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Abstract

In this paper, by applying analytic combinatorics, we obtain an asymp-
totics for the t-th moment of the number of phrases of length ℓ in the
Lempel-Ziv parsing algorithms built over a string generated by an asym-
metric Bernoulli model. We show that the t-th moment is approximated by
its Poisson transform.
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1. Introduction

The Lempel-Ziv (LZ) algorithm is an algorithm for lossless data compression.
These algorithms are used in compression utilities such as GIF image compression
and gzip [1, 15].

The idea of the LZ parsing algorithm is to partition a sequence over a finite
alphabet (here Σ = {0, 1}) into phrases (or blocks) of variable sizes such that a
new phrase is the shortest substring not seen in the past as a phrase. For example,
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Figure 1: A digital tree representation of string 110010100010001000.

the string 110010100010001000 is parsed into

1− 10− 0− 101− 00− 01− 000− 100.

See Figure 1 for the digital tree representation of LZ’s parsing for the above string.

These algorithms play a crucial role in a universal data compression scheme
[4, 5, 8, 9, 10, 12, 13, 14, 15]. Here, we discuss on the t-th moment of the number
of phrases in this algorithm. Let Xn,ℓ be the random number of phrases of length
ℓ in the LZ algorithm built over n phrases for an asymmetric Bernoulli model
(each string is a binary i.i.d. sequence with p being the probability of a "1"
(0 < p < q < 1)). First, we show the Poisson generating function of E(X2

n,ℓ)
(namely, Dℓ,2(x)) satisfies the following functional-differential equation

D
′

ℓ,2(x) +Dℓ,2(x) = Dℓ−1,2(px) +Dℓ−1,2(qx) + 2Dℓ−1,1(px)Dℓ−1,1(qx), (1)

with D0,2(x) = 1− e−x. The equation (1) translates into a new equation that we
solve it by introducing two appropriate operators. Then we prove Theorem 2.1 that
is crucial for the solution of our problem. Finally, we show that µn,ℓ,t = E(Xt

n,ℓ)
is asymptotically equal to Dℓ,t(n) for t = 2, 3, . . ..

2. The Main Results
Because it is not possible to determine the probability function of the random
variable Xn,ℓ by probabilistic method, we use the combinatorial method. As it
is natural in enumeration problems related to labelled structures, we define the
exponential generating functions

fℓ,i(x) =
∑
n≥0

E(Xi
n,ℓ)

xn

n!
, i ≥ 1.
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and their Poisson transforms, i.e., Dℓ,i(x) = e−xfℓ,i(x). By the same method of
[2, 7, 11] and the relation introduced in Section 1, for Pn,ℓ(u) = E(uXn,ℓ) we have

Pn+1,ℓ(v) =
n∑

i=0

(
n

i

)
piqn−iPi,ℓ−1(v)Pn−i,ℓ−1(v),

with initial conditions P0,ℓ(v) = 1 for ℓ ≥ 1, P0,0(v) = v, Pn,0(v) = 1 for n ≥ 1.
First, we focus on the case t = 2. The function Gℓ(x, v) as

Gℓ(x, v) =
∑
n≥0

Pn,ℓ(v)
xn

n!
,

fulfills the following functional recurrence

∂

∂x
Gℓ(x, v) = Gℓ−1(px, v)Gℓ−1(qx, v), ℓ ≥ 1,

with initial conditions G0(x, v) = v + ex − 1 and Gℓ(0, v) = 1 (ℓ ≥ 1). By taking
second derivatives with respect to v (and setting v = 1) we obtain for fℓ,2(x) fulfills
the following functional recurrence

f
′

ℓ,2(x) = eqxfℓ−1,2(px) + epxfℓ−1,2(qx) + 2fℓ−1,1(px)fℓ−1,1(qx). (2)

Also, the Poisson transform of Dℓ,2(x) translates recurrence (2) into

D
′

ℓ,2(x) +Dℓ,2(x) = Dℓ−1,2(px) +Dℓ−1,2(qx) + 2Dℓ−1,1(px)Dℓ−1,1(qx), (3)

with initial conditions D0,2(x) = 1 − e−x and Dℓ,2(0) = 0 (ℓ ≥ 1). For n ≤ ℓ,
Xn,ℓ = 0 (as it is for the internal profiles). Thus fℓ,2(x) = O(xℓ+1) as x → 0.
Then, the Mellin transform D∗

ℓ,2(s) actually exists for s with −ℓ − 1 < ℜ(s) < 0.
By the structure of function of Dℓ,2(x), we can express D∗

ℓ,2(s) as −Γ(s)Fℓ(s)
where Γ(s) is the gamma function. Thus Fℓ(s) is the finite linear combinations
of functions a−s with certain values of a and one can be considered as an entire
function. Furthermore (3) translates into

Fℓ(s)−Fℓ(s− 1) = S(s)Fℓ−1(s) +Hℓ(s), ℓ ≥ 0, (4)

where

Hℓ(s) =

∫ ∞

0

(Γ(s))−12Dℓ−1,1(px)Dℓ−1,1(qx)x
s−1dx,

and F0(s) = 1. The equation (4) holds for all s, since Fℓ(s) continues analytically
to an entire function, [6].

