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Abstract

Assume that A is a Grothendieck category and R is the category of
all A-representations of a given quiver Q. If Q is left rooted and A has a
projective generator, we prove that the big finitistic flat (resp. projective)
dimension FFD(A) (resp. FPD(A)) of A is finite if and only if the big
finitistic flat (resp. projective) dimension of R is finite. When A is the
Grothendieck category of left modules over a unitary ring R, we prove that
if FPD(R) < +∞ then any representation of Q of finite flat dimension has
finite projective dimension. Moreover, if R is n-perfect then we show that
FFD(R) < +∞ if and only if FPD(R) < +∞.
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1. Introduction

Assume that R is a ring and P(R) (resp. p(R)) be the class of all (resp. finitely
generated) left R-modules of finite projective dimension. The big (resp. little)
finitistic projective dimension of R is defined by FPD(R) := suppM∈P(R)pdM
(resp. fPD(R) := suppM∈p(R)pdM). The finiteness of fPD(R) is a celebrated
conjecture, called the finitistic dimension conjecture, which remains unsolved for

⋆Corresponding author (E-mail: e.hosseini@scu.ac.ir)
Academic Editor: Ali Reza Ashrafi
Received 31 January 2021, Accepted 3 June 2021
DOI: 10.22052/MIR.2021.240439.1273

c⃝202x University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.



140 R. Bagherian and E. Hosseini

more than 60 years. One of the reasons for the importance of FPD(R) lies in its
relation to the fPD(R). It is clear that the inequality fPD(R) ≤ FPD(R) holds
and hence, if FPD(R) < +∞ then fPD(R) < +∞. In the introduction of [2],
Bass reminded that FPD(R) was introduced by Kaplansky. Furthermore, if A is a
commutative noetherian ring, he proved in [3] that, the inequality FPD(A) ≥ dimA
holds over A where dimA is the Krull dimension of A. The reverse inequality
FPD(A) ≤ dimA has been proved by Gruson and Raynaud in [12]. Therefore,
FPD(A) is finite if and only if A is of finite Krull dimension. Therefore, FPD(A)
may be infinite since Nagata’s example shows that there exists a commutative
noetherian ring of infinite Krull dimensions (see [17]).

Historically, finitistic dimension conjectures have been raised by Bass in [2]. In
fact he presented the following two conjectures

(1) fPD(R) = FPD(R),

(2) fPD(R) < ∞.

They are called the first and the second Finitistic Dimension Conjecture, respec-
tively. In 1992, Huisgen-Zimmermann showed that the first Finitistic Dimension
Conjecture fails. He showed that there exists a ring R such that fPD(R) ̸= FPD(R)
([27, Section 3]). Later, in [25], Smalø gave an example and showed that the differ-
ence between fPD(R) and FPD(R) could be very large. However, the conjecture
(2) is still an open problem and efforts are underway to find the answer, see [19].

Assume that R is a unitary ring, Q be an arbitrary quiver and R = Rep(Q, R)
be the category of all R-representations of Q, see [1]. The big finitistic projective
(resp. injective) dimension FPD(R) (resp. FID(R)) of R was first studied in [7].
It was shown in [7, Proposition 3.3.1.] that FPD(R) ≤ FPD(R) + 1. Moreover,
they proved if Q is not discrete then FPD(R) = FPD(R)+1. In the present work,
we study the big finitistic flat dimension in the category of quiver representations.
In fact, we show that if Q is a left rooted quiver and A is a Grothendieck category
with a projective (resp. flat) generator then the big finitistic projective (resp.
flat) dimension of A is finite if and only if the big finitistic projective (resp. flat)
dimension of R is finite, where R is the category of representations of Q by objects
in A. Furthermore, we obtain a generalization of [15, Theorem 6] in the category
of quiver representations.

Before starting, let us fix some notations and definitions. A quiver is a directed
graph Q whose the set of vertices is denoted by VQ and the set of arrows is denoted
by EQ. An arrow from v ∈ VQ to w ∈ VQ is denoted by v

