition for a topological index to be an
admissible measure of branching (see [9]).

There exists several open questions for further researches. For instance, one
could try to derive exact formulae for the value of the SZEC on certain specific
classes of graphs. It would also be interesting to obtain bounds on the SZEC in
terms of parameters and invariants of graphs. It is also useful to explore some
applications of SZEC to other fields of science including chemistry, biology, com-
puter science, etc. Finally, there exists a class of vertex-eccentricity-based graph
invariants of a connected graph Γ as follows:

I(Γ) =
∑

uΓvΓ∈E(Γ)

h(εΓ(uΓ), εΓ(vΓ)),

where h(u, v) is a two-variable real function of u and v with h(u, v) ≥ 0 and
h(u, v) = h(v, u).

If h(u, v) = u+ v, then I(Γ) = ξc(Γ), the eccentric connectivity index of Γ.
If h(u, v) = uv, then I(Γ) = E2(Γ), the second Zagreb eccentricity index of Γ.
If h(u, v) = u2 + v2, then I(Γ) = ξ(2)(Γ), the second eccentric connectivity

index of Γ.
If h(u, v) = |u− v|, then I(Γ) = E3(Γ), the third Zagreb eccentricity index of

Γ.
If h(u, v) = 1

u + 1
v , then I(Γ) = ξec(Γ), the total reciprocal edge eccentricity or

connective eccentricity index of Γ (see [15]).
If h(u, v) = 2

u+v , then I(Γ) = H4(Γ), the fourth harmonic index or eccentric
harmonic index of Γ (see [12]).

If h(u, v) =
√
uv

1
2 (u+v)

, then I(Γ) = GA4(Γ), the fourth geometric-arithmetic
index of Γ (see [14]).

If h(u, v) =
√

u+v−2
uv , then I(Γ) = ABC5(Γ), the fifth atom-bond connectivity

index of Γ (see [13]).
Then we can define the coindex I(Γ) of Γ as

I(Γ) =
∑

uΓvΓ∈E(Γ)

h(εΓ(uΓ), εΓ(vΓ)) =
∑

uΓvΓ /∈E(Γ)

h(εΓ(uΓ), εΓ(vΓ)).

If h(u, v) = u+v, then I(Γ) = ξ
c
(Γ), the ECC of Γ and for h(u, v) = uv, I(Γ) =

E2(Γ), the SZEC of Γ. It is interesting to consider other vertex-eccentricity-based
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coindices such as the second eccentric connectivity coindex ξ
(2)

(Γ), third Zagreb ec-
centricity coindex E3(Γ), connective eccentricity coindex ξ

ec
(Γ), fourth geometric-

arithmetic coindex GA4(Γ), and fifth atom-bond connectivity coindex ABC5(Γ),
and derive all those results for these coindices too. In particular, one could try
to find some relations between ξ

c
(Γ) or E2(Γ) and other vertex-eccentricity-based

coindices. As an illustration, a lower bound on ξ
c
(Γ) in terms of E3(Γ) is pre-

sented.

Theorem 6.1. For any connected graph Γ on n vertices,

ξ
c
(Γ) ≥ E3(Γ), (13)

and the equality case occurs if and only if Γ is isomorphic to Kn.

Proof. If Γ ∼= Kn, then ξ
c
(Γ) = E3(Γ) = 0 and the equality in Equation (13)

holds. If Γ ≇ Kn, then

ξ
c
(Γ) =

∑
uΓvΓ /∈E(Γ)

(
εΓ(uΓ) + εΓ(vΓ)

)
>

∑
uΓvΓ /∈E(Γ)

|εΓ(uΓ)− εΓ(vΓ)| = E3(Γ),

from which the inequality in Equation (13) holds.
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