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Abstract

In this paper, we study a delayed three-cell network which is introduced
by coupled cell theory and neural network theory. We investigate this model
with two different discrete delays. The aim is to obtain necessary conditions
for the stability and the existence of Hopf-zero bifurcation in this model.
Moreover, we find the normal form of this bifurcation by using linearization
and the Multiple Time Scale method. Finally, the theoretical results are
verified by numerical simulations.
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1. Introduction

In the past decades, the complex network have attracted more and more attention
from researchers, [8, 15, 25]. It is partially due to the fact that any large-scale
and complicated system in real world can be modeled by a complex network, in
which nodes can be seen as the elements of the system and edges can be considered
as interactions between nodes, [2, 7, 14]. For example, the WWW, the internet,
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neural networks, social networks are all complex networks. To master the com-
plicated nature of complex networks, more and more people began to investigate
the dynamics of complex networks, such as robustness, pinning synchronization,
[4, 10, 13]. The dynamical behavior (including stability, periodic oscillatory, and
chaos) of continuous-time neural networks has received much attention due to their
applications in optimization, signal processing, image processing, solving nonlin-
ear algebraic equations, pattern recognition, associative memories, see [16, 17, 29]
and references therein. It is well known that time delays in the information pro-
cessing of neurons exist. As time delays always occur in the signal transmission,
Marcus and Westervelt proposed an NN model with delay. Some dynamical be-
haviors such as periodic phenomenon, bifurcation, and chaos have been discussed
in these systems. Moreover, it should be mentioned that only some researchers
studied delayed neural network models with high codimension bifurcations because
of complicated computations, see [1, 8, 12].

Most phenomena are complex networks that sometimes simulate as a differen-
tial equations system. For example, some neurological diseases, gene expression,
homeostasis and other phenomena have been modeled and analyzed by using dif-
ferential equation theory, [3, 11, 22]. Moreover, we know that interaction between
elements of a phenomenon is not instantaneous. The delay in interactions is known
as time delay which is constant or nonconstant. Also, it should be noted that the
delay in any interaction may be different especially in networks with different input
and output data/signals. Therefore, researchers considered time delay in realistic
models of neural networks, [21, 23, 24].

In order to simplify the analysis of the dynamical behavior of differential equa-
tions near an equilibrium, normal form theory has been widely used. The basic
idea of the method of normal forms is to employ successive coordinate transfor-
mations to systematically construct a simplified form of the original differential
equations without changing the fundamental dynamical behavior of the system in
the vicinity of the equilibrium, [5, 28].

Multiple Time Scale and center manifold are methods to compute normal forms
of a differential equations system, [19, 26]. Nayfeh, [20] and Ding et al, [8] used
both techniques in two different models with delay and showed that these tech-
niques are equivalent. We would like to obtain a normal form of Hopf-zero bifurca-
tion in a three-cell network with different delays in inputs and outputs, see Figure1.
Delays in clockwise and counterclockwise directions are τ1, τ2, respectively.

Three-dimensional delay differential equations systems have attracted the at-
tention of many researchers, see [6, 18, 27]. They are applicable in real models;
Gopalsamy neural network model, Oregonator oscillator, Fitzhugh-Nagumo model,
cell signaling networks, and so on. In this paper, we will investigate the following
generalized Gopalsamy neural network model that is studied in [9, 18]:

Ẋ1 = −X1(t) + a1 tanh[X3(t)− bX3(t− τ)],

Ẋ2 = −X2(t) + a2 tanh[X1(t)− bX1(t− τ)],

Ẋ3 = −X3(t) + a3 tanh[X2(t)− bX2(t− τ)],
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Figure 1: The architecture of a three-cell network with two different delays.

where ai (i = 1, 2, 3) corresponds to the range of the continuous variable Xi, b > 0
is the measure of the inhibitory influence of the past history, and τ > 0 is a time
delay.

In fact, we will consider the following system for our network (Figure 1)
Ẋ1 = f(X1) + g(X2(t− τ2), X3(t− τ1)),

Ẋ2 = f(X2) + g(X1(t− τ1), X3(t− τ2)),

Ẋ3 = f(X3) + g(X1(t− τ2), X2(t− τ1)).

