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Abstract

A general hyperring is an algebraic hypercompositional system (R,+, ·)
with two hyperoperations ”+" and ” · ”, such that for all x, y ∈ R, x + y
and x · y are non-empty subsets of R, and R satisfies the axioms similar
to a ring. We introduce and study hyperideals of a general hyperring. In
this regards, we construct a connection between classical rings and general
hyperrings, specifically, we extend a ring to a general hyperring in nontrivial
way. Moreover, a way to construct a general hyperring from set are given.
Also, we concentrate on an important class of general hyperrings, which is
called Krasner hyperrings, and discuss on their hyperideals. Finally, the set
of all hyperideals of a finite general (resp. Krasner) hyperring are considered
and its hyperideals are investigated.
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1. Introduction
The hyperstructure theory, as an extension of classical structures, introduced by
F. Marty in 1934 [10]. In a hyperalgebraic system (or a hyperstructure) a hy-
perproduct (or a hyperoperation) of elements is a (nonvoid) set, and so any al-
gebraic system is an special case of a hyperalgebraic system. F. Marty extended
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the concept of a group to a hypergroup, and other researchers presented the hy-
peralgebraic concepts such as (Krasner) hyperrings, hypermodules, hyperfields,
polygroups, multirings and etc. (for more details see [7], [8]). Nowadays hyper-
structures are applied in several branches of sciences, such as artificial intelligence,
chemistry and (hyper) complex network [8]. Hyperring is a hypercompositional
structure as generalizing of a ring, that the sum and the product of two elements
is not an element but a subset. The concept of Krasner hyperring was introduced
by Krasner [9], who used it as a tool on the approximation of valued fields or
the second type of a hyperring as multiplicative hyperring (the multiplication is
a hyperoperation, while the addition is an operation was introduced by R. Rota
in 1982 [12]. Further materials regarding hyperrings and mutirings are available
in the literature too [1, 2, 3, 6]. Hyperideals are one of the important tools in
hyperrings and some researchers have investigated in these concepts, see [4, 11].

This paper studies the general hyperrings as a generalization of Krasner hy-
perrings as well as classical rings. In this regards we give a manner to extend a
finite ring to a (nontrivial) general hyperring. Indeed, we show how one can ex-
tend the class of (finite) rings to a class of general hyperrings. We will proceed to
construct a general hyperring from an ideal nonempty set. Finally, we introduce
some class of hyperideals of a special general hyperrings as well as the class of
Krasner hyperrings and investigate their properties.

2. Preliminaries
In this section, we review some concepts from hyperstructures, which we need to
development our paper [1, 5]. Let n ∈ N∗,H ̸= ∅ and P∗(H) = {G | ∅ ̸= G ⊆
H}. A map ϱ : Hn → P∗(H) is an n-ary hyperoperation with arity n, (n = 0,
nullary hyperoperation) and (H, {ϱi}i∈I) is a hyperalgebra ( |I| = 1, hypergroupoid)
of type φ : I → N∗. For two hyperalgebras (H, {ϱi}i∈I) and (H ′, {ϱ′i}i∈I′), if
I = I ′, say similar hyperalgebras. Let H be a hyperalgebra, a ∅ ̸= S ⊆ H is
said to be a subhyperalgebra of H if for any (a1, . . . , ani) ∈ Sni , ϱi(a1, . . . , ani) ⊆
S. For similar hyperalgebras (H, {ϱi}i∈I), (H

′, {ϱ′i}i∈I), a map h : H → H ′ is
called a homomorphism, if for any i ∈ I and any (a1, . . . , ani) ∈ Hni , we have
h(ϱi((a1, . . . , ani

)) ⊆ ϱ′i(h(a1), . . . , h(ani
)) and a good homomorphism if for any

i ∈ I, and any (a1, . . . , ani) ∈ Hni , h(ϱi((a1, . . . , ani)) = ϱ′i(h(a1), . . . , h(ani)).
A hypergroupoid (H, ϱ), where ϱ is an associative is said to be a semihypergroup,
and a semihypergroup (H, ϱ) is called a hypergroup, if for any x ∈ H, ϱ(x,H) =
ϱ(H,x) = H. A hypergroup (H, ϱ) is a canonical hypergroup, if always

(i) ϱ(x, y) = ϱ(y, x),

(ii) there is a unique element e ∈ H, that for any x ∈ H, ϱ(e, x) = ϱ(x, e) = {x}
(neutral element),

(iii) x ∈ ϱ(y, z) concludes that y ∈ ϱ(x, ϑ(z)) and z ∈ ϱ(ϑ(y), x), where ϑ is a
unitary operation on H

(
for any x ∈ H, there is a unique element ϑ(x) ∈ H
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i.e e ∈ (ϱ(x, ϑ(x)) ∩ (ϱ(ϑ(x), x)), ϑ(e) = e, ϑ(ϑ(x)) = x
)

and is denoted by
(H, ϱ, e, ϑ) or (H,+, 0,−).

