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Abstract

This paper introduces the concept of auto–Engel polygroups via the heart
of hypergroups and investigates the relation between of auto–Engel poly-
groups and auto–nilpotent polygroups. Indeed, we show that the concept of
heart of hypergroups plays an important role on construction of auto–Engel
polygroups. This study considers the notation of characteristic set in hy-
pergroups with respect to automorphism of hypergroups and shows that the
heart of hypergroups is a characteristic set in hypergroups.
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1. Introduction
In group theory, autocommutators and automorphisms play an important role in
construct of especial groups such as autocommutator groups, auto-Engel groups
and n-auto-Engel groups, where n ∈ N. Moghaddam et al. introduced the con-
cept of autocommutator group, auto-Kappe group, 2-auto-Engel group, auto-Bell
group, via autocommutator and investigated their properties [12, 13]. The hyper-
structure theory as a extension of classical structures, was firstly introduced, by
F. Marty in 1934 [11]. In hyperalgebraic system, the hyperproduct of elements
is a set and so any algebraic system is a hyperalgebraic system. Marty extended
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the concept of groups to hypergroups and other researchers presented the hy-
peralgebraic concepts such as hyperring, hypermodule, hyperfield, hypergraph,
polygroup, multiring, etc. Hyperstructures are applied in several branches of sci-
ences such as artificial intelligence, chemistry and (hyper)complex network [4, 5].
Recently, Hamidi et al. introduced the concept of very thin polygroups, autonilpo-
tent polygroups and showed that under some conditions very thin polygroups are
autonilpotent polygroups and investigate the connection between autonilpotent
polygroups and nilpotent polygroups [2, 3]. More related content about groups
and hypergroups are available in [1, 8, 9, 10].

We introduce a novel fundamental relation on any given hypergroup in such
a way that all fundamental relations are a special case of this relation, so obtain
famous fundamental relations from this novel fundamental relation under some
conditions. The motivation to introduce this relation is obtained from the al-
gebraic connection between of hypergroups and groups. This study applies the
concept of characteristic set and investigates some of its properties in polygroups.
Indeed, we apply the novel fundamental relation and automorphisms of hyper-
groups to construct a characteristic set. A main result of this paper is introduce
to some classes of auto-Engel polygroups via autocommutators and automorphisms
of hypergroups, thus defines the notation of autoEngel polygroups with respect to
the hearts of hypergroups and consequently some class of auto-Engel groups. The
characteristic set has an essential role in construction of auto-Engel polygroups,
especially the heart of every hypergroup as a helpful characteristic set is a base for
definition of auto-Engel polygroups. In final, we obtained a connection between
class of polygroups and auto-Engel groups.

2. Preliminaries

In what follow, we recall some results from [14], that need in our work.
Assume that H ̸= ∅ be an arbitrary set and P ∗(H) = {G | ∅ ̸= G ⊆ H}. Each

map ϱ : H2 −→ P ∗(H) is said to be a hyperoperation, hyperstructure (H, ϱ) is
called a hypergroupoid and for every ∅ ̸= A,B ⊆ H, ϱ(A,B) =

∪
a∈A,b∈B ϱ(a, b).

A hypergroupoid (H, ϱ) together with an associative binary hyperoperation is said
a semihypergroup and a semihypergroup (H, ϱ) is called a hypergroup if for any
x ∈ H, ϱ(x,H) = ϱ(H,x) = H(reproduction axiom). A semihypergroup (H, ϱ) is
said to be a polygroup, if (i) ∃ e ∈ H, ∀ x ∈ H, in a way ϱ(e, x) = ϱ(x, e) =
{x}, (ii) x ∈ ϱ(y, z) concludes that y ∈ ϱ(x, ϑ(z)) and z ∈ ϱ(ϑ(y), x), where
ϑ is an unitary operation on H

(
it follows that ∀ x ∈ H, ∃! ϑ(x) ∈ H i.e e ∈

(ϱ(x, ϑ(x)) ∩ (ϱ(ϑ(x), x)), ϑ(e) = e, ϑ(ϑ(x)) = x
)

and is denoted by (H, ϱ, e, ϑ). A
set ∅ ̸= K ⊆ H is said to be a subpolygroup of H, if ∀ x, y ∈ K, ϱ(x, ϑ(y)) ⊆ K
and it is denoted by K ≤ H. Suppose that (H, ϱ) is a hypergroup. For any
given an equivalence relation ω on H, a hyperoperation σ on H

ω is defined by
σ(ω(a), ω(b)) = {ω(c) | c ∈ ϱ(ω(a), ω(b))}. It is shown that (Hω , σ) is a hypergroup
if and only if ω is a regular equivalence relation and (Hω , σ) is a group if and if only



On Auto–Engel Polygroups 65

ω is a strongly regular equivalence relation [6]. One of famous algebraic relation on
any given hypergroup is β which is defined by aβb ⇐⇒ ∃ u ∈ U(H) s.t {a, b} ⊆ u,
where U(H) is denoted by the set of all finite product of elements of H. The
smallest transitive relation in a way contains β is denoted by β∗ and it means
the transitive closure of β and ( H

β∗ , σ) is said the fundamental group of (H, ϱ). A
map f : H1 → H2 is called a homomorphism of hypergroups if ∀ x, y ∈ H1, we
have f(ϱ1(x, y)) = ϱ2(f(x), f(y)) and it is said to be an isomorphism if it is a
one to one and onto homomorphism. In similar to algebraic system, Aut(H) =
{f : H → H | f is an isomorphism on hypergroup H} is defined. Assume that
φ : H −→ H/β∗ by φ(x) = β∗(x) is the canonical homomorphism, then wH =
{x ∈ H | φ(x) = 1} means heart of H. For any semihypergroup (H, ϱ) and
∅ ≠ A ⊆ H, A is said to be a complete part of H if for all n ∈ N and a1, . . . , an of
H, A ∩ ϱ(a1, . . . , an) ̸= ∅ implies that ϱ(a1, . . . , an) ⊆ A. For each ∅ ≠ X ⊆ H, a
subpolygroup generated by X is the intersection of all subpolygroups of H which
contain X and is denoted by < X >. In every hypergroup H, a commutator of
x, y ∈ H is shown by [x, y] = {h ∈ H | ϱ(x, y) ∩ ϱ(h, y, x) ̸= ∅} and H = L0(H) ⊇
L1(H) ⊇ · · · is called a lower series of H, where for any n ∈ N∗, Ln+1(H) = {h ∈
[x, y] | x ∈ Ln(H), y ∈ H}. Also H = Γ0(H) ⊇ Γ1(H) ⊇ · · · is called a derived
series of H, where for each n ∈ N∗, Γn+1(H) = {h ∈ [x, y] | x, y ∈ Γn(H)}.
A polygroup (H, ϱ, e, ϑ) means a nilpotent polygroup, if for some given integer
n ∈ N, ϱ(ln(H), wH) = wH , where ln+1(H) = ⟨{h ∈ [x, y] | x ∈ ln(H), y ∈ H}⟩
and l0(H) = H (if there exists a smallest integer c in a way that ϱ(lc(H), wH) =
wH , and c is called the nilpotency class for H). Also for each given n ∈ N, get
H ′ = H(1) = ⟨Γ1(H)⟩ and H(n+1) = (H(n))′.