(1)

This model with different delays is the first time to be considered for studying
its dynamical behaviors. We will use Multiple Time Scale method to derive the
normal form of Hopf-zero bifurcation of system (1). Furthermore, we will carry
out other bifurcations occurrence possibilities in the model.

The rest of this paper is organized as follows. In Section 2, we investigate
the existence of Hopf-zero bifurcation in three-cell networks. In Section 3, the
normal form of Hopf-zero bifurcation in a three-cell network is obtained by using
the method of Multiple Time Scales (MTS). In Section 4, simulations are given to
illustrate the effectiveness of the proposed method. Finally, a brief discussion is
given to conclude the work of this paper.

2. Existence of Hopf-Zero Bifurcation in a

Three-Cell Network

In this section, we consider the general form of three-cell networks with delays τ1
and τ2, as mentioned in the previous section. System (1) and Figure 1 show our
model and its network, where f and g are analytic functions in a neighborhood of
zero. Our aim is to study the stability of (1). For this purpose, let X = (0, 0, 0) be
an equilibrium point of (1) and f(0) = 0, g(0, 0) = 0. Then the Taylor expansion
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of f(Xi) around the equilibrium point is written as follows: f(X1) = X1f
′(0) +O(2),

f(X2) = X2f
′(0) +O(2),

f(X3) = X3f
′(0) +O(2).

Also, the Taylor expansion of g is g(X2(t− τ2), X3(t− τ1)) = gX2(0)X2(t− τ2) + gX3(0)X3(t− τ1) +O(2),
g(X1(t− τ1), X3(t− τ2)) = gX1(0)X1(t− τ1) + gX3(0)X3(t− τ2) +O(2),
g(X1(t− τ2), X2(t− τ1)) = gX1(0)X1(t− τ2) + gX2(0)X2(t− τ1) +O(2).

Then, the linearization of system (1) is
Ẋ1 = X1(t)f

′(0) + gX2(0)X2(t− τ2) + gX3(0)X3(t− τ1),

Ẋ2 = X2(t)f
′(0) + gX1(0)X1(t− τ1) + gX3(0)X3(t− τ2),

Ẋ3 = X3(t)f
′(0) + gX1(0)X1(t− τ2) + gX2(0)X2(t− τ1).

In the other words,
Ẋ = AX +BXτ1 + CXτ2 . (2)

where

X =

X1

X2

X3

 , Xτ1 =

X1(t− τ1)
X2(t− τ1)
X3(t− τ1)

 , Xτ2 =

X1(t− τ2)
X2(t− τ2)
X3(t− τ2)

 ,

A = f ′(0)I3, B =

 0 0 gX3(0)
gX1(0) 0 0

0 gX2(0) 0

 , C =

 0 gX2(0) 0
0 0 gX3(0)

gX1(0) 0 0

 .

(3)
For investigating the stability of the equilibrium point of system (1), it is sufficient
to compute,

det[A+Be−λτ1 + Ce−λτ2 − λI] = 0. (4)

Hence, the characteristic equation (4) is as follows

p(λ, τ1, τ2) = (−λ3 + 3λ2f ′(0)− 3λf ′2(0) + f ′3(0))

+ (λ− f ′(0))e−λ(τ1+τ2)[gX2gX3 + gX1gX2 + gX1gX3 ]

+ gX1gX2gX3(e
−3λτ1 + e−3λτ2) = 0,

such that gXi
′s are used to show gXi(0)

′s, i=1,2,3. For simplifying, let gX2 = 0,
gX1gX3 ̸= 0 and τ2 := δτ1, δ > 0. Therefore

p(λ, τ) = −λ3 +3λ2f ′(0)− 3λf ′2(0) + f ′3(0) + (λ− f ′(0))(gX1gX3e
−(δ+1)λτ1) = 0.

