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Abstract

Many graphs are constructed from simpler ones by the use of operations
on graphs, and as a consequence, the properties of the resulting constructions
are strongly related to the properties of their constituents. This paper is
concerned with computing some distance-based graph invariants for three
constructions on graphs namely double graph, extended double cover, and
strong double graph.
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1. Introduction
Topological indices are numerical parameters of a graph that characterize its topol-
ogy and are invariant under graph isomorphism. They are used in the develop-
ment of quantitative structure-activity relationships (QSARs) and quantitative
structure-property relationships (QSPRs) in which the biological activity or other
properties of molecules are correlated with their chemical structure [10]. A large
number of topological indices have been introduced so far with different levels
of success in QSAR/QSPR researches. They are divided into different categories,
two of the most famous of which are distance-based and degree-based indices. One
of the important subcategory of distance-based topological indices is introduced
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based on the graph theoretical notion of eccentricity, most of which have been rec-
ognized as effective tools for predicting pharmaceutical and biological properties
of diverse nature.

Many graphs are formed from simpler ones which serve as their fundamental
building blocks, and as a consequence, the properties of these composite graphs
are strongly related to the properties of their components. Three of them which
have attracted much attention in recent years are double graph, extended double
cover, and strong double graph (see [1, 2, 4, 5, 11, 13, 14, 17]). The purpose of this
paper is to describe the connections between some distance-based graph invariants
of these constructions with the corresponding invariants of their constituents.

2. Definitions and Preliminaries
All over the paper, G is considered to be a simple connected graph with n vertices
and m edges, the vertex and edge sets of which are denoted by V (G) and E(G),
respectively. The notations dG(u), εG(u), and δG(u) related to a vertex u ∈ V (G),
represent the degree of u, eccentricity of u, and sum of degrees of all neighbors of
u in G, respectively. For the edge e = uv ∈ E(G), nu(e|G) represents the number
of vertices of G which are closer to u than to v and similarly for nv(e|G).

Here, we give the definitions and some mathematical properties of double
graph, extended double cover, and strong double graph. Let V (G) = {v1, v2, . . . , vn}.

Definition 2.1. The double graph D[G] of G is made from two distinct copies
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} of G by keeping the primary edge
set of each copy and adding the edges xiyj and xjyi for every edge vivj ∈ E(G).

Evidently, D[G] has 2n vertices and 4m edges. The following results follow
easily from definition 2.1.

Lemma 2.2. The following relations hold.

(i) dD[G](xi) = dD[G](yi) = 2dG(vi).

(ii) εD[G](xi) = εD[G](yi) =

{
2 if εG(vi) = 1,

εG(vi) if εG(vi) ≥ 2.

(iii) δD[G](xi) = δD[G](yi) = 4δG(vi).

(iv) If vivj ∈ E(G), then
nxi

(xixj |D[G]) = nyi
(yiyj |D[G]) = nxi

(xiyj |D[G]) = nyi
(xjyi|D[G]) =

2nvi(vivj |G),
nxj

(xixj |D[G]) = nyj
(yiyj |D[G]) = nyj

(xiyj |D[G]) = nxj
(xjyi|D[G]) =

2nvj (vivj |G).

Remark 1. From part (ii) of Lemma 2.2, it can be easily seen that, if G contains
a vertex of eccentricity 1, then each vertex of D[G] has eccentricity 2.
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Definition 2.3. The extended double cover ED[G] of G is a bipartite graph with
bipartition X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, in which xi is adjacent
with yj if and only if i = j or vivj ∈ E(G).

It is obvious that, ED[G] has 2n vertices and n + 2m edges. The following
results follow directly from Definition 2.3.

Lemma 2.4. The following relations hold.

(i) dED[G](xi) = dED[G](yi) = dG(vi) + 1.

(ii) εED[G](xi) = εED[G](yi) = εG(vi) + 1.

(iii) δED[G](xi) = δED[G](yi) = δG(vi) + 2dG(vi) + 1.

Definition 2.5. The strong double graph SD[G] of G is made by taking two
distinct copies X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} of G by keeping the
primary edge set of each copy and by joining with an edge the vertex xi with the
closed neighborhood of the vertex yi for all 1 ≤ i ≤ n.