In order to use of Cauchy residue theorem [3] we define

f(s, w) =
∑
ℓ≥0

Fℓ(s)w
ℓ.
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Let us introduce functional operators A and C as follows

Cf ;s = f(s) + f(s− 1) + f(s− 2) + f(s− 3) + · · · ,
Af ;s = f(s)S(s) + f(s− 1)S(s− 1) + f(s− 2)S(s− 2) + · · · ,

where S(s) = p−s + q−s. Also suppose g(s, w) =
∑

ℓ≥0 Aℓ
1;sw

ℓ and

f̃ℓ;s = Cfℓ−1;s − Cfℓ−1;−1, ĝℓ;s = Aℓ
g̃ℓ−ℓ;s

− Aℓ
g̃ℓ−ℓ;−1.

In the following theorem we find an explicit representation of f(s, w) in terms of
the operators A and C.

Theorem 2.1. The power series f(s, w) satisfies

f(s, w) = H(s, w) +
∑
ℓ≥0

Aℓ
N(·,w);sw

ℓ −H(s, w)
∑
ℓ≥0

Aℓ
N(·,w);−1w

ℓ,

where

H(s, w) =
g(s, w)

g(0, w)
, N(s, w) =

∑
ℓ≥0

H̃ℓ;sw
ℓ.

Proof. It is obvious. Similar considerations are done in [2] in proof of Theorem 3
where the (somewhat simpler) recurrences appearing there are treated analogously.

We now show asymptotic behavior of the second moment of the our random
variable because by studying the second moment, we can guess the behavior of the
t-th moment. First we show that N(s, w) is analytic for |w| < (S(ℜ(s)) − ν)−1

for some ν > 0 and can derive f(s, w) ≈ H(s, w). Finally we prove Fℓ(s) behave
asymptotically as S(s)ℓ and show that E(X2

n,ℓ) ≈ Dℓ,2(n). Since for complex s [2],
D∗

ℓ,1(s) ≤ C ′Γ(s)S(s)ℓ, by the Mellin transform property

|D
′∗
ℓ,1(s)| = | − (s− 1)D∗

ℓ,1(s− 1)| ≤ C ′|s||Γ(s− 1)|S(ℜ(s)− 1)ℓ,

for constant C ′. Thus by convolution of Mellin transform:

|Hℓ(s)| =
∣∣∣ 1

Γ(s)

∫ ∞

0

2D
(1)
ℓ−1(px)D

(1)
ℓ−1(qx)x

s−1dx
∣∣∣

=
∣∣∣ 1

Γ(s)

∣∣∣ ∣∣∣∣ 1

2πi

∫ c+i∞

c−i∞
D

′∗(1)
ℓ (u)D

′∗(1)
ℓ (s− u)du

∣∣∣∣
≤ C

′′

|Γ(s)|

∫ c+i∞

c−i∞

|u||s− u||Γ(u)||Γ(s− u− 1)|(
S(ℜ(u)− 1)S(ℜ(s− u)− 1)

)−ℓ
du

≤ CS(c− 1)2ℓ ℜ(u) = c = ℜ(s− u),

= CS
(
ℜ(s)
2

− 1

)2ℓ

c =
ℜ(s)
2

,

≤ C(S(ℜ(s))− ν)ℓ,
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for constant C and for some ν > 0.

Lemma 2.2. There exists ν > 0 such that N(s, w) is analytic for |w| < (S(ℜ(s))−
ν)−1.

Proof. It is obvious |S(s − j)| ≤ |S(s)|max(pq)j for j ≥ 0. By definition of H̃ℓ;s,
if |w| < (S(ℜ(s) − ν))−1, then N(s, w) =

∑
ℓ≥0 H̃ℓ;sw

ℓ converges absolutely and
represents an analytic function.

For a real number θ with (log 1
p )

−1 < θ < (log 1
q )

−1, let

λ = λ(θ) =
1

log(p/q)
log

(1− θ log(1/p)

θ log(1/q)− 1

)
.

Equivalently,

θ =
p−λ + q−λ

p−λ log 1
p + q−λ log 1

q

.

Theorem 2.3. Fℓ(s) behave asymptotically as S(s)ℓ and E(X2
n,ℓ) ≈ Dℓ,2(n).

Proof. For some ν > 0, N(s, w) is analytic for |w| < (S(ℜ(s))− ν)−1. Then Fℓ(s)
behave asymptotically as S(s)ℓ as was the case of the first moment of the internal
profile in [2]. By applying the saddle point method for inverse Mellin transform
(in case x = n) for

Dℓ,2(n) =
1

2πi

∫ λ+i∞

λ−i∞
D∗

ℓ,2(n)(s)n
−sds,

we can obtain a similar Theorem 2.1 in [2] for E(X2
n,ℓ) (see [2] for details and

calculations).