3. Characteristic Set in Hypergroups

In this section, we introduce a fundamental relation on hypergroups in a way it is
a generalization of famous fundamental relations such as β∗ and γ∗ and preserves
their properties . Also the concept of characteristic set in hypergroups is defined
and is obtained some characteristic sets with respect to fundamental relations on
hypergroups and automorphism on hypergroups. In final, we show that the heart
of every hypergroup is a characteristic set.

Definition 3.1. Assume H is a hypergroup and K ⊆ H. Define R1,K = {(x, x) |
x ∈ H)} and ∀ 2 ≤ n ∈ N :

(x, y) ∈ Rn,K ⇔ ∃ (z1, . . . , zn) ∈ Hn, u = ϱ(z1, . . . , zn), ∃ σ ∈ Sn, s.t x ∈ u, y ∈ uσ

and ∀ 1 ≤ i ≤ n, zi ∈ K implies that σ(i) = i, where uσ = ϱ(zσ(i), zσ(i), . . . , zσ(i)).
Obviously, RK =

∪
n≥1 Rn,K is a reflexive and symmetric relation. Let R∗

K

be the transitive closure of RK (the smallest transitive relation in a way that
contains RK). Then we have the following results.
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Example 3.2. Consider the hypergroup (H, ϱ) as follows:

ϱ −2 −4 −6
−2 {−4,−6} {−2} {−2}
−4 {−2} {−4} {−6}
−6 {−2} {−4,−6} {−4,−6}

.

If K = {−2,−4}, then RK = R1,K ∪ {(−4,−6), (−6,−4)} = R∗
K = β∗.

Proposition 3.3. Assume H is a hypergroup and K ⊆ H.

(i) If K = H, then RK = β∗.

(ii) If K = ∅, then RK = γ∗.

Proof. Clearly β∗ ⊆ RK . Let (x, y) ∈ RK , then ∃ (z1, . . . , zn) ∈ Hn, u =
ϱ(z1, z2, . . . , zn) and σ ∈ Sn in a way that x ∈ u, y ∈ uσ and ∀ 1 ≤ i ≤ n, zi ∈ K
implies that σ(i) = i. Now, if K = H, we consider σ = id(identity map) and so
u = uσ. It follows that (x, y) ∈ β∗.

(ii) It is similar to (i).

The Example 3.2, shows that the inverse of Proposition 3.3, is not necessarily
true.

Theorem 3.4. Assume H is a hypergroup and K ⊆ H. Then R∗
K is a strongly

regular relation on H.

Proof. Assume (x, y) ∈ RK and z ∈ H. Then ∃ (z1, . . . , zn) ∈ Hn, u = ϱ(z1, . . . , zn)
and σ ∈ Sn so that x ∈ u, y ∈ uσ and ∀ 1 ≤ i ≤ n, zi ∈ K implies that σ(i) = i.
So we have ϱ(x, z) ⊆ ϱ(u, z), ϱ(y, z) ⊆ ϱ(uσ, z) and zi ∈ K implies that σ(i) = i.
Consider zn+1 = z, α(i) = σ(i), whence i ∈ {1, . . . , n} and α(n+1) = n+1. Thus
ϱ(x, z) ⊆ ϱ(z1, z2, . . . , zn) and ϱ(y, z) ⊆ vα in a way zi ∈ K implies α(i) = i . It
follows that ϱ((x, z)) R∗

K ϱ((y, z)). In a similar way, we have (ϱ(z, x)) R∗
K (ϱ(z, y)).

Hence R∗
K is a strongly regular relation on H.

Lemma 3.5. Assume (H, e) is a polygroup and α ∈ Aut(H). Then α(e) = e.

Proof. Let x ∈ H and α(x) = e, hence we have {e} = {α(x)} = α(ϱ(e, x)) =
ϱ(α(e), α(x)) = ϱ(α(e), e) = {α(e)}.

Definition 3.6. Assume H is a hypergroup and K ⊆ H. Then K is called a
characteristic subset of H, if ∀ α ∈ Aut(H), we have α(K) ⊆ K and will denote
it by K ≺ H. Facility, ∅ ≺ H and H ≺ H.

Example 3.7. Let H = {0,−1,−2,−3,−4,−5,−6}. Then (H, ϱ, 0, ϑ) is a poly-
group in Table 1, where T = {0,−4,−5,−6}. Simple computations show that

Aut(H) = {xy | x ∈ S3, y ∈ SX , where X = {−4,−5,−6}},
S3 ⊴Aut(H), SX ⊴Aut(H), S3 ∩ SX = {e}, Aut(H, ϱ) ∼= S3 × S3,

and ∀ α ∈ Aut(H), we have α(T ) = T and so T ≺ H.
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Table 1: Polygroup H.
ϱ 0 −1 −2 −3 −4 −5 −6
0 0 −1 −2 −3 −4 −5 −6
−1 −1 T −3 −2 −1 −1 −1
−2 −2 −3 T −1 −2 −2 −2
−3 −3 −2 −1 T −3 −3 −3
−4 −4 −1 −2 −3 T T \ {0} T \ {0}
−5 −5 −1 −2 −3 T \ {0} T T \ {0}
−6 −6 −1 −2 −3 T \ {0} T \ {0} T

Example 3.8. [7] Let H = {1, 2, 4, 5, 7, 9,−1}. Then (H, ϱ, 1, ϑ) is a
non–commutative polygroup as follows.