It is clear that, SD[G] has 2n vertices and 4m+n edges. The following results
follow directly from definition 2.5.

Lemma 2.6. The following relations hold.

(i) dSD[G](xi) = dSD[G](yi) = 2dG(vi) + 1.

(ii) εSD[G](xi) = εSD[G](yi) = εG(vi).

(iii) δSD[G](xi) = δSD[G](yi) = 4δG(vi) + 4dG(vi) + 1.

(iv) If vivj ∈ E(G), then
nxi

(xixj |SD[G]) = nyi
(yiyj |SD[G]) = nxi

(xiyj |SD[G]) = nyi
(xjyi|SD[G])

= 2nvi(vivj |G)− 1,
nxj

(xixj |SD[G]) = nyj
(yiyj |SD[G]) = nyj

(xiyj |SD[G]) = nxj
(xjyi|SD[G])

= 2nvj (vivj |G)− 1.

(v) For each 1 ≤ i ≤ n, nxi(xiyi|SD[G]) = nyi(xiyi|SD[G]) = 1.

We end this section with the following simple lemma.

Lemma 2.7. For positive real numbers p and q,

1

p+ q
≤ 1

4

(1
p
+

1

q

)
,

with equality if and only if p = q.
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3. Main Results

In this section, we introduce some distance-based invariants of graph G and study
them for double graph, extended double cover, and strong double graph of G. Fol-
lowing the notations introduced in the previous section, let V (G) = {v1, v2, . . . , vn}
and V (D[G]) = V (ED[G]) = V (SD[G]) = {x1, x2, . . . , xn, y1, y2, . . . , yn}. We de-
note by n′ the number of vertices with eccentricity 1 in G.

3.1 Zagreb Eccentricity Indices

Vukičević and Graovac [19] introduced the first and second Zagreb eccentricity
indices of G as

E1(G) =
n∑

i=1

εG(vi)
2
, E2(G) =

∑
vivj∈E(G)

εG(vi)εG(vj),

and Xu et al. [20] proposed the third Zagreb eccentricity index of G as

E3(G) =
∑

vivj∈E(G)

∣∣εG(vi)− εG(vj)
∣∣.

3.1.1 First Zagreb Eccentricity Index

Theorem 3.1. The first Zagreb eccentricity index of D[G] is given by

E1(D[G]) = 2
(
E1(G) + 3n′). (1)

Proof. By Definition 2.1 and Lemma 2.2,

E1(D[G]) =
n∑

i=1

εD[G](xi)
2 +

n∑
i=1

εD[G](yi)
2 = 2

[ ∑
εG(vi)=1

22 +
∑

εG(vi)≥2

εG(vi)
2
]

=2
[ ∑
εG(vi)=1

(22 − 12) +
n∑

i=1

εG(vi)
2
]
= 2

(
3n′ + E1(G)

)
,

from which Equation (1) follows.

From Remark 1 and Theorem 3.1, we conclude that:

Corollary 3.2.

E1(D[G]) =

{
8n if n′ ̸= 0,

2E1(G) if n′ = 0.

The invariant ζ(G) =
∑

u∈V (G) εG(u) is known as the total eccentricity of G.



Three Constructions on Graphs and Distance-Based Invariants 93

Theorem 3.3. The first Zagreb eccentricity index of ED[G] is given by

E1(ED[G]) = 2
(
E1(G) + 2ζ(G) + n

)
. (2)

Proof. By Definition 2.3 and Lemma 2.4,

E1(ED[G]) =

n∑
i=1

εED[G](xi)
2 +

n∑
i=1

εED[G](yi)
2 = 2

n∑
i=1

(
εG(vi) + 1

)2
=2

n∑
i=1

(
εG(vi)

2 + 2εG(vi) + 1
)
= 2

(
E1(G) + 2ζ(G) + n

)
,

from which Equation (2) follows.

Theorem 3.4. The first Zagreb eccentricity index of SD[G] is given by

E1(SD[G]) = 2E1(G). (3)

Proof. By Definition 2.5 and Lemma 2.6,

E1(SD[G]) =
n∑

i=1

εSD[G](xi)
2 +

n∑
i=1

εSD[G](yi)
2 = 2

n∑
i=1

εG(vi)
2 = 2E1(G),

and Equation (3) follows.