(5)
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Now, we suppose that λ = iω (ω > 0) and we get the following equation

iω3−3ω2f ′(0)−3iωf ′2(0)+f ′3(0)+(iωgX1gX3−f ′(0)gX1gX3)e
−i(δ+1)ωτ1 = 0. (6)

Equation (6) equals to the following system,{
ω3 − 3ωf ′2(0) + ωgX1gX3 c̄(ω)− f ′(0)gX1gX3 s̄(ω) = 0,
−3ω2f ′(0) + f ′3(0)− ωgX1gX3 s̄(ω)− f ′(0)gX1gX3 c̄(ω) = 0,

(7)

where

c̄(ω) := cos(−(δ + 1)ωτ1),

s̄(ω) := sin(−(δ + 1)ωτ1).

Therefore

τ j1 =
1

(δ + 1)ω
[arcsin[

2ωf ′(0)

gX1gX3

] + 2πj], j ∈ Z; τ j1 >= 0.

One can obtain the following equation by using system (7),

p(ω) = ω8 + a2ω
6 + a4ω

4 + a6ω
2 + a8,

where

a2 = 4f ′2(0),

a4 = 6f ′4(0)− g2X1
g2X3

,

a6 = 4f ′6(0)− 2f ′2(0)g2X1
g2X3

,

a8 = f ′8(0)− f ′4(0)g2X1
g2X3

. (8)

If Ω := ω2, then
p(Ω) = Ω4 + a1Ω

3 + a2Ω
2 + a3Ω+ a4, (9)

such that
ā1 = a2, ā2 = a4, ā3 = a6, ā4 = a8.

By using the Routh-Hurwitz criterion, we have the following theorem.

Theorem 2.1. Equation (9) is stable if and only if

a1 > 0, a3 > 0, a4 > 0, a1a2a3 > a23 + a21a4.

Proof. It is clear.

By using Equations (8), if f ′(0) = 0, then a1 = a3 = a4 = 0. Therefore,
p(Ω) = 0 has roots Ω = 0 and Ω = ±gX1gX3 . We assume that gX1gX3 ̸= 0 thus
Equation (9) has only one positive root, Ω = gX1gX3 or Ω = −gX1gX3 .

According to the above discussion, we can state the following theorem.
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Theorem 2.2. System (1) satisfies the following results,

1. If f ′(0) = 0 or f ′2(0) = gX1gX3 , then λ = 0 is the root of Equation (5).

2. Equation (9) has a positive root or in the other words, λ = iω, (τ = τ01 ) is
the root of Equation (5), if

∼ a1 > 0 ∨ ∼ a3 > 0 ∨ a4 < 0 ∨ ∼ a1a2a3 > a23 + a21a4.

3. λ = iω is a simple root of the characteristic equation (5), if{
3ω2 − 3f ′(0) + gX1gX3 c̄(ω) + (δ + 1)ωτ1gX1gX3 s̄(ω)− (δ + 1)τ1f ′(0)gX1gX3 c̄(ω) ̸= 0,
−6ωf ′(0) + gX1gX3 s̄(ω) + (δ + 1)ωτ1gX1gX3 c̄(ω)− (δ + 1)τ1f ′(0)gX1gX3 s̄(ω) ̸= 0.

(10)

4. If f ′(0) = 0, τ = τ01 and the condition (10) hold, then λ = 0 and λ = iω are
simple roots of the characteristic equation (5).

Proof. 1. We suppose that λ = 0 is a root of Equation (5). Then

f ′3(0)− f ′(0)gX1
gX3

= 0,

which it implies f ′(0) = 0 or f ′2(0) = gX1gX3 .

2. Equation (5) has λ = iω, ω ̸= 0, as a root, if and only if Equation (9) has
a positive root. This means that Equation (9) is not stable and has no zero
root. Also, Equation (9) has not zero root if and only if a4 ̸= 0. By using
Routh-Hurwitz criterion, Equation (9) is not stable if and only if

∼ a1 > 0 ∨ ∼ a3 > 0 ∨ ∼ a4 > 0 ∨ ∼ a1a2a3 > a23 + a21a4.

Therefore, Equation (5) has λ = iω, ω ̸= 0, if and only if

∼ a1 > 0 ∨ ∼ a3 > 0 ∨ a4 < 0 ∨ ∼ a1a2a3 > a23 + a21a4.

3. It is obvious, because λ = iω is simple root of p(λ, τ) = 0 if and only if
p′(λ = iω) ̸= 0.

4. By case 3, we know that λ = iω is the simple root if condition (10) holds.
Moreover, we know that p′(0, τ) = gX1gX3where gX1gX3 ̸= 0 . It is obvious
that λ = 0 is also a simple root.