ϱ 1 2 4 5 7 9 −1
1 {1} {2} {4} {5} {7} {9} {−1}
2 {2} {4} {1,−1} {9} {5} {7} {2}
4 {4} {1,−1} {2} {7} {9} {5} {4}
5 {5} {7} {9} {1,−1} {2} {4} {5}
7 {7} {9} {5} {4} {1,−1} {2} {7}
9 {9} {5} {7} {2} {4} {1,−1} {9}
−1 {−1} {2} {4} {5} {7} {9} {1}

.

Thus K = {1,−1} ≺ H.

Theorem 3.9. Assume H is a hypergroup and n ∈ N. Then

(i) Ln(H) is a characteristic subset of H,

(ii) Γn(H) is a characteristic subset of H.

Proof. (i) We prove by induction on n. Let h ∈ Ln+1(H), then ∃ x ∈ Ln(H)
and y ∈ H so that h ∈ [x, y]. It concludes that z ∈ (ϱ(x, y)) ∩ ϱ((h, y, x) and so
α(z) ∈ (ϱ(α(x), α(y))) ∩ (ϱ(α(h), α(y), α(x))). Hence for every α ∈ Aut(H), we
have α(h) ∈ [α(x), α(y)] and using hypotheses of induction, α(h) ∈ Ln+1(H) is
obtained.

(ii) In a similar way of (i), one can show that Γn(H) is a characteristic subset
of H.

Corollary 3.10. Assume H is a hypergroup, K ≺ H and n ∈ N. Then

(i) H \K ≺ H,

(ii) H \ Ln(H) ≺ H,

(iii) H \ Γn(H) ≺ H,
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(iv) if (H, e) is a polygroup, then H \ {e} ≺ H.

Proof. We prove just (i) and other options are obtained from (i) and Theorem 3.9.
(i) Let x ∈ H \ K and α ∈ Aut(H). If α(x) ∈ K, then K ≺ H implies

that x = α−1(α(x)) ∈ K, which is a contradiction. Hence α(x) ∈ H \K and so
α(H \K) ⊆ H \K.

Theorem 3.11. Assume H is a polygroup, K ≺ H and n ∈ N. Then

(i) ⟨K⟩ ≺ H,

(ii) Ln(K),Γn(K) ≺ H,

(iii) H(n), ln(H) ≺ H.

Proof. By Definition and induction on n, the proof is clear.

Theorem 3.12. Assume H is a polygroup, K ≤ H, K ≺ H and α ∈ Aut(K).
Then ∃ α′ ∈ Aut(H) that α′|K = α.

Proof. Let α ∈ Aut(K). Then ∀ x ∈ H, define

α′(x) =

{
α(x) x ∈ K,

x x ̸∈ K.

Since K ≺ H, we have α′ is a well-defined map and clearly α′ ∈ Aut(H).

Example 3.13. Consider dihedral group D8 and K = {1, r2, s, r2s}. Thus K ∼=
Z2 × Z2, Aut(K) ∼= S3 and K ̸≺ D8. Now, α = (s, r2s) ∈ Aut(K) while α′ ̸∈
Aut(D8).

Theorem 3.14. Assume H1, H2 are hypergroups, K1 ⊆ H1 and K2 ⊆ H2. If
K1 ×K2 ≺ H1 ×H2, then K1 ≺ H1 and K2 ≺ H2.

Proof. Let α1 ∈ Aut(H1) and α2 ∈ Aut(H2). Define α = (α1, α2) by α(x, y) =
(α1(x), α2(y)), then clearly α ∈ Aut(H1 ×H2). Since α(K1 ×K2) ⊆ K1 ×K2, we
get that α1(K1) ⊆ K1 and α2(K2) ⊆ K2. Thus K1 ≺ H1 and K2 ≺ H2.

Example 3.15. Consider the groups Z2 and Z2 × Z2. Clearly, {0} ≺ Z2 and
{1} ≺ Z2. Since for α = ((1, 0), (1, 1)) ∈ Aut(Z2 × Z2), α({1} × {0}) = {(1, 1)} ̸⊆
{1} × {0}, we get {1} × {0} ̸≺ Z2 × Z2. Hence the converse of Theorem 3.14, is
not necessarily true.

Lemma 3.16. Assume f : H1 −→ H2 is an isomorphism of hypergroups, K ≺ H1

and K ′ ≺ H2. Then

(i) f(K) ≺ H2,

(ii) f−1(K ′) ≺ H1.
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Proof. (i) Let α ∈ Aut(H2). Then (f−1αf)(K) ⊆ K and so f(K) ≺ H2.
(ii) Since f−1 is an isomorphism, so similar to the item (i), the proof is ob-

tained.

Assume H is a hypergroup, K ⊆ H and α ∈ Aut(H). We define α by α(x) =
α(x), where x ∈ H and x = R∗

K(x) .

Theorem 3.17. Assume H is a hypergroup and α ∈ Aut(H). If K ≺ H, then
α ∈ Aut( H

R∗
K
).

Proof. Let (x, y) ∈ RK and x ̸= y. Then ∃ (z1, . . . , zn) ∈ Hn, u = ϱ(z1, z2, . . . , zn)
and σ ∈ Sn in a way x ∈ u, y ∈ uσ and ∀ 1 ≤ i ≤ n, zi ∈ K implies that
σ(i) = i. Since α ∈ Aut(H), we get ∃ u = ϱ(z1, z2, . . . , zn) and σ ∈ Sn that
α(x) ∈ α(u), α(y) ∈ α(uσ) and ∀ 1 ≤ i ≤ n, α(zi) ∈ K implies that σ(i) = i. Thus
(α(x), α(y)) ∈ RK and (x, y) ∈ R∗

K implies that (α(x), α(y)) ∈ R∗
K .

Theorem 3.18. Assume H is a hypergroup, K ≺ H, G = H/R∗
K and α, θ ∈

Aut(H). Then

(i) α ◦ θ = α ◦ θ,

(ii) α
−1

= α−1,

(iii) Aut(H) = {α | α ∈ Aut(H)} ≤ Aut(G).

Proof. (i) Let x ∈ H. Define α(R∗
K(x)) = R∗

K(α(x)), thus

α ◦ θ(x) = α ◦ θ(x) = α(θ(x)) = α(θ(x)) = α ◦ θ(x),

where x = R∗
K(x). So the proof is obtained.

(ii), (iii) are similar to the item (i).

Theorem 3.19. Assume H is a hypergroup, K ≺ H and π : H −→ H/R∗
K is the

canonical homomorphism. Then wK = {x ∈ H | R∗
K(x) = 1H/R∗

K
} ≺ H.