a→ w. The initial (resp.
terminal) vertex of an arrow a in Q is denoted by i(a) (resp. t(a)). A sequence
an · · · a2a1 of arrows in Q is called a path if for each 1 ≤ i ≤ n−1, t(ai) = i(ai+1).
So, a quiver Q can be considered as a category in which VQ is the set of all objects
and for each pair v, w ∈ VQ, HomQ(v.w) is the set of all path from v to w. If
K is a category, a covariant functor from Q to K is called a K-representation of
Q, i.e. if T is a K-representation of Q then for each v ∈ VQ, T (v) is an object
of K and for each arrow a : v −→ w ∈ EQ, T (a) : T (v) −→ T (w) is a morphism
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in K. In addition, morphisms between K-representations are precisely natural
transformations. Therefore, K-representations of Q form a category, denoted by
Rep(Q,K). If K has limits (e.g. products, pullbacks etc.), then so is Rep(Q,K)
which are computed vertex-wise in K. Colimits, Cokernels, Kernels, and Images
in Rep(Q,K) are computed vertex-wise in K. A sequence T ′ → T → T ′′ in
Rep(Q,K) is called exact if for each v ∈ VQ, T ′(v) → T (v) → T ′′(v) is an exact
sequence in K. Thus, if K is Grothendieck category then so is Rep(Q,K), (see
[13]). If K admits both products and coproducts then for each v ∈ VQ and each
K-representation T of Q we have the following canonical morphisms⊕

t(a)=v

T (i(a))
φT

v−→ T (v) (resp. T (v)
ψT

v−→
∏

i(a)=v

T (t(a))),

where the coproduct (resp. product) is taken over all a ∈ EQ where t(a) = v (resp.
i(a) = v). Recall from [9] that a quiver Q is called left rooted if there is no path
of the form · · · −→ • −→ • −→ • in Q.

Let R be an associative ring with identity and A be the category R-Mod of all
left R-modules. The study of special objects in R = Rep(Q,A) has been interested
in the literature. If Q is sufficiently nice, the projective (resp. flat, Gorenstein
projective) R-representations of Q has been characterized in [10] (resp. [9], [6]).

Set Up: Throughout this work A is a Grothendieck category, Q is a left rooted
quiver and R = Rep(Q,A) is the category of all A-representations of Q, R is an
associative ring with identity and all modules are left R-modules unless otherwise
specified.

2. On the Big Finitistic Projective Dimension
This section is devoted to FPD(R) in the category R. First, let us recall some
notations and definitions from [9, Section 3]. Any morphism h : Q −→ Q′ of
quivers induces the following functor

h⋆ : R′ −→ R

where R′ is the category of all representations of Q′ by objects in A and h⋆(T ) =
T ◦ h.

The forest P (Q) associated to Q is defined as follows. A vertex of P (Q) is a
path of Q, and an arrow in P (Q) is of the form (p, ap) : p −→ ap where a ∈ EQ
such that t(p) = i(a). Any connected component of P (Q) is a tree whose root is
v ∈ VQ. This component is denoted by P (Q)v.

For a given v ∈ VQ, assume that fv : {v} −→ Q, gv : {v} −→ P (Q)v are
embedding morphisms and tv : P (Q)v −→ Q is the morphism defined by

(i) For each p ∈ VP (Q)v
, tv(p) = t(p).
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(ii) For each (p, ap) ∈ EP (Q)v
, tv(p, ap) = a.

So we have the following factorization

v
gv−→ P (Q)v

tv−→ Q, (1)

for fv, i.e., fv = tv ◦ gv and Equation (1) induces the following functors

f⋆v : Rep(Q,A) −→ Rep({v},A),

g⋆v : Rep(P (Q)v,A) −→ Rep({v},A),

and
t⋆v : Rep(Q,A) −→ Rep(P (Q)v,A),

such that f⋆v = (tv ◦ gv)⋆ = g⋆v ◦ t⋆v.
By the same arguments that are used in [9, Section 3], one can show that g⋆v

and t⋆v are exact and admit the exact left adjoints

g′v : Rep({v},A) −→ Rep(P (Q)v,A),

and
t′v : Rep(P (Q)v,A) −→ Rep(Q,A),

respectively. So, for any v ∈ VQ, the functor f ′
v = t′v ◦ g′v is exact and it is the left

adjoint of f⋆v = (tv ◦ gv)⋆ = g⋆v ◦ t⋆v. Therefore, for each pair X ∈ Rep(Q,A) and
Y ∈ Rep({v},A), the adjoint pair (f ′, f∗) of exact functors induces the following
isomorphism

HomRep(Q,A)(f
′
v(Y),X ) ∼= HomRep({v},A)(Y, f⋆v (X )),

of Abelian groups. By the same argument that are used in the proof of [9, Theorem
3.3], we deduce the following result.

Proposition 2.1. If A admits a projective generator then so is R.