3.1.2 Second Zagreb Eccentricity Index

Theorem 3.5. The second Zagreb eccentricity index of D[G] is given by

E2(D[G]) = 4
(
E2(G) + 3

(
n′

2

)
+ 2n′(n− n′)

)
. (4)

Proof. By Definition 2.1 and Lemma 2.2,

E2(D[G]) =
∑

xixj∈E(D[G])

εD[G](xi)εD[G](xj) +
∑

yiyj∈E(D[G])

εD[G](yi)εD[G](yj)

+
∑

xiyj∈E(D[G])

εD[G](xi)εD[G](yj) +
∑

xjyi∈E(D[G])

εD[G](xj)εD[G](yi)

=4
[ ∑

vivj∈E(G):
εG(vi)=εG(vj)=1

(2× 2) +
∑

vivj∈E(G):
εG(vi)=1,εG(vj)=2

(2× 2)

+
∑

vivj∈E(G):
εG(vi),εG(vj)≥2

εG(vi)εG(vj)
]
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=4
[ ∑

vivj∈E(G):
εG(vi)=εG(vj)=1

(
4− (1× 1)

)
+

∑
vivj∈E(G):

εG(vi)=1,εG(vj)=2

(
4− (1× 2)

)

+
∑

vivj∈E(G)

εG(vi)εG(vj)
]
= 4

[
3

(
n′

2

)
+ 2n′(n− n′) + E2(G)

]
,

hence Equation (4) holds.

From Remark 1 and Theorem 3.5, it can be verified that:

Corollary 3.6.

E2(D[G]) =

{
16m if n′ ̸= 0,
4E2(G) if n′ = 0.

The eccentric connectivity index [18] is defined for G as

ξc(G) =
n∑

i=1

dG(vi)εG(vi) =
∑

vivj∈E(G)

(εG(vi) + εG(vj)).

Theorem 3.7. The second Zagreb eccentricity index of ED[G] is given by

E2(ED[G]) = 2E2(G) + E1(G) + 2ξc(G) + 2ζ(G) + n+ 2m. (5)

Proof. From Definition 2.3 and Lemma 2.4,

E2(ED[G]) =
∑

xiyj∈E(ED[G])

εED[G](xi)εED[G](yj)

+
∑

xjyi∈E(ED[G])

εED[G](xj)εED[G](yi) +

n∑
i=1

εED[G](xi)εED[G](yi)

=2
∑

vivj∈E(G)

(
εG(vi) + 1

)(
εG(vj) + 1

)
+

n∑
i=1

(
εG(vi) + 1

)2
=2

∑
vivj∈E(G)

(
εG(vi)εG(vj) +

(
εG(vi) + εG(vj)

)
+ 1

)

+

n∑
i=1

(
εG(vi)

2 + 2εG(vi) + 1
)

=2
(
E2(G) + ξc(G) +m

)
+ E1(G) + 2ζ(G) + n,

that can be simplified to Equation (5).

Theorem 3.8. The second Zagreb eccentricity index of SD[G] is given by

E2(SD[G]) = 4E2(G) + E1(G). (6)
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Proof. From Definition 2.3 and Lemma 2.4,

E2(SD[G]) =
∑

xixj∈E(SD[G])

εSD[G](xi)εSD[G](xj)

+
∑

yiyj∈E(SD[G])

εSD[G](yi)εSD[G](yj)

+
∑

xiyj∈E(SD[G])

εSD[G](xi)εSD[G](yj)

+
∑

xjyi∈E(SD[G])

εSD[G](xj)εSD[G](yi) +
n∑

i=1

εSD[G](xi)εSD[G](yi)

=4
∑

vivj∈E(G)

εG(vi)εG(vj) +
n∑

i=1

εG(vi)
2 = 4E2(G) + E1(G),

from which Equation (6) follows.

3.1.3 Third Zagreb Eccentricity Index

In what follows, the third Zagreb eccentricity index of D[G], ED[G], and SD[G]
are computed. The proofs are similar to those given in Theorems 3.5, 3.7, and 3.8
and are not presented here.