Proof. Let x ∈ H. If x ∈ wK , then R∗
K(x) = 1H/R∗

K
. Now

1H/R∗
K
= α(1H/R∗

K
) = α(R∗

K(x)) = R∗
K(α(x)),

implies that α(x) ∈ wK and so wK ≺ H.

Corollary 3.20. Suppose H is a hypergroup. Then wH ≺ H.
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3.1 Characteristic-Closure Set in Hypergroups
In this subsection, we apply the concept of characteristic subsets of hypergroups
and introduce the concept of characteristic-closure set in hypergroups. In addition,
the relationship between of characteristic-closure set in hypergroups and heart of
hypergroups investigated.

Assume H is a hypergroup, K1,K2 ≺ H. Then one can see that K1∩K2 ≺ H,
so if {Ki}i∈I is a set of characteristic subsets of H, then

∩
i∈I Ki is a characteristic

subset of H.

Definition 3.21. Suppose A ⊆ H. An intersection of all characteristic subsets
of H which contains A is called characteristic–closure of A in H and it will be
denoted by Cc(A).

Consider T1(A) = A and for every n ∈ N,

Tn+1(A) = {x ∈ H | ∃ α ∈ Aut(H) s.t α(x) ∈ Tn(A)} and T (A) =
∪
n≥1

Tn(A).

Example 3.22. Let H = {3, 5, 7}. Consider the polygroup (H, ϱ) as follows:

ϱ 7 3 5
7 {7} {3} {5}
3 {3} {7, 5} {3, 5}
5 {5} {3, 5} {7, 3}

.

Routine computations show that Aut(H) = {id, α = (3, 5)}. If K1 = {3} and
K2 = {7, 5} then ∀ n ∈ N, we have Tn(K1) = {3, 5} and Tn(K2) = {7, 3, 5}.

Lemma 3.23. Assume H is a hypergroup, n ∈ N and A,B ⊆ H. Then

(i) if A ⊆ B, then Tn(A) ⊆ Tn(B),

(ii) Tn(A ∩B) ⊆ Tn(A) ∩ Tn(B),

(iii) Tn(A ∪B) ⊆ Tn(A) ∪ Tn(B),

(iv) if A is a characteristic subsets of H, then Tn(A) = A.

Proof. We just prove (iii), by induction on n and other items are similar to.
(iii) For n = 1, we have T1(A ∪ B) = A ∪ B = T1(A) ∪ T1(B). Let x ∈

Tn+1(A ∪ B). Then ∃ α ∈ Aut(H) in a way α(x) ∈ Tn(A) ∪ Tn(B) and so
x ∈ Tn+1(A) ∪ Tn+1(B).

Example 3.24. Consider the hypergroup (H, ϱ) in Example 3.7. If A = {0,−4}
and B = {0,−5}, then T (A) = T (B) = T, T (A ∩B) = {0} ̸= T (A) ∩ T (B).

Corollary 3.25. Suppose H is a hypergroup and n ∈ N. Then Tn(Γn(H)) =
Γn(H) and Tn(Ln(H)) = Ln(H).
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Theorem 3.26. Assume H is a hypergroup and A ⊆ H. Then

(i) Cc(A) = T (A),

(ii) Cc(A) =
∪
a∈A

Cc({a}).

Proof. (i) Let α ∈ Aut(H) and x ∈ T (A). Then, ∃ n ∈ N that x ∈ Tn(A). So
we have (α−1 ◦ α)(x) = x ∈ Tn(A) and by definition, α(x) ∈ Tn+1(A). Thus
T (A) ≺ H.

If A ⊆ B and B ≺ H. Then T1(A) = A ⊆ B. Suppose that Tn(A) ⊆ B. For
every x ∈ Tn+1(A) ∃ α ∈ Aut(H), s.t α(x) ∈ Tn(A) ⊆ B, hence hypotheses of
induction and B ≺ H imply (α−1 ◦ α)(x) ∈ B. Thus we get x ∈ B.

(ii) By induction on n, we have Tn(A) ⊆
∪

a∈A Tn({a}). Hence Cc(A) =∪
a∈A Cc({a}).

Corollary 3.27. Suppose (H, ϱ, e) is a polygroup. Then

(i) Cc(∅) = ∅,

(ii) Cc({e}) = {e},

(iii) Cc(H ∖ {e}) = H ∖ {e},

(iv) Cc(wH) = wH .

From now on, ∀ x ∈ H and n ∈ N, we denote Tn({x}) by Tn(x) and
(Cc({x}))T ({x}) by (Cc(x))T (x).

Lemma 3.28. Assume H is a hypergroup and n ∈ N. Then

(i) ∀ x ∈ H, we have Tn(T2(x)) = Tn+1(x),

(ii) ∀ x, y ∈ H, x ∈ Tn(y) ⇔ y ∈ Tn(x).

Proof. (i) Clearly, T1(T2(x)) = T2(x). Now, by induction, if Tn−1(T2(x)) = Tn(x),
Then

Tn(T2(x)) = {x | ∃ α ∈ Aut(H) : α(x) ∈ Tn−1(T2(x))}
= {x | ∃ α ∈ Aut(H) : α(x) ∈ Tn(x)} = Tn+1(x).

(ii) Clearly, x ∈ T1(y) ⇔ y ∈ T1(x). Let ∀x, y ∈ H,

x ∈ Tn−1(y) ⇔ y ∈ Tn−1(x).

If x ∈ Tn(y), then ∃ α ∈ Aut(H) s.t α(x) ∈ Tn−1(y). Using hypotheses of in-
duction, we conclude that y ∈ Tn−1(α(x)). In addition, α−1(α(x)) = x ∈ T1(x)
implies that α(x) ∈ T2(x). Hence

y ∈ Tn−1(α(x)) ⊆ Tn−1(T2(x)) = Tn(x).
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Lemma 3.29. Assume H is a hypergroup. Then S = {(x, y) ∈ H×H | x ∈ T (y)},
is an equivalence relation on H.

Proof. Clearly {x} ⊆ T (x), so S is a reflexive relation and by Lemma 3.28, S
is a symmetric relation. Now, suppose that (x, y) ∈ S and (y, z) ∈ S. If z ∈
B ≺ H, then y ∈ Cc(y) ⊆ B and consequently x ∈ Cc(y) ⊆ B. It follows that
x ∈

∩
z∈B≺H

B = Cc(z) and so x ∈ Cc(z) = T (z). Thus (x, z) ∈ S and so S is an

equivalence relation on H.