Proof. Let X be a representation of Q. Since, Rep({v},A) and A are obviously
isomorphic and f⋆v (X ) is a representation of {v} then there is a projective object
P ∈ A and an epimorphism P −→ f⋆v (X ). Therefore, by the adjoint property
of f ′

v 7→ f⋆, we have a unique epimorphism f ′
v(P ) −→ X in R. So, for each

v ∈ VQ, we have an epimorphism αv : f ′
v(Pv) −→ X where Pv is a projective

representation of {v}. Since f⋆v is an exact functor, then f ′
v(Pv) is projective in R

and so is
⊕
v∈VQ

f ′
v(Pv) . In addition,

⊕
αv :

⊕
f ′
v(Pv) −→ X is an epimorphism,

since the restriction on each αv is. Therefore, if P is a projective generator in A,
the set {f ′

v(P ) : v ∈ VQ} of projective A-representations generates R.

Proposition 2.1 tells us that Rep(Q,A) has enough projective objects. These
objects can be characterized by the same arguments that are used in [10, Theorem
3.1].
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Proposition 2.2. Let Q be a left rooted quiver. If A admits a projective generator
then an A-representation P of Q is projective if and only if the following two
conditions are satisfied:

(i) For each v ∈ VQ, P(v) is projective in A.

(ii) For each v ∈ VQ, the morphism φP
v is a splitting monomorphism.

Now by the previous results, the projective dimension of A-representations of
Q can be defined in the usual sense and so the big finitistic projective dimension
in R is defined as follows.

Definition 2.3. Let A be a Grothendieck category, the big finitistic projective
dimension of A is defined by

FPD(A) := sup{pd(M)|M ∈ A with pd(M) < ∞}.

The following Lemma is playing a significant role in this section. In the case A
is the category of R-representations (R is a ring) of an arbitrary quiver, the result
has been proved in [7, Lemma 3.1.5].

Lemma 2.4. Let Q be a left rooted quiver and P be a vertex-wise projective
representation of Q. Then, pd(P) ≤ 1.

Proof. We show that P admits a projective resolution of length 1. Consider the
following short exact sequence in R

0 −→ K g−→ M f−→ P −→ 0,

where M is projective. By Proposition 2.2, for each v ∈ VQ, M(vi) is a pro-

jective object in A and for each vertex v ∈ VQ,
⊕

t(a)=vM(i(a))
φM

v−→ M(v) is a
splitting monomorphism of projective objects in A. Now, consider the following
commutative diagram

0 // ⊕
t(a)=v K(i(a))

φK
v��

i1 // ⊕
t(a)=vM(i(a))

φM
v��

f1 // ⊕
t(a)=v(P(i(a))

φP
v��

// 0

0 // K(v)
i2 // M(v)

f2 // P(v) // 0

where i1 =
⊕

t(a)=v g(i(a)), i2 = g(v), f1 =
⊕

t(a)=v f(i(a)) and f2 = f(v). We
will show that

⊕
t(a)=v K(i(a)) → K(v) is a splitting monomorphism of projective

objects in A. Because Q is left rooted, by Proposition 2.2, it is enough to show that

each K(vi) is a projective object in A and the morphism
⊕

t(a)=v K(i(a))
φK

v−→ K(v)

is a splitting monomorphism. Clearly, for each v ∈ VQ, K(v) is projective, since
M(v) ≃ K(v) ⊕ P(v) and M(v) is projective. On the other hand since φM

v and
i1 are splitting monomorphisms, then they have sections β and s respectively.
Therefor, φK

v is the section of α = s ◦ β ◦ i2 and so we are done.
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Now, we can prove the main result of this section. In the case A is the category
of R-representations (R is a ring) of an arbitrary quiver, it was shown in [7,
Proposition 3.1.5] that if FPD(A) is finite then FPD(R) ≤ FPD(A) is finite.

Theorem 2.5. Let Q be a left rooted quiver. Then FPD(A) is finite if and only
if FPD(R) is finite.

Proof. Assume that FPD(A) < +∞ and X is an object in R of finite projective
dimension. Then, for any v ∈ VQ, X (v) is an object in A of finite projective
dimension and so, for each v ∈ VQ, pdX (v) ≤ FPD(A). Then, by Lemma 2.4,
pdX ≤ FPD(A)+1. This shows that FPD(R) < FPD(A)+1. Conversely, assume
that FPD(R) < +∞ and M is an object in A of finite projective dimension. Let
v ∈ VQ be an arbitrary vertex and fv : {v} −→ Q be the inclusion. Then f ′

v(M)
is a representation of Q of finite projective dimension. Therefore, pdf ′

v(M) ≤
FPD(R). So by Proposition 2.2, pdM ≤ FPD(R). This implies that FPD(A) ≤
FPD(R).