Theorem 3.9. The third Zagreb eccentricity index of D[G], ED[G], and SD[G]
is given by

(i) E3(D[G]) = 4
(
E3(G)− n′(n− n′)

)
.

(ii) E3(ED[G]) = 2E3(G).

(iii) E3(SD[G]) = 4E3(G).

From Remark 1 and part (i) of Theorem 3.9, we reach the following corollary.

Corollary 3.10.

E3(D[G]) =

{
0 if n′ ̸= 0,

4E3(G) if n′ = 0.

3.2 Eccentric Adjacency Index

The eccentric adjacency index of G was put forward by Gupta et al. [8] as

ξad(G) =
n∑

i=1

δG(vi)

εG(vi)
.
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Theorem 3.11. The eccentric adjacency index of D[G] is given by

ξad(D[G]) = 4
(
2ξad(G)−

∑
εG(vi)=1

δG(vi)
)
. (7)

Proof. By Definition 2.1 and Lemma 2.2,

ξad(D[G]) =

n∑
i=1

δD[G](xi)

εD[G](xi)
+

n∑
i=1

δD[G](yi)

εD[G](yi)

=2
[ ∑
εG(vi)=1

4δG(vi)

2
+

∑
εG(vi)≥2

4δG(vi)

εG(vi)

]

=2
[ ∑
εG(vi)=1

(4δG(vi)
2

− 4δG(vi)

1

)
+

n∑
i=1

4δG(vi)

εG(vi)

]
=2

(
− 2

∑
εG(vi)=1

δG(vi) + 4ξad(G)
)
,

from which Equation (7) follows.

The first Zagreb index [9] is defined for G as

M1(G) =
n∑

i=1

dG(vi)
2 =

n∑
i=1

δG(vi) =
∑

vivj∈E(G)

(
dG(vi) + dG(vi)

)
.

Application of Remark 1 and Theorem 3.11 yields:

Corollary 3.12.

ξad(D[G]) =

{
4M1(G) if n′ ̸= 0,
8ξad(G) if n′ = 0.

The inverse total eccentricity index [16] and connective eccentricity index [7] of
G are respectively defined as

ζ−1(G) =
n∑

i=1

1

εG(vi)
, ξce(G) =

n∑
i=1

dG(vi)

εG(vi)
.

Theorem 3.13. The eccentric adjacency index of ED[G] satisfies the following
inequality:

ξad(ED[G]) ≤ 1

2

(
ξad(G) + 2ξce(G) + ζ−1(G) +M1(G) + n+ 4m

)
, (8)

with equality if and only if G ∼= Kn.



Three Constructions on Graphs and Distance-Based Invariants 97

Proof. By Definition 2.3 and Lemma 2.4,

ξad(ED[G]) =
n∑

i=1

δED[G](xi)

εED[G](xi)
+

n∑
i=1

δED[G](yi)

εED[G](yi)
= 2

n∑
i=1

δG(vi) + 2dG(vi) + 1

εG(vi) + 1
.

Application of Lemma 2.7 yields:

ξad(ED[G]) ≤2× 1

4

n∑
i=1

(δG(vi) + 2dG(vi) + 1

εG(vi)
+

δG(vi) + 2dG(vi) + 1

1

)
=
1

2

(
ξad(G) + 2ξce(G) + ζ−1(G) +M1(G) + 4m+ n

)
from which the inequality in Equation (8) holds. By Lemma 2.7, the equality
holds in Equation (8) if and only if for each 1 ≤ i ≤ n, εG(vi) = 1, which implies
that G ∼= Kn.

Theorem 3.14. The eccentric adjacency index of SD[G] is given by

ξad(SD[G]) = 2
(
4ξad(G) + 4ξce(G) + ζ−1(G)

)
. (9)

Proof. By Definition 2.5 and Lemma 2.6,

ξad(SD[G]) =

n∑
i=1

δSD[G](xi)

εSD[G](xi)
+

n∑
i=1

δSD[G](yi)

εSD[G](yi)
= 2

n∑
i=1

4δG(vi) + 4dG(vi) + 1

εG(vi)

=2
(
4ξad(G) + 4ξce(G) + ζ−1(G)

)
,

from which Equation (9) holds.