Suppose H is a hypergroup and R = {(x, y) | ∃ α ∈ Aut(H) s.t α(x) = y}.
Obviously, R is an equivalence relation on H.

Theorem 3.30. Suppose H is a hypergroup. Then

(i) S = R,

(ii) for x ∈ H, R(x) ≺ H.

Proof. (i) Let x, y ∈ H. Then

(x, y) ∈ S ⇒ x ∈ T (y) ⇒ ∃ n ∈ N s.t x ∈ Tn(y)

⇒ ∃ α1 ∈ Aut(H) s.t α1(x) ∈ Tn−1(y)

⇒ ∃ α2 ∈ Aut(H) s.t α2(α1(x)) ∈ Tn−2(y)

Thus by induction,

∃ αn−1 ∈ Aut(H) s.t αn−1(αn−2(· · · (α2(α1(x))) · · · )) ∈ T1(y) = {y},

and so (x, y) ∈ R.
Conversely, (x, y) ∈ R implies that

∃ α ∈ Aut(H) s.t α(x) = y ∈ T1(y) ⇒ x ∈ T2(y) ⇒ (x, y) ∈ S.

(ii) By definition, the proof is obtained.

Theorem 3.31. Assume H is a hypergroup and A ⊆ H. Then

Cc(A) =
∪

α∈Aut(H)

α(A).

Proof. Let x ∈ H. Then

x ∈ Cc(A) ⇔ ∃ a ∈ A s.t x ∈ Cc(a) = T (a)

⇔ ∃ a ∈ A and ∃ α ∈ Aut(H) s.t x = α(a) ⇔ x ∈
∪

α∈Aut(H)

α(A).
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Theorem 3.32. Suppose H is a hypergroup and K ≺ H. Then

(i) if x ∈ wK , then Cc(x) ⊆ wK ,

(ii) if x ∈ wH , then Cc(x) ⊆ wH .

Proof. (i), (ii) Since {x} ⊆ wK , by Lemma 3.23, we have Cc(x) ⊆ wK .

Example 3.33. Consider the hypergroup H in Example 3.8. Facility wH =
{1,−1}, while Cc(−1) = {−1}. So In Theorem 3.32, necessarily, Cc(x) ̸= wK .

Corollary 3.34. Let ∅ ̸= A ⊆ H and x ∈ H. Then

(i) Cc(x) = R(x),

(ii) Cc(A) =
∪
a∈A

R(a).

Proof. (i), (ii) Let x ∈ H. Then x ∈ Cc(A) if and only if ∃ α ∈ Aut(H) s.t x ∈
α(A) if and only if ∃ α ∈ Aut(H) and a ∈ A in a way x = α(a) if and only if
∃ a ∈ A s.t x ∈ R(a) if and only if x ∈

∪
a∈A

R(a).

4. Auto–Engel Polygroups
In this section, we introduce the concept of autocommutators via the automor-
phisms of hypergroups and define the notation of auto–Engel polygroups with
respect to the hearts of hypergroups. Moreover, we consider some conditions to
construct of auto–Engel polygroups(auto–Engel groups) via the general fundamen-
tal relation and automorphisms of hypergroups.

Assume H is a hypergroup, x ∈ H and α ∈ Aut(H). Define [x, α] = {h ∈
H | x ∈ ϱ(h, α(x))} and will call an autocommutator of x and α. Inductively,
∀ α1, α2, . . . , αn ∈ Aut(H), [x, α1, α2, . . . , αn] =

[
x, α1, α2, . . . , αn−1], αn

]
is an

autocommutator of x, α1, α2, . . . , αn of weight n + 1, where ∀ X ⊆ H we have
[X,α] =

∪
x∈X [x, α].

Example 4.1. Let H = {1, 2, 3, 4, 5, 6, 7}. Then (H, ϱ, 1, ϑ) is a non–commutative
polygroup as follows:

ϱ 1 2 3 4 5 6 7
1 {1} {2} {3} {4} {5} {6} {7}
2 {2} {1, 2} {3} {4} {5} {6} {7}
3 {3} {3} {1, 2} {7} {6} {5} {4}
4 {4} {4} {6} {1, 2} {7} {3} {5}
5 {5} {5} {7} {6} {1, 2} {4} {3}
6 {6} {6} {4} {5} {3} {7} {1, 2}
7 {7} {7} {5} {3} {4} {1, 2} {6}

.
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If α1 = (3, 4, 5), α2 = (3, 5, 4) and α3 = (6, 7), then clearly ∀ x ∈ {2, 6, 7}, [x, α1] =
{1, 2} and ∀ x ∈ {3, 4, 5}, [x, α1] = {7}. Also computations show that ∀ x ̸=
1, [x, α1, α2] = {1, 2}, ∀ x ∈ {2, 6, 7}, [x, α1, α3] = {1, 2}, ∀ x ∈ {3, 4, 5},
[x, α1, α3] = {6} and ∀ x ̸= 1, [x, α1, α2, α3] = {1, 2}.
Theorem 4.2. Let (H, e) be a polygroup, x ∈ H, K ≺ H and α ∈ Aut(H). Then

(i) [x, id] = [e, x] = ϱ(x, ϑ(x)) and [e, α] = e,

(ii) [x, α] = ϱ(x, α(ϑ(x)),

(iii) R∗
K([x, α]) = [R∗

K(x), α],

(iv) ϑ([x, α]) = [α(x), α−1],

Proof. We prove only (iv). Let x ∈ H. Then we have

ϑ([x, α]) = ϑ(ϱ(x, α(ϑ(x))) = ϱ(α(x), ϑ(x)) = [α(x), α−1].

Suppose H is a hypergroup. Define A0,α(H) = H, for every n ∈ N∗,
An+1,α(H) = {h ∈ [x, α] | x ∈ An,α(H)} and An(H) =

∪
α∈Aut(H) An,α(H).

Example 4.3. Consider the hypergroup (H, ϱ) in Example 4.1. If α = (6, 7),
then A0,α(H) = H and ∀ n ≥ 1 we have An,α(H) = {1, 2, 6, 7}. Also α = (3, 4, 5),
∀ n ≥ 2 implies that An,α(H) = {1, 2}, An(H) = {1, 2, 6, 7} and ∀ n ≥ 1, An,id =
{1, 2}.
Theorem 4.4. Assume H is a hypergroup, n ∈ N∗ and α ∈ Aut(H). Then

(i) An+1,α(H) ⊆ An,α(H) and An+1(H) ⊆ An(H),

(ii) An,α(H) = {h ∈ [x,n α] | x ∈ H},

(iii) An,id(H) ⊆ wH ,

(iv) An(H) =
∪

α∈Aut(H)

∪
x∈H

[x,n α] .