Remark 1. Let A be a commutative noetherian ring, A be the category of all
A-modules and R = Rep(Q,A). The Bass-Gruson-Raynaud Theorem states that
FPD(A) = dimA where dimA is the Krull dimension of A. So, if Q is a left rooted
quiver, then, Theorem 2.5 yields:

(i) If A has finite Krull dimension then FPD(R) ≤ dimA+ 1.

(ii) If A has infinite Krull dimension, then, FPD(R) = ∞.

Remark 2. Let R be a unitary ring and A be the category of all unital left R-
modules, (i.e. R-modules RM such that RM = M). Suppose that X is the set of
all paths in Q. The path ring RQ of Q is defined as the free left R-module over X
where the composition between two paths defines a multiplication in RQ. So RQ
is a ring with enough idempotents (see [26, Ch.10, §. 49]). Let RQ-Mod be the
category of unital left RQ-modules. Clearly, RQ is a generator of RQ-Mod. Since
RQ-Mod and R = Rep(Q, R) are equivalent categories then RQ is a projective
generator for R. It was shown in [11] that if FPD(R) = n then FPD(RQ) ≤ n+1.
Indeed, if Q is not discrete then FPD(RQ) ≤ n+1 by [11, Proposition 3.5]. Notice
that, a stronger statement has been proved in [7]. It was shown in [7, Proposition
3.3.1] that if Q is an arbitrary quiver, then, FPD(R) ≤ FPD(R)+1. Furthermore,
if Q is not discrete then FPD(R) = FPD(R)+1. Furthermore, the same statement
holds for the finitistic injective dimension.

3. On the Big Finitistic Flat Dimension

Thoughout this section, A is the category of all R-modules. By the previous sec-
tion, the category R = Rep(Q,A) of all A-representations of Q is a Grothendieck
categories with a projective generator. Recall that an object F in R is said to be
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flat if it is a directed limit of a directed system of projective objects in R. The
flat representations of Q has been characterized in [9, Theorem 3.7] as follows.

Proposition 3.1. An object F ∈ R is flat if and only if

(i) For each v ∈ VQ, F(v) is a flat object in A.

(ii) For any v ∈ VQ, the canonical morphism φF
v is a pure monomorphism in

A.

Let Flat(R) be the class of all flat objects in R and Flat(R)⊥, be the class of
all objects C in R such that Ext1R(F , C) = 0 for every F ∈ Flat(R). It was shown
in [9] that the pair (Flat(R),Flat(R)⊥) is a complete hereditary cotorsion theory
(for definitions and more details see [8]). So, any object X in R admits a flat cover
and hence it has a minimal flat resolution. It follows that the flat dimension fdX
of X can be defined in the usual sense. To study more results in this direction
the reader is referred to [6, 13]. Moreover, recently, the homotopy category of flat
R-representations of Q has been studied by Eshraghi in [5].

The finitistic flat dimension was first introduced by Bass in [2] as follows

FFD(R) = sup{fdM|M is a left R-module with fdM < ∞}.

He compared several finitistic dimensions of R and proved in [2, pp. 487(8.3)]
that if R is a left perfect ring, then there is the inequality, FPD(R) = FFD(R) ≥
fPD(R).

The big finitistic flat dimension FFD(R) of R = Rep(Q,A) is defines analo-
gous to FFD(R). In this section we generalize [2, pp. 487(8.3)] and prove that if
R = Rep(Q,A) is n-perfect then FFD(R) is finite if and only if FPD(R) is finite.
We recall from [14], for a given non-negative integer n, a category A (resp R) is
called n-perfect if for any flat object F (resp. F) in A (resp. R), we have pdF ≤ n
(resp. pdF ≤ n).

Lemma 3.2. Let A be an n-perfect category. Then the following conditions hold.

(i) If M is an R-module then, fdM is finite if and only if pdM is finite.

(ii) If M is an R-representation then, fdM is finite if and only if pdM is finite.

Proof. The proof is straightforward.

For more results related to Lemma 3.2 the reader is referred to [14, 16, 20, 21,
22, 23, 24].

Assume that v ∈ VQ and fv : {v} −→ Q is the embedding morphism. As
stated in the previous section, we have the adjoint pair (f ′

v, f
∗
v ) of exact functors,

i.e. we have the following exact functors

f⋆v : Rep(Q,A) −→ Rep({v},A),
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f ′
v : Rep({v},A) −→ Rep(Q,A),

such that for each X ∈ Rep(Q,A) and Y ∈ Rep({v},A) we have the following
isomorphism

HomRep(Q,A)(f
′
v(Y),X ) ∼= HomRep({v},A)(Y, f⋆v (X )),

of Abelian groups. The following result shows that f ′
v preserves flatness in the

sense that it maps flat modules to flat representations.