A Krasner hyperring is an algebraic hypercompositional (R,+, ·), where

(i) (R,+) is a canonical hypergroup,

(ii) (R, ·) is a semigroup,

(iii) for any r, s, t ∈ R, r · (s + t) = r · s + r · t and (s + t) · r = s · r + t · r, (iv)
for any r ∈ R : r · 0 = 0 · r = 0, i.e. there is a unique element 0 ∈ R is an
absorbing element.

A general hyperring is an algebraic hypercompositional (R,+, ·), where

(i) (R,+) is a hypergroup,

(ii) (R, ·) is a semihypergroup and

(iii) for any x, y, z ∈ R: x·(y+z) = x·y+x·z and (x+y)·z = x·z+y·z. A ∅ ≠ I ⊆ R
is said to be a ( right)left hyperideal, if (1)(I,+) is a subhypergroup of (R,+)
and (2)(R · I ⊆ I)(R · I) ⊆ I and a hyperideal if R · I ⊆ I and R · I ⊆ I.

3. Construction of a General Hyperring

We introduce two notions of (+)-commutative general hyperring as (·)-commutative
general hyperring and generalize these notions to commutative general hyperrings.
In this regards, a general hyperring is constructed on an ideal non-empty set and
is determined how to extend a ring to a general hyperring.

Definition 3.1. Assume (R,+, ·) is a general hyperring. Then R is:

(i) additive commutative or ((+)-commutative) general hyperring, if it is com-
mutative with respect to the additive hyperoperations ”+",

(ii) multiplicative commutative or ((·)-commutative) general hyperring, if it is
commutative with respect to the multiplicative hyperoperation ” · ”,

(iii) commutative general hyperring, if it is commutative with respect to the both
hyperoperations ” + ” and ” · ”.

Now, we introduced a manner to construct a general hyperring from a given
ring by using a normal subgroup of its multiplicative semigroup.

Theorem 3.2. Suppose (R,+, .) is a ring and N be a subgroup of its multiplicative
semigroup. The there are hyperoperations +′ and ·′ on the quotient space R/N ,
that the hyperstructure (R/N,+′, ·′) is a general hyperring.
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Proof. For all xN, yN ∈ R/N define “+′” and “·′” on R/N by xN +′ yN =
{xN, yN} and xN.′yN = {(x.y)N, xN, yN}. Now it is easy to see that (R/N,+′, ·′)
is a general hyperring.

Theorem 3.3. Assume (R,+, .) is a ring and N is a subgroup of its multi-
plicative semigroup. Then there are hyperoperations “+′” and “·′” on R/N , that
(R/N,+′, ·′) is a general hyperring.

Proof. For all xN, yN ∈ R/N define “+′” and “·′” on R by

xN +′ yN = {0N} ∪
∪

z∈(x+y)N

zN and xN.′yN =


{0N} ∪

∪
z∈(x.y)N

zN x ̸= y∪
z∈(x.y)N

zN x = y
.

Let x ∈ R. Then xN+′R/N = {0N}∪
∪
y∈R

(xN+′yN) = {0N}∪
∪
y∈R

∪
z∈(x+y)N

zN =

R/N . Since (R,+, .) is a ring, we get that (R/N,+′) is a hypergroup and (R/N, ·′)
is a semihypergroup. Thus distributive property hold, and hence, (R/N,+′, ·′) is
a general hyperring.

Now, a way to construct a commutative general hyperring on ideal non-empty
set are given.

Theorem 3.4. Suppose R is a non empty set. Then there are hyperoperations
“+” and “·” on R, that (R,+, ·) is a commutative general hyperring.

Proof. For |R| = 1, it is done. Let |R| ≥ 2. Then for any x, y ∈ R define “+” and
“·” on R by

x+ y = x · y = {x, y}.

Obviously, (R,+, ·) is a nontrivial commutative general hyperring.