Proof. We prove by induction on n.
(i) Let h ∈ An+2,α(H). Then ∃ x ∈ An+1,α(H) s.t h ∈ [x, α]. Using the

hypotheses of induction, x ∈ An,α(H). It follows that h ∈ [x, α] and so h ∈
An+1,α(H). Thus by definition, we get An+1(H) ⊆ An(H).

(ii) An+1,α(H) = {h ∈ [x, α] | x ∈ An,α(H)}. By induction, we have

An+1,α(H) =
∪

y∈An,α(H)

[y, α] =
∪

y∈ ∪[x,n α]
x∈H

[y, α] =
∪
x∈H

[
[x,n α], α

]

=
∪
x∈H

[x,n+1 α].

Other items are obtained in a similar way by induction on n.
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Definition 4.5. Suppose H is a polygroup and α ∈ Aut(H). Then H is called:

(i) an α-auto–Engel polygroup, if ∀ x ∈ H ∃ n ∈ N in a way [x,n α] ⊆ wH(α is
fixed),

(ii) an (n, α)-auto–Engel polygroup, if ∀ x ∈ H, [x,n α] ⊆ wH(α and n are fixed),

(iii) an n-auto–Engel polygroup, if ∀ x ∈ H and ∀ α ∈ Aut(H), [x,n α] ⊆ wH(n
is fixed),

(iv) an auto–Engel polygroup, if ∀ x ∈ H and ∀ α ∈ Aut(H) ∃ n ∈ N s.t [x,n α] ⊆
wH ,

Example 4.6. Let H = {1,−2,−6}. Then (H, ϱ, 1, ϑ) is a polygroup as follows:

ϱ 1 −2 −6
1 {1} {−2} {−6}
−2 {−2} {1,−6} {−2,−6}
−6 {−6} {−2,−6} {1,−2}

.

Clearly Aut(H) = {id, α = (−2 − 6)} and Aut(H) = Aut(H/β∗). In addition, for
every n ∈ N, x ∈ H and α ∈ Aut(H) we have [x,n α] ⊆ wH . It concludes that H
is an auto-Engel polygroup.

Example 4.7. Let H = Z6 ∪ {
√
2}. Then (H,+, 0) is a polygroup as follows:

+ 0 1 2 3 4 5 {
√
2}

0 {0} {1} {2} {3} {4} {5} {
√
2}

1 {1} {2} {3} {4} {5} {0,
√
2} {1}

2 {2} {3} {4} {5} {0,
√
2} {1} {2}

3 {3} {4} {5} {0,
√
2} {1} {2} {3}

4 {4} {5} {0,
√
2} {1} {2} {3} {4}

5 {5} {0,
√
2} {1} {2} {3} {4} {5}√

2 {
√
2} {1} {2} {3} {4} {5} {0}

Since ∀ n ≥ 1, α ̸= id, An,α(H) = {0,
√
2, 2, 4} and wH = {0,

√
2}, we get that H

is not an auto-Engel polygroup.

Corollary 4.8. Assume n ∈ N, H is a polygroup and α ∈ Aut(H). Then the
following hold:

(i) Every polygroup is an id–auto–Engel polygroup (id is the identity
automorphism).

(ii) Every n–auto–Engel polygroup is an (n, α)–auto–Engel polygroup.

(iii) Every n–auto–Engel polygroup is an auto–Engel polygroup.



76 A. Mosayebi-Dorcheh, M. Hamidi and R. Ameri

Theorem 4.9. Suppose H is a polygroup. Then

(i) H is an (n, α)- auto–Engel polygroup if and only if An,α(H) ⊆ wH ,

(ii) H is an n-auto–Engel polygroup if and only if ∀ α ∈ Aut(H), An,α(H) ⊆ wH .

Proof. By Theorem 4.4, the proof is obtained.

Suppose H is a hypergroup. Define K0(H) = H and for every n ∈ N∗,
Kn+1(H) = {h ∈ [x, α] | x ∈ Kn(H), α ∈ Aut(H)}. H is called an autonilpotent
polygroup of class at most n, if Kn(H) ⊆ wH [2].

Theorem 4.10. Assume H is a hypergroup and n ∈ N∗. Then An(H) ⊆ Kn(H).

Proof. By induction on n, for n = 0, we have A0,α(H) = H ⊆ K0(H). Let
h ∈ An+1,α(H), then ∃ x ∈ An,α(H) s.t h ∈ [x, α]. Applying of hypotheses of
induction we get that x ∈ Kn(H) and so h ∈ Kn+1(H).

Corollary 4.11. Assume H is a polygroup, then

(i) If H be an autonilpotent polygroup then H is an auto-Engel polygroup.

(ii) If H be an n-auto–Engel polygroup then H is an (n + 1)−auto-Engel poly-
group.

(iii) H is an n-auto–Engel polygroup if and only if An(H) ⊆ wH .

Proof. By Theorems 4.4 and 4.9, it is clear.

Example 4.12. Consider the hypergroup (H, ϱ) in Example 4.1. Computations
show that wH = {1, 2} and ∀ n ∈ N, we have Kn(H) = {1, 2, 6, 7}. If α1 =
(3, 4, 5) and α2 = (6, 7), then ∀ 2 ≤ n ∈ N, x ∈ H we have [x,n α1] = {1, 2} and
∀ 1 ≤ n ∈ N, we have [6,2n α2] = {6} and [6,2n−1 α2] = {7}. Thus ∀ n ≥ 2,H is
an (n, α1)-auto–Engel polygroup, while it is not an (n, α2)-auto–Engel polygroup
and it is not an auto-nilpotent polygroup.

Example 4.13. (i) Consider the polygroup H in Example 4.7. Since ∀ n ≥ 1, α ̸=
id,Kn(H) = {0,

√
2, 2, 4} and wH = {0,

√
2}, we get that H is not an autonilpotent

polygroup, while it is a nilpotent polygroup and an Engel polygroup.
(ii) Let G = D8 = {e, a, a2, a3, b, ab, a2b, a3b, }. Routine computations show

that

Aut(G) = {αi,j : G → G | αi,j(a) = ai, αi,j(b) = ajb, s.t i ∈ {1, 3}, j ∈ {0, 1, 2, 3}}.