Theorem 2.2 helps us to identify different bifurcations occurrence possibilities.
Therefore, we have the following corollary.

Corollary 2.3. Consider the cases of Theorem 2.2, therefore
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1. Saddle-Node bifurcation, pitchfork bifurcation, transcritical bifurcation or
Takens-Bogdanov bifurcation can occur, if case 1 holds.

2. In case 2, it is possible to occur multiple Hopf bifurcation.

3. Simple Hopf bifurcation will happen if case 3 is established.

4. Hopf-zero bifurcation occurs if case 4 is established.

3. Normal Form of Hopf-Zero Bifurcation in
a Three-Cell Network

In this section, we will compute the normal form of Hopf-zero bifurcation in sys-
tem (1) by using the MTS method. First, we set

a := f ′(0), b := gX1(0), c := gX3(0), gX2(0) := 0. (11)

According to case 4 of Theorem 2.2, we know that λ = 0 and λ = iω are two simple
eigenvalues of system (2), if the f ′(0) = 0 and τ = τ01 . Therefore, we introduce
the following parameters as bifurcation parameters

abif = a = 0, τbif = τ01 .

Now, we compute eigenvectors p1, p̄1, p
∗
1, p2, p̄2, p

∗
2, corresponding to A,A∗ and

eigenvalues iω,−iω and zero, respectively

p1 =

 iω

be−iωτ0
1 + iωe−iω(τ2−τ0

1 )

be−iωτ0
1

 , p1 =

 −iω

beiωτ0
1 − iωeiω(τ2−τ0

1 )

beiωτ0
1

 , p∗1 =


i

−2ω

0
eiωτ0

1

2b

 ,

p2 = p2 =

0
1
0

 , p∗2 =

−1
1
−1

 . (12)

Note that with the help of inner product, we obtain p∗1, p
∗
2 such that

⟨p∗1, p1⟩ = 1, ⟨p∗2, p2⟩ = 1.

To obtain the normal form of system (1), we consider the system as follows with
linear and nonlinear parts

Ẋ = AX +BXτ1 + CXτ2 + F (X,Xτ1 , Xτ2), (13)

where A,B and C are defined at Equations (3) and F (X,Xτ1 , Xτ2) = O(2) such
that there are second and third-order terms in Taylor expansion of F .
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To obtain the normal form of system (1), we use the MTS method. Let

X(t) = ε
1
2X(1) + ε

3
2X(2) + · · · ,

where

X(j) = (X1,(j)(T0, T1, . . .), X2,(j)(T0, T1, . . .), X3,(j)(T0, T1, . . .))
T ,

for j = 1, 2, 3, . . . and
Tk := εkt, k = 0, 1, 2, . . . .

Also, we have

d

dt
=

∂

∂T0
+ ε

∂

∂T1
+ · · · (14)

= D0 + εD1 + · · · ,

such that
Di =

∂

∂Ti
, i = 0, 1, 2, . . . . (15)

Moreover, we have
a = 0 + εaε, τ1 = τ01 + ετε. (16)

Therefore, we get

Xi(t− τ1) = ε
1
2Xi,(1)(T0 − τ1, T1 − ετ1, . . .) (17)

+ ε
3
2Xi,(2)(T0 − τ1, T1 − ετ1, . . .) + . . . , i = 0, 1, 2, . . .

in which

Xi,(1)(T0 − τ1, T1 − ετ1, . . .) = Xi,(1)(T0 − τ01 − ετε, T1 − ε(τ01 − ετε), . . .). (18)

This implies that

ε
1
2Xi,(1)(T0 − τ0

1 − ετε, T1 − ε(τ0
1 − ετε), . . .) = ε

1
2Xi,(1)(T0 − τ0

1 , T1, T2, . . .) (19)

+ ε
3
2 (−τεD0Xi,(1)(T0 − τ0

1 , T1, T2, . . .)

− τ0
1D1Xi,(1)(T0 − τ0

1 , T1, T2, . . .))

+ . . . .