3.3 Modified Eccentric Connectivity Index
The modified eccentric connectivity index of G was proposed by Ashrafi and Ghor-
bani [3] as

ξc(G) =
n∑

i=1

δG(vi)εG(vi).

In the following theorem, exact expressions for the modified eccentric connec-
tivity index of D[G], ED[G], and SD[G] are presented. The proofs are analogous
to those presented in Subsection 3.2 and are therefore omitted.

Theorem 3.15. The modified eccentric connectivity index of D[G], ED[G], and
SD[G] is given by

(i) ξc(D[G]) = 8
(
ξc(G) +

∑
εG(vi)=1 δG(vi)

)
.

(ii) ξc(ED[G]) = 2
(
ξc(G) + 2ξc(G) + ζ(G) +M1(G) + n+ 4m

)
.
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(iii) ξc(SD[G]) = 2
(
4ξc(G) + 4ξc(G) + ζ(G)

)
.

As a direct consequence of Remark 1 and part (i) of Theorem 3.15, we get the
following corollary.

Corollary 3.16.

ξc(D[G]) =

{
16M1(G) if n′ ̸= 0,
8ξc(G) if n′ = 0.

3.4 Eccentric Harmonic Index

The eccentric version of harmonic index (also called eccentric harmonic index) of
G was introduced by Ediz et al. [6] as

He(G) =
∑

vivj∈E(G)

2

εG(vi) + εG(vj)
.

Theorem 3.17. The eccentric harmonic index of D[G] is given by

He(D[G]) = 2
(
2He(G)−

(
n′

2

)
− n′(n− n′)

3

)
. (10)

Proof. By Definition 2.1 and Lemma 2.2,

He(D[G]) =4
[ ∑

vivj∈E(G):
εG(vi)=εG(vj)=1

2

2 + 2
+

∑
vivj∈E(G):

εG(vi)=1,εG(vj)=2

2

2 + 2

+
∑

vivj∈E(G):
εG(vi),εG(vj)≥2

2

εG(vi) + εG(vj)

]

=4
[ ∑

vivj∈E(G):
εG(vi)=εG(vj)=1

( 2

2 + 2
− 2

1 + 1

)
+

∑
vivj∈E(G):

εG(vi)=1,εG(vj)=2

( 2

2 + 2
− 2

1 + 2

)

+
∑

vivj∈E(G)

2

εG(vi) + εG(vj)

]
= 4

(
− 1

2

(
n′

2

)
− n′(n− n′)

6
+He(G)

)
,

from which Equation (10) follows.

As a direct consequence of Remark 1 and Theorem 3.17, we arrive at:

Corollary 3.18.

He(D[G]) =

{
2m if n′ ̸= 0,
4He(G) if n′ = 0.
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Theorem 3.19. The eccentric harmonic index of ED[G] satisfies the following
inequality:

He(ED[G]) ≤ 1

4

(
2He(G) + ζ−1(G) + n+ 2m

)
, (11)

with equality if and only if G ∼= Kn.

Proof. By Definition 2.3 and Lemma 2.4,

He(ED[G]) =2
∑

vivj∈E(G)

2(
εG(vi) + 1

)
+
(
εG(vj) + 1

) +
n∑

i=1

2

2
(
εG(vi) + 1

) .
Now from Lemma 2.7, we get

He(ED[G]) ≤2× 1

4

∑
vivj∈E(G)

( 2

εG(vi) + εG(vj)
+

2

2

)
+

1

4

n∑
i=1

( 1

εG(vi)
+

1

1

)
=
1

2

(
He(G) +m

)
+

1

4

(
ζ−1(G) + n

)
,

hence the inequality in Equation (11) holds. The equality occurs in Equation (11)
if and only if for each vivj ∈ E(G), εG(vi) + εG(vj) = 2 and for each 1 ≤ i ≤ n,
εG(vi) = 1, which implies G ∼= Kn.

Theorem 3.20. The eccentric harmonic index of SD[G] is given by

He(SD[G]) = 4He(G) + ζ−1(G). (12)

Proof. From Definition 2.5 and Lemma 2.6,

He(SD[G]) =4
∑

vivj∈E(G)

2

εG(vi) + εG(vj)
+

n∑
i=1

2

2εG(vi)
= 4He(G) + ζ−1(G),

and Equation (12) follows.