Let µn,ℓ,t = E(Xt
n,ℓ) be the t-th moment of the Xn,ℓ. By the similar manner,

for

E
(t)
ℓ (x) =

∑
n≥0

µn,ℓ,t
xn

n!
,

we obtain

E
′(t)
ℓ (x) = eqxE

(t)
ℓ−1(px) + epxE

(t)
ℓ−1(qx)

+

t−1∑
m=1

t−1∑
n=1

β(m,n)E
(m)
ℓ−1(px)E

(n)
ℓ−1(qx), (5)

where β(m,n) ∈ Z and E
(t)
0 (x) = ex − 1 [2, 11].

Theorem 2.4. The asymptotics of µn,ℓ,t is of the same order of magnitude as for
the average value.
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Proof. Let ∆
(t)
ℓ (x) = e−xE

(t)
ℓ (x) be the Poisson transform E

(t)
ℓ (x). Then

(∆
(t)
ℓ (z))′ = e−zE

′(t)
ℓ (z)−∆

(t)
ℓ (z).

Thus recurrence (5) translates into

∆
′(t)
ℓ (x) + ∆

(t)
ℓ (x) = ∆

(t)
ℓ−1(px) + ∆

(t)
ℓ−1(qx)

+
t−1∑
m=1

t−1∑
n=1

β(m,n)∆
(m)
ℓ−1(px)∆

(n)
ℓ−1(qx), ℓ ≥ 1, (6)

with initial conditions ∆
(t)
ℓ (0) = 0 (ℓ ≥ 1) and ∆

(t)
0 (x) = 1− e−x, since p+ q = 1.

It is easy to show that

∆
(t)
ℓ (x) =

∑
ℓ1

∑
ℓ2

θ(ℓ1, ℓ2) exp
{
−
∑
i

∑
j

ξ(i, j)pℓiqℓjx
}
,

with ℓi, ℓj ≥ 0 and θ(ℓ1, ℓ2), ξ(i, j) ∈ Z. We express ∆
∗(t)
ℓ (x) as

∆
∗(t)
ℓ (x) =

∫ ∞

0

∆
(t)
ℓ (x)xs−1dx = −Γ(s)F (t)

ℓ (s),

where
F (t)

ℓ (s) =
∑
ℓ1

∑
ℓ2

θ(ℓ1, ℓ2)
{∑

i

∑
j

ξ(i, j)−sp−ℓisq−ℓjs
}
.

Thus, F (t)
ℓ (s) can be assumed an entire function and (6) translates into

F (t)
ℓ+1(s)−F (t)

ℓ+1(s− 1) = S(s)F (t)
ℓ (s) +H(t)

ℓ (s), ℓ ≥ 0, F (t)
0 (s) = 1, (7)

where for p < q,

H(t)
ℓ (s) =

t−1∑
m=1

t−1∑
n=1

β(m,n)

Γ(s)

∫ ∞

0

∆
(m)
ℓ (px)∆

(n)
ℓ (qx)xs−1dx

≤ p−s
t−1∑
m=1

t−1∑
n=1

β(m,n)

Γ(s)

∫ ∞

0

∆
(m)
ℓ (x)∆

(n)
ℓ (x)xs−1dx

= p−s
t−1∑
m=1

t−1∑
n=1

β(m,n)

2πiΓ(s)

∫ c+i∞

c−i∞
∆

∗(m)
ℓ (x)∆

∗(n)
ℓ (x)dy.

With the same consideration of [2], ∆∗(t)
ℓ (x) ≤ KΓ(s)S(s)ℓ for some constant K.



Lempel-Ziv Parsing Algorithm 221

Thus ∣∣∣H(t)
ℓ (s)

∣∣∣ ≤ K
′
p−s

t−1∑
m=1

t−1∑
n=1

∫ c+i∞

c−i∞

β(m,n)

2πiΓ(s)
|Γ(z − 1)||Γ(s− z − 1)|

×
(
S(ℜ(z)− 1)S(ℜ(s− z)− 1)

)ℓ

dz

≤ K(s, p)S(z − 1)2ℓ, ℜ(z) = z = ℜ(s− z)

= K(s, p)S (ℜ(s)/2− 1)
2ℓ
.

Thus H(t)
ℓ (s) = O(S(ℜ(s))/2−1)2ℓ. Similar to [11], one can see the inhomogeneous

part in (7) is relatively small and proof is completed.

4. Conclusion
We obtained an asymptotics for the µn,ℓ,t built over a string generated by an
asymmetric Bernoulli model through the relation between this algorithm and dig-
ital search tree. This result was derived by applying analytic combinatorics.
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