Also

dX

dt
= DX (20)

= (D0 + εD1 + ε2D2 + . . .)(ε
1
2X(1) + ε

3
2X(2) + . . .)

= ε
1
2D0X(1) + ε

3
2 (D0X(2) +D1X(1) + . . .).
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Now, we assume
τ2 = τ01 , (21)

then by substituting Equations (11), (16) and (17) in the right hand of Equation
(13), the following equations obtain

AX = aIX

= εaεI(ε
1
2X(1) + ε

3
2X(2) + . . .)

= ε
3
2 aεX(1) + ε

5
2 aεX(2) + . . . ,

BXτ1 = B

ε
1
2X1,(1)(T0 − τ01 , T1, T2, . . .) + . . .

ε
1
2X2,(1)(T0 − τ01 , T1, T2, . . .) + . . .

ε
1
2X3,(1)(T0 − τ01 , T1, T2, . . .) + . . .

 ,

CXτ2 = C

ε
1
2X1,(1)(T0 − τ01 , T1, T2, . . .) + . . .

ε
1
2X2,(1)(T0 − τ01 , T1, T2, . . .) + . . .

ε
1
2X3,(1)(T0 − τ01 , T1, T2, . . .) + . . .

 .

By assumption Equation (21) and using Equations (14)-(20), we have

D0X(1) = (B + C)X(1),τ0
1
, (22)

D0X(2) +D1X(1) = aεX(1) + (B + C)X(2),τ0
1

(23)

− (B + C)(τ01D1X(1),τ0
1
+ τεD0X(1),τ0

1
) + F ( 3

2 )(X,Xτ1 , Xτ2),

and
X(i),τ0

1
:= X(i)(T0 − τ01 , T1, T2, . . .).

It is clear that Equation (22) is a first-order differential equation with the solution
as follows

X(1)(T0, T1) = G1(T1)p1e
iωT0 +G1(T1)p1e

−iωT0 +G2(T1)p2. (24)

Equation (23) can be rewritten as follows

D0X(2) − (B + C)X(2)(T0 − τ01 , T1, T2, . . .) = −D1X(1)

−Bτ01D1X(1)(T0 − τ01 , T1, T2)

− τεBD0X(1)(T0 − τ01 , T1, T2, . . .)

+ aεX(1) + F ( 3
2 )(X,Xτ1 , Xτ2). (25)

In the other words,

D0X(2) − (B + C)X(2),τ0
1
= −D1X(1) −B(τ01D1X(1),τ0

1
+ τεD0X(1),τ0

1
)

+ aεX(1) + F ( 3
2 )(X,Xτ1 , Xτ2). (26)
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Note that

D1X(1) =
∂G1

∂T1
p1e

iωT0 +
∂G1

∂T1
p1e

−iωT0 +
∂G2

∂T1
p2, (27)

D1X(1),τ0
1
=

∂G1

∂T1
p1e

iω(T0−τ0
1 ) +

∂G1

∂T1
p1e

−iω(T0−τ0
1 ) +

∂G2

∂T1
p2, (28)

D0X(1),τ0
1
= G1p1iωe

iω(T0−τ0
1 ) − iωG1p1e

−iω(T0−τ0
1 ), (29)

aεX(1) = aεG1p1e
iωT0 + aεG2p2 + aεG1p1e

−iωT0 , (30)

and

F ( 3
2 )(X,Xτ1 , Xτ2) =

f11
f21
f31

 , (31)

where

f11 =
f (3)(0)

6
X3

1,(1) +
1

6
gX2X2X2(0)X

3
2,(1),τ0

1
+

1

2
gX2X2X3(0)X

2
2,(1),τ0

1
X3,(1),τ0

1

+
1

6
gX3X3X3(0)X

3
3,(1),τ0

1
+

1

2
gX2X3X3(0)X2,(1),τ0

1
X2

3,(1),τ0
1
,

f21 =
f (3)(0)

6
X3

2,(1) +
1

6
gX1X1X1(0)X

3
1,(1),τ0

1
+

1

2
gX1X1X3(0)X

2
1,(1),τ0

1
X3,(1),τ0

1

+
1

6
gX3X3X3(0)X

3
3,(1),τ0

1
+

1

2
gX1X3X3(0)X1,(1),τ0

1
X2

3,(1),τ0
1
,

f31 =
f (3)(0)

6
X3

3,(1) +
1

6
gX1X1X1(0)X

3
1,(1),τ0

1
+

1

2
gX1X1X2(0)X

2
1,(1),τ0

1
X2,(1),τ0

1

+
1

6
gX2X2X2(0)X

3
2,(1),τ0

1
+

1

2
gX1X2X2(0)X1,(1),τ0

1
X2

2,(1),τ0
1
.