3.5 Vertex PI index

The vertex PI index of G was introduced by Khadikar [15] as

PIv(G) =
∑

e=vivj∈E(G)

(
nvi(e|G) + nvj (e|G)

)
.

Theorem 3.21. The vertex PI index of D[G] is given by

PIv(D[G]) = 8PIv(G). (13)
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Proof. From Definition 2.1 and Lemma 2.2,

PIv(D[G]) =4
∑

e=vivj∈E(G)

(
2nvi(e|G) + 2nvj (e|G)

)
= 8PIv(G),

and Equation (13) holds.

Theorem 3.22. The vertex PI index of ED[G] is given by

PIv(ED[G]) = 2n(n+ 2m). (14)

Proof. From bipartiteness of ED[G], for each edge e = uv ∈ E(ED[G]), we have
nu(e|ED[G]) + nv(e|ED[G]) = 2n. Hence

PIv(ED[G]) =
∑

uv∈E(ED[G])

(
nu(e|ED[G]) + nv(e|ED[G])

)
= 2n(n+ 2m),

and Equation (14) follows.

Theorem 3.23. The vertex PI index of SD[G] is given by

PIv(SD[G]) = 2
(
4PIv(G) + n− 4m

)
. (15)

Proof. By Definition 2.5 and Lemma 2.6,

PIv(SD[G]) =4
∑

e=vivj∈E(G)

((
2nvi(e|G)− 1

)
+
(
2nvj (e|G)− 1

))
+

n∑
i=1

(
1 + 1

)
=4

(
2PIv(G)− 2m

)
+ 2n,

from which Equation (15) holds.

3.6 Weighted Vertex PI Index
The weighted vertex PI index of G was introduced by Ilić and Milosavljelić [12] as

PIw(G) =
∑

e=vivj∈E(G)

(
dG(vi) + dG(vj)

)(
nvi(e|G) + nvj (e|G)

)
.

Theorem 3.24. The weighted vertex PI index of D[G] is given by

PIw(D[G]) = 16PIw(G). (16)

Proof. From Definition 2.1 and Lemma 2.2,

PIw(D[G]) =4
∑

e=vivj∈E(G)

(
2dG(vi) + 2dG(vj)

)(
2nvi(e|G) + 2nvj (e|G)

)
=16PIw(G),

and Equation (16) follows.
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Theorem 3.25. The weighted vertex PI index of ED[G] is given by

PIw(ED[G]) = 4n
(
M1(G) + n+ 4m

)
. (17)

Proof. By Lemma 2.4 and bipartiteness of ED[G],

PIw(ED[G]) =2n
∑

uv∈E(ED[G])

(
dED[G](u) + dED[G](v)

)
=2n

(
2

∑
vivj∈E(G)

(
(dG(vi) + 1) + (dG(vj) + 1)

)
+ 2

n∑
i=1

(dG(vi) + 1)
)

=4n
(
M1(G) + 4m+ n

)
,

hence Equation (17) holds.

Theorem 3.26. The weighted vertex PI index of SD[G] is given by

PIw(SD[G]) = 4
(
4PIw(G) + 4PIv(G)− 4M1(G) + n

)
. (18)

Proof. From Definition 2.5 and Lemma 2.6,

PIw(SD[G]) =4
∑

e=vivj∈E(G)

((
2dG(vi) + 1

)
+
(
2dG(vj) + 1

))
×
((

2nvi(e|G)− 1
)
+

(
2nvj (e|G)− 1

))
+

n∑
i=1

((
2dG(vi) + 1

)
+
(
2dG(vi) + 1

))
(1 + 1)

=4
∑

e=vivj∈E(G)

(
2
(
dG(vi) + dG(vj)

)
+ 2

)

×
(
2
(
nvi(e|G) + nvj (e|G)

)
− 2

)
+ 4

n∑
i=1

(
2dG(vi) + 1

)
=4

(
4PIw(G)− 4M1(G) + 4PIv(G)− 4m

)
+ 4(4m+ n),

which can be simplified to Equation (18).
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