Hence we obtain that K1(G) = ⟨a⟩,K2(G) = ⟨a2⟩ and K3(G) = {e}.
So ∀ n ≥ 3, we have Kn(G) = {e}. It follows that G is an autonilpotent group

and by Corollary 4.11, G is an n-auto-Engel polygroup.
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Example 4.14. Let G = S3 = {e, a, a2, b, ab, a2b}. Routinely,

Aut(G) = {αi,j : G → G | αi,j(a) = ai, αi,j(b) = ajb, s.t i ∈ {1, 2}, j ∈ {0, 1, 2}}.

Then we have

A1,α1,j (G) = {e, a−j}, A2,α1,j (G) = {e},

and ∀ n ≥ 1 , An,α2,j (G) = ⟨a⟩. So G is not an auto-Engel polygroup but it is an
(n, α1,j)-auto-Engel polygroup.

Theorem 4.15. Assume H is a hypergroup, G = H/R∗
K and K ≺ H. If Aut(G) ⊆

Aut(H), then

(i) Kn(G) = {h | h ∈ Kn(H)},

(ii) if K = H, then H is an autonilpotent polygroup if and only if G is an
autonilpotent group.

Proof. (i) We prove by induction on n. Let a ∈ Kn+1(G). Then ∃ α ∈ Aut(G)
and x ∈ Kn(G) s.t a = [x, α]. Thus ∃ α0 ∈ Aut(H) that α0 = α. Using induction
hypotheses, ∃ t ∈ Kn(H) s.t x = t. If b ∈ [t, α0], then b ∈ Kn+1(H) and b =
[x, α0] = [x, α] = a. The converse is clear.

(ii) Assume H is an autonilpotent polygroup. Then ∃ n ∈ N in a way Kn(H) ⊆
wH . It follows that Kn(G) ⊆ {e}. The converse is similarly.

Theorem 4.16. Suppose H is a hypergroup, G = H/R∗
K , α ∈ Aut(H) and K ≺

H. Then

(i) An,α(H) = {h | h ∈ An,α(H)} = An,α(G),

(ii) If K = H, then H is an (n, α)–auto–Engel polygroup, if and only if G is an
(n, α)–auto–Engel group.

Proof. It is similar to proof of Theorem 4.15.

Proposition 4.17. Assume H1, H2 are hypergroups, α1 ∈ Aut(H1), α2 ∈ Aut(H2)
and (α1, α2) = α ∈ Aut(H1 ×H2) by α(x, y) = (α1(x), α2(y)). Then

(i) Kn(H1)×Kn(H2) ⊆ Kn(H1 ×H2),

(ii) An,α1(H1)×An,α2(H2) ⊆ An,α(H1 ×H2),

(iii) if H1 × H2 is an (n, α)-auto-Engel polygroup, then H1 is an (n, α1)-auto-
Engel polygroup and H2 is an (n, α2)-auto-Engel polygroup.

(iv) if H1 ×H2 is an n-auto-Engel polygroup, then H1 and H2 are n-auto-Engel
polygroups.
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Proof. (i) We prove by induction. Let (h1, h2) ∈ Kn+1(H1) × Kn+1(H2). Then
∃ x1 ∈ Kn(H1), x2 ∈ Kn(H2), α1 ∈ Aut(H1) and α2 ∈ Aut(H2) s.t h1 ∈ [x1, α1]
and h2 ∈ [x2, α2]. Define α = (α1, α2) by α(x, y) = (α1(x), α2(y)). Clearly
α ∈ Aut(H1×H2) and so by induction hypotheses, (x1, x2) ∈ Kn(H1)×Kn(H2) ⊆
Kn(H1 ×H2). So (h1, h2) ∈ [(x1, x2), (α1, α2)] ⊆ Kn+1(H1 ×H2).

In a similar way the items (ii) and (iii) hold.

(v) By item (ii) it is clear.

Example 4.18. Consider the groups Z2 and Z2 × Z2. Clearly K1(Z2) = {0},
K1(Z2×Z2) = {[x, α] | x ∈ Z2×Z2, α ∈ Aut(Z2×Z2)}. Now, for α = ((1, 0), (1, 1))
and for all x, we have [x, α] ⊆ K1(Z2 × Z2)). Thus {(0, 0), (0, 1)} ⊆ K1(Z2 × Z2),
while {(0, 0), (0, 1)} ̸⊆ K1(Z2)×K1(Z2) = {e}. Hence the converse of Proposition
4.17, is not necessarily true.

Corollary 4.19. Assume H is an (auto–Engel)n–auto–Engel polygroup, K ≤ H
and K ≺ H, then K is an (auto–Engel)n–auto–Engel polygroup.

Proof. By Theorem 3.12, the proof is obtained.

Corollary 4.20. If H is a polygroup and |Aut(H)| = 1, then H is an auto–Engel
polygroup.

Proof. Since |Aut(H)| = 1, by Theorem 4.4, for all n ∈ N, we get An(H) ⊆ wH .
Thus H is an auto–Engel polygroup.

Theorem 4.21. Assume H is a polygroup, K = H, G = H/R∗
K and α ∈ Aut(H).

If Aut(G) ⊆ Aut(H), then

(i) H is an n–auto-Engel polygroup if and only if G is an n–auto-Engel group,

(ii) H is an auto-Engel polygroup if and only if G is an auto-Engel group,

(iii) H is an (n, α)–auto-Engel polygroup if and only if G is an (n, α)–auto-Engel
group,

(iv) H is an autonilpotent polygroup if and only if G is an autonilpotent group.

Proof. We prove just (i), the other items are similar to (i). Suppose H is an
n–auto-Engel polygroup and α ∈ Aut(G). Since Aut(G) ⊆ Aut(H), we get
α ∈ Aut(H) and so ∃ β ∈ Aut(H) s.t β = α. Now, by Theorem 4.16, we have
An,α(G) = An,β(H) = {1}, because of An,β(H) ⊆ wH . The converse is obtained
in a similar way.

In Example 4.12, using definition we show that H is not an auto-Engel poly-
group. Now, apply the Theorem 4.21, and show that H is not an auto-Engel
polygroup.
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Example 4.22. Consider the polygroup in Example 4.12. If K = H, then rou-
tinely G = H/R∗

K
∼= S3 and so by Example 4.14, H is not an auto-Engel polygroup.