From (12), (21) and (24), we conclude

X(1)(T0, T1) =

 G1p11e
iωT0 +G1p11e

−iωT0 + 0
G1p12e

iωT0 +G1p12e
−iωT0 +G2

G1p13e
iωT0 +G1p13e

−iωT0 + 0

 (32)

and

X(1)(T0 − τ01 , T1) =

 G1p11e
−iωτ0

1 eiωT0 +G1p11e
iωτ0

1 e−iωT0 + 0

G1p12e
−iωτ0

1 eiωT0 +G1p12e
iωτ0

1 e−iωT0 +G2

G1p13e
−iωτ0

1 eiωT0 +G1p13e
iωτ0

1 e−iωT0 + 0

 . (33)

By substituting Equations (26)-(33) into Equation (25), we have

D0X(2) − (B + C)X(2),τ0
1
= ξ1e

iωT0 + ξ1e
−iωT0 + ξ2 +NST, (34)
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such that NST shows the terms that do not produce secular terms, and

ξ1 =

ξ11
ξ12
ξ13

 ,

where

ξ11 =
1

2
f (6)(0)G2

1G1p
2
11p11 +

1

2
gX2X2X2(0)e

−iωτ0
1 (G1G

2
2p12 +G2

1G1p
2
12p12)

+
1

2
gX2X2X3(0)e

−iωτ0
1 (2G1p12G

2
1p13p12 +G2

2G1p13 +G2
1G1p

2
12p13)

+
1

2
gX2X3X3(0)e

−iωτ0
1 (2G1G

2
1p12p13p13 +G1G

2
1p12p

2
13)

− ∂G1

∂T1
p11 −

∂G1

∂T1
gX3

τ01 p13 − gX3
τεp13G1iω + aεp11G1

+
1

2
gX3X3X3(0)e

−iωτ0
1 (G2

1G1p
2
13p13),

ξ12 =
1

2
f (3)(0)(G1G

2
2p12 +G1G

2
1p

2
12p12) +

1

2
gX1X1X1(0)e

−iωτ0
1 (G2

1G1p
2
11p11)

+
1

2
gX1X1X3(0)e

−iωτ0
1 (G1G

2
1p

2
11p13 + 2G2

1G1p11p11p13)

+
1

2
gX1X3X3(0)e

−iωτ0
1 (2G2

1G1p11p13p13 +G2
1G1p

2
13p11)

− ∂G1

∂T1
p12 −

∂G1

∂T1
gX1τ

0
1 p11 − gX1τεp11G1iω + aεp12G1

+
1

2
gX3X3X3(0)e

−iωτ0
1G2

1G1p
2
13p13,

ξ13 =
1

2
f (3)(0)(G1G

2
1p

2
13p13) +

1

2
gX1X1X1(0)e

−iωτ0
1 (G2

1G1p
2
11p11)

+
1

2
gX1X1X2(0)e

−iωτ0
1 (G1G

2
1p

2
11p12 + 2G2

1G1p11p12p11)

+
1

2
gX1X2X2(0)e

−iωτ0
1 (G2

2G1p11 + 2G2
1G1p12p12p11 +G2

1p
2
12G1p11)

− ∂G1

∂T1
p13 −

∂G1

∂T1
gX2τ

0
1 p12 − gX2τεp12G1iω + aεp13G1

+
1

2
gX2X2X2

(0)e−iωτ0
1 (G1G

2
2p12 +G2

1G1p
2
12p12).