Lemma 3.3. Let (f ′
v, f

∗
v ) be as above. Then, f ′

v preserves flatness in the sense
that it maps flat modules to flat representations.

Proof. Let F be a flat object in A. By definition, there exists a directed system
{Pi : fij}i∈I of projective left R-modules such that F = lim

−→
i∈I

Pi. Sine f ′
v is a left

adjoint, it preserves directed limits. Hence, f ′
v(F) = f ′

v(lim−→
i∈I

Pi) = lim
−→
i∈I

f ′
v(Pi). So

we are done by Proposition 2.2.

Lemma 3.4. Let F be a vertex-wise flat A-representation of Q. Then, fd(F) ≤ 1.

Proof. By [9, Theorem 4.3], there is a short exact sequence

0 −→ K g−→ M f−→ F −→ 0,

of A-representations of Q such that M is flat. By Proposition 3.1, for each v ∈ VQ,

M(vi) is a flat R-module and for each v ∈ VQ,
⊕

t(a)=vM(i(a))
φM

v−→ M(v) is a
pure monomorphism of flat R-modules. Now consider the following commutative
diagram

0 // ⊕
t(a)=v K(i(a))

φK
v��

i1 // ⊕
t(a)=vM(i(a))

φM
v��

f1 // ⊕
t(a)=v(F(i(a))

φF
v��

// 0

0 // K(v)
i2 // M(v)

f2 // F(v) // 0

where i1 =
⊕

t(a)=v g(i(a)), i2 = g(v), f1 =
⊕

t(a)=v f(i(a)) and f2 = f(v). Now
we show that

⊕
t(a)=v K(i(a)) → K(v) is a pure monomorphism of flat R-modules.

It is known that the class of all flat left R-modules is closed under pure submodules
and pure extensions, so the purity of φM

v , i1 and i2 imply the purity φK
v . Therefore,

by Proposition 3.1, K is a flat A-representation of Q.

Theorem 3.5. FFD(R) < ∞ if and only if FFD(R) < ∞

Proof. Let FFD(R) < +∞ and X be an R-representation of Q of finite flat dimen-
sion. Then, for any v ∈ VQ, X (v) is an R-module of finite flat dimension. So, for
each v ∈ VQ, fdX (v) ≤ FFD(R). Consequently, by Lemma 3.4, fdX ≤ FFD(R)+1.
Therefore, FFD(R) ≤ FFD(R) + 1.
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Conversely, assume that FFD(R) < +∞ and M is a R-module of finite flat
dimension. Let v ∈ VQ be an arbitrary vertex and fv : {v} −→ Q be the inclusion.
Then, by Lemma 3.3, f ′

v(M) is a representation of Q of finite flat dimension.
Therefore, fdf ′

v(M) ≤ FFD(R). So fdM ≤ FFD(R). This implies that FFD(R) ≤
FFD(R) and finished the proof.

Proposition 3.6. Assume that R = Rep(Q, R-Mod). Then, there are positive
integers n and m such that R is m-perfect if and only if R is n-perfect.

Proof. Assume that R is an n-perfect ring and X is a flat R-representation of Q.
Then, for each v ∈ VQ, pdX (v) ≤ n. Then, by Lemma 2.4, pdX ≤ n+1 and hence
m = n+1. Conversely, assume that R is m-perfect and F is a flat R-module. Then
by Lemma 3.3, for an arbitrary v ∈ VQ, f ′

v(F ) is a flat representation of Q and
hence pdf ′

v(F ) ≤ m. Consequently, pdF ≤ m and hence R is m = n-perfect.

Proposition 3.7. Let A be an n-perfect category. Then FPD(R) < ∞ if and only
if FFD(R) < ∞.

Proof. Let FPD(R) < ∞ and X be an object in R of finite flat dimension s.
Then, by Lemma 3.2 and Proposition 3.6, pdX is finite and hence fdX ≤ pdX ≤
FPD(R). Therefore, FFD(R) ≤ FPD(R). The converse is trivial.

Here, we show that a generalization of [15, Proposition 6] holds in the category
R.

Theorem 3.8. Assume that FPD(R) is finite. Then any object in R of finite flat
dimension has finite projective dimension.

Proof. Let FPD(R) be finite. By Theorem 2.5, we deduce that FPD(A) is fi-
nite. Then by [15, Proposition 6], any flat module has finite projective dimension.
Indeed, there exists an integer n such that A is n-perfect. So we are done by
Proposition 3.6.
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