In addition, for every j ∈ {0, 1, 2} , G is an (n, α1,j)-auto-Engel group and so H is
an (n, αj)-auto Engel polygroup where α0 = id, α1 = (3, 4, 5), α2 = (3, 5, 4), αj =
α1,j .

If K = ∅, then Aut(H/R∗
K) = {id} and ∀ n ∈ N we have An(H/R∗

K) = {1}.
It follows that H/R∗

K is an auto-Engel group. It follows that Theorem 4.21, in
general is not true.

Definition 4.23. Assume H is a polygroup, n ∈ N∗ and α ∈ Aut(H). Define
Z0,α(H) = wH , Zn+1,α(H) = {x | [x, α] ⊆ Zn,α(H)} and

Zn(H) =
∩

α∈Aut(H)

Zn,α(H).

Example 4.24. Consider G = S3. By Example 4.14, ∀ n ≥ 2, we get that
Zn,α1,j (G) = G, Zn,α2,0(G) = {e, b}, Zn,α2,1(G) = {e, a2b} and Zn,α2,2(G) =
{e, ab}.

Example 4.25. Consider the dihedral polygroup G = D8. By Example 4.13,
∀ n ≥ 2, we obtain Zn,α1,j (G) = Zn+1,α3,j (G) = G.

Theorem 4.26. Assume H is a polygroup, x ∈ H, α ∈ Aut(H) and n ∈ N∗.
Then

(i) Zn,α(H) ⊆ Zn+1,α(H) and so wH ⊆ Zn,α(H),

(ii) Zn,α(H) is a complete part of H,

(iii) [x, id] ⊆ Zn,α(H),

(iv) if |Aut(H)| = 1, then Zn+1,α(H) = H.

Proof. (i) By Corollary 3.20, we have α(wH) ⊆ wH . Hence we get that Z0,α(H) ⊆
Z1,α(H) and so by induction the proof is obtained.

(ii) By item (i), wH ⊆ Zn,α(H) implies that C(Zn,α(H)) = Zn,αϱ((H), wH) =
Zn,α(H). Thus Zn,α(H) is a complete part of H.

(iii) It is obtained from the item (i).
(iv) It is clear.

Theorem 4.27. Suppose H is a polygroup, n ∈ N and α ∈ Aut(H). Then
An,α(H) ⊆ wH if and only if Zn,α(H) = H.

Proof. Let Zn,α(H) = H. Then by induction on i, we have Ai,α(H) ⊆ Zn−i,α(H).
Now for i = n we obtain that An,α(H) ⊆ Z0,α(H) = wH .

Conversely, if An,α(H) ⊆ wH , then by induction we conclude An−i,α(H) ⊆
Zi,α(H). Letting i = n implies that H = A0,α(H) ⊆ Zn,α(H) ⊆ H.



80 A. Mosayebi-Dorcheh, M. Hamidi and R. Ameri

Corollary 4.28. Assume H is a polygroup, n ∈ N and α ∈ Aut(H). Then

(i) H is an (n, α)-auto-Engel polygroup if and only if Zn,α(H) = H;

(ii) H is an n-auto-Engel polygroup if and only if Zn(H) = H.

Example 4.29. Consider the polygroup (H, ϱ) in Example 4.6. Thus ∀ n ∈ N, α ∈
Aut(H) we have An,α(H) ⊆ wH . Hence Zn,α(H) = H and so Zn(H) = H.

Theorem 4.30. Assume H is an n-auto-Engel polygroup and H ̸= wH . Then,
∀ α ∈ Aut(H) we have Z1,α(H) ̸= wH .

Proof. If ∃ α ∈ Aut(H) s.t Z1,α(H) = wH , then

Z2,α(H) = {x | [x, α] ⊆ Z1,α(H) = wH} = Z1,α(H) = wH ,

so H = Zn,α(H) = wH , which is a contradiction.

Theorem 4.31. Suppose G is a group and Aut(G) = Inn(G). Then G is an
n-auto-Engel group if and only if G is an n-Engel group.

Proof. Let α ∈ Aut(G),then ∃ y ∈ G s.t [x, α] = [x, y], for every x ∈ G.Thus by
induction on n, we have [x,n α] = [x,n y], ∀ x ∈ G.

Theorem 4.32. Assume (G, e) is an n–auto–Engel group. Then G is an n–Engel
group

Proof. Let x, y ∈ G and φy ∈ Inn(G). Then [x, y] = [x, φy] and by induction
on n we get that [x,n y] = [x,n φy]. Since G is an n–auto–Engel group, for every
α ∈ Aut(G) we have An,α(G) = {e}. It follows that ∀ x, y ∈ G, [x,n y] = 1.

Theorem 4.33. Assume H is a polygroup and n ∈ N. H is an n–Engel polygroup
if and only if H/β∗ is an n–Engel group.

Proof. By induction on n, we have β∗([x,n y]) = [β∗(x),n β
∗(y)], hence the proof

is obtained.

Corollary 4.34. Assume n ∈ N, H is a n–auto–Engel polygroup, G = H/β∗ and
Aut(G) ⊆ Aut(H). Then H is an n–Engel polygroup.

Proof. Using Theorem 4.21, G is an n–auto–Engel group and by Theorem 4.32, G
is an n–Engel group. Now Theorem 4.33, implies that H is an n–Engel polygroup.

Corollary 4.35. Assume H is a polygroup, n ∈ N and α ∈ Aut(H). Then we
have the tree diagram HT in Figure 1.
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Figure 1: Tree diagram HT of polygroup H.

5. Conclusion

The current paper introduced a fundamental relation on hypergroups in such a
way that under some conditions is a generalization of β∗ and γ∗. Also

(i) The concept of characteristic subset of hypergroups is introduced and is
shown that the heart of every hypergroup is a characteristic subset of hyper-
group.

(ii) By using the concept of automorphisms and fundamental relation on hyper-
groups, we obtain some characteristic subset of hypergroup.

(iii) The notation of characteristic-cluster subset of hypergroups is defined and
the relation between of characteristic-cluster subset and the heart of hyper-
groups is investigated.

(iv) With respect to the concept of characteristic-cluster subset and the hearts
of hypergroups the concept of auto–Engel polygroups is defined.

(v) Through the concept of complete parts and fundamental relations , the rela-
tion between of some class of auto–Engel polygroups and Engel polygroups
are considered and is shown in a Hass diagram.

We try to that these results are helpful in next studies in Engel–groups. In our
next papers, we try to obtain more results regarding Engel–polygroups, groups,
and their applications.
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