Also,

ξ2 =

ξ21
ξ22
ξ23

 ,
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at which

ξ21 =X2X2X2
(0)(

1

6
G3

2 +G1G1G2p12p12) + gX2X2X3
(0)G1G1G2(p12p13 + p13p12)

+ gX2X3X3(0)(G1G1G2p13p13)−
∂G2

∂T1
p21 −

∂G2

∂T1
τ01 gX3p23 + aεp21G2,

ξ22 = f (3)(0)(
1

6
G3

2 +G1G1G2p12p12)−
∂G2

∂T1
p22 −

∂G2

∂T1
τ01 gX1p21 + aεp22G2,

ξ23 = gX1X1X2(0)(G1G1G2p11p11) + gX1X2X2(0)G1G1G2(p11p12 + p11p12)

+ gX2X2X2(0)(
1

6
G3

2 +G1G1G2p12p12)−
∂G2

∂T1
p23 −

∂G2

∂T1
τ01 gX2p22 + aεp23G2.

It is clear that Equation (34) is a linear non-homogeneous differential equation.
We know that the non-homogeneous differential equation has a solution if and only
if a solvability condition is satisfied. Then, it suffices ⟨p∗j , ξj⟩ = 0, j = 1, 2, so ∂G1

∂T1

and ∂G2

∂T2
are solved. It is not difficult to rewrite ξ11 and ξ13 as follows

ξ11 = ζ1G1 + ζ2G1G
2
1 + ζ3G1G

2
2 +

∂G1

∂T1
(−p11 − gX3τ

0
1 p13),

ξ13 = ζ4G1 + ζ5G1G
2
1 + ζ6G1G

2
2 +

∂G1

∂T1
(−p13 − gX2τ

0
1 p12).

By using the solvability condition, we get

∂G1

∂T1
=

1

d1
{η1G1 + η2G1G

2
1 + η3G1G

2
2},

such that

d1 = −1 +
i

2ω
gX1gX3τ

0
1 e

−iωτ0
1 ,

ηi =
−i

2ω
ζi +

e−iωτ0
1

2gX1

ζi+3; i = 1, 2, 3.

In a similar way to obtain ∂G2

∂T1
, we rewrite ξ21, ξ22 and ξ23

ξ21 = ϱ1G
3
2 + ϱ2G2 + ϱ3G1G1G2 + ϱ4

∂G2

∂T1
,

ξ22 = ϱ5G
3
2 + ϱ6G2 + ϱ7G1G1G2 + ϱ8

∂G2

∂T1
,

ξ23 = ϱ9G
3
2 + ϱ10G2 + ϱ11G1G1G2 + ϱ12

∂G2

∂T1
.
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Notice that pT2 = (0, 1, 0), so we have

∂G2

∂T1
=

1

d2
{γ1G3

2 + γ2G2 + γ3G1G1G2},

such that

d2 = −1− τ01 gX2 ,

γi = −ϱi + ϱi+4 − ϱi+8; i = 1, 2, 3, 4.

Now, let G1 = reiθ and G2 = z. One obtains the following normal form in
cylindrical coordinates

dr

dt
= (η1

d1
)Rer + (η2

d1
)Rer3 + (η3

d1
)Rerz2,

dθ

dt
= (η1

d1
)Im + (η2

d1
)Imr2 + (η3

d1
)Imz2,

dz

dt
= 1

d2
(γ1z

3 + γ2z + γ3r
2z).

(35)

where ( ηi

d1
)Re = Re[ ηi

d1
], ( ηi

d1
)Im = Im[ ηi

d1
], i = 1, 2, 3.

Consider the first two equations of the above normal form
dr

dt
= (η1

d1
)Rer + (η2

d1
)Rer3 + (η3

d1
)Rerz2,

dz

dt
= 1

d2
(γ1z

3 + γ2z + γ3r
2z).

(36)

Thus one can obtain equilibria if

dr

dt
=

dz

dt
= 0.

Therefore, system (36) has the following equilibria

E0 = (0, 0),

E1 = (

√
−(

η1
η2

)Re, 0) if (
η1
η2

)Re < 0,

E±
2 = (0,±

√
−γ2
γ1

) if
γ2
γ1

< 0,

E±
3 = (

√
ηRe
3 γ2 − ηRe

1 γ1
ηRe
2 γ1 − ηRe

3 γ3
,±

√
ηRe
2 γ2 − ηRe

1 γ3
ηRe
3 γ3 − ηRe

2 γ1
)

if
ηRe
3 γ2 − ηRe

1 γ1
ηRe
2 γ1 − ηRe

3 γ3
> 0 and

ηRe
2 γ2 − ηRe

1 γ3
ηRe
3 γ3 − ηRe

2 γ1
> 0.
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Therefore, we have three critical lines as follows

L1 : ηR1 = 0,

L2 : γ2 = 0,

L3 : ηRe
3 γ2 − ηRe

1 γ1 = 0 and ηRe
2 γ2 − ηRe

1 γ3.

Now, one can state the following theorem.

Theorem 3.1. If a = abif and τ = τbif , then the local asymptotic behavior of
solutions of the original system (1) is determined by behavior of the solutions
on center manifold (35). Thus, equilibria on the z-axis of system (35) remain
equilibria and system (35) has periodic orbits with period 2π

ω for equilibria away
from the z-axis.

4. Numerical Simulation

In this section, numerical simulations are presented to verify our analytical results.
Consider the following system

Ẋ1(t) = −a∗X1(t) + a1 tanh(X1(t)) + c tanh(X3(t− τ1)),

Ẋ2(t) = −a∗X2(t) + a1 tanh(X2(t)) + b tanh(X1(t− τ1)) + c tanh(X3(t− τ2)),

Ẋ3(t) = −a∗X3(t) + a1 tanh(X3(t)) + b tanh(X1(t− τ2)).

(37)

The parameter values used in the simulations are given in Table 1. The first, we
find the Hopf-zero bifurcation parameter for system (37); (abif , τbif ) = (0, π√

2
),

then we simulate the solutions of this system, see Figure 2.
It should be noted that its characteristic equation has a zero root and a pair of

purely imaginary eigenvalues. Then by using Matlab and Mathematica software,
we study the dynamical behaviours of the system when a ̸= abif or τ ̸= τbif , see
Figures 3-5. Similar results can be obtained for the same value of a = a1 − a∗

where τ1 = π and τ1 = π
2 .

Table 1: Parameter values.
Example a1 a∗ b c τ1 τ2 Inital value Figure

1 -1 -1 2 -1 π√
2

π√
2

(0.1, 0.1, 0.2) Figure 2
2 -1 0.275 2 -1 π√

2
π√
2

(0.1, 0.1, 0.2) Figure 3
3 -1 0.35 2 -1 π√

2
π√
2

(0.1, 0.1, 0.2) Figure 4
4 -1 −1.5 2 -1 π√

2
π√
2

(0.1, 0.1, 0.2) Figure 5
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Figure 2: Example 1 (Existence of unstable equilibrium point): Simulated solu-
tions of system 37 at bifurcation parameters abif = 0 and τbif = π√

2
.

Figure 3: Example 2 (Existence of a periodic solution): Simulated solutions of
system 37 for (a, τ) = (−1.275, π√

2
) where a < abif and τ = τbif ; left) shows the

time history, and right) shows the phase space.
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Figure 4: Example 3 (Existence of a stable equilibrium point): Simulated solutions
of system 37 for (a, τ) = (−1.35, π√

2
) where a << abif and τ = τbif ; left) shows

the time history, and right) shows the phase space.

5. Conclusion
In this paper, a three-cell network with two different delays is considered. Nec-
essary conditions are obtained to occur some bifurcations, such as saddle-node
bifurcation, transcritical bifurcation, pitchfork bifurcation, simple Hopf bifurca-
tion, and Hopf-zero bifurcation. Also, the Multiple Time Scale method is used to
obtain the normal form of Hopf-zero bifurcation. Finally, the presented numerical
simulations have demonstrated the correctness of the theoretical analysis. Our
work is a future study of the coupled cell networks with different delays which will
be useful in the research of the complex phenomena.

Conflicts of Interest. The authors declare that there are no conflicts of interest
regarding the publication of this article.
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Figure 5: Example 4 (Existence of a unstable equilibrium point): Simulated solu-
tions of system 37 for (a, τ) = (0.5, π√

2
) where a > abif and τ = τbif ; left) shows

the time history, and right) shows the phase space.
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