At the next theorem, a way to construct a (nontrivial)general hyperring on an
ideal ring is given.

Theorem 3.5. Assume (R,+, 0, ·) is a commutative ring. Then there are hyper-
operations “+′” and “·′”on R, that (R,+′, 0, ·′) is a general hyperring.

Proof. If |R| = 1, it is clear. Let |R| ≥ 2. Then for any x, y ∈ R, define “+′” and
“·′” on R by

x+′ y = {x, y, x+ y} and x ·′ y = {x · y, 0}.

One can verify that (R,+′, ·′) is a general hyperring.
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Example 3.6. (i) Let R = {Z(a, b) | a, b ∈ Z2}, where Z(a, b) = a+ bi. Then
by Theorem 3.5, (R,+′, ·′) is a commutative general hyperring of cardinal 8
as follows:

Z(a, b) +′ Z(c, d) = {Z(a, b), Z(c, d), Z(a+ c, b+ d) | a, b, c, d ∈ Z2}},
Z(a, b) ·′ Z(c, d) = {Z(ac− bd, ad+ bc), 0 | a, b, c, d ∈ Z2}}.

(ii) Let R =
{[a b

0 c

]
| a, b, c ∈ Z2

}
.

Then in virtue Theorem 3.5, the hyperstructure (R,+′, ·′) is a non-commutative
general hyperring of cardinal 16 as follows:[
a b
0 c

]
+′

[
d e

0 f

]
= {

[
a b
0 c

]
,

[
d e

0 f

]
,

[
a+ d b+ e

0 c+ f

]
| a, b, c, d, e, f ∈ Z2}},[

a b
0 c

]
·′
[
d e

0 f

]
= {

[
ad ae+ bf

0 cf

]
,

[
0 0
0 0

]
| a, b, c, d, e, f ∈ Z2}}.

Now, a way to construct a class of general hyperrings on the cyclic group Zn,
for every n ∈ N are given.

Theorem 3.7. Let n ∈ N. Then there is a hyperoperation "⊕" on Zn, that
(Zn,⊕) is a hypergroup.

Proof. Fix a ∈ Zn, where a ̸= 0. Then for any x, y ∈ Zn, define "⊕" as follows:

x⊕ y = x+a y = {x+ y, x+ y + a}.

Let x ∈ Zn. Then x ⊕ Zn =
∪

y∈Zn

(x ⊕ y) =
∪

y∈Zn
a∈Zn

{x+ y, x+ y + a} = Zn. Since

(Zn,+) is an abelian group, it get that (Zn,⊕) is a hypergroup.

By Theorem 3.5, a general way to constructed a general hyperring from an
ideal ring was introduced. In the following, a different way from that in Theorem
3.5, to construct a general hyperring for the finite ring (Zn,+, ·), whence n ∈ N
are presented.

Theorem 3.8. Assume n is an even. Then there are hyperoperations “⊕” and
“⊙”, that (Zn,⊕,⊙) is a general hyperring.

Proof. Fix 0 ̸= a ∈ Zn, where 2a = 0. By Theorem 3.7, (Zn,⊕) is a hypergroup.
Then for any x, y ∈ Zn. Define ⊙ as follows:

x⊙ y = x ·a y = {xy, xy + a}.

Let x, y, z ∈ Zn. Then
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(Associative):

x⊙ (y ⊙ z) = x⊙ {yz, yz + a} = {xyz, xyz + a, x(yz + a), x(yz + a) + a} and

(x⊙ y)⊙ z = {xy, xy + a} ⊙ z = {xyz, xyz + a, (xy + a)z, (xy + a)z + a}.

Now, x⊙ (y ⊙ z) = (x⊙ y)⊙ z, implies xa = za or xa = za+ a and za = xa+ a.
Thus (Zn,⊙) is a semihypergroup if and only if 2a = 0.

(Distributive):

x⊙ (y ⊕ z) = x⊙ {y + z, y + z + a}
= {x(y + z), x(y + z) + a, x(y + z + a), x(y + z + a) + a},

and

x⊙ y ⊕ x⊙ z = {xy, xy + a}+ {xz, xz + a}
= {xy + xz, xy + xz + a, xy + xz + 2a, xy + xz + 3a}.

Now, 2a = 0 implies that ka = 0 and k′a = a, where k is an even and k′ is an
odd. Thus

x⊙ (y ⊕ z) = x⊙ y ⊕ x⊙ z.

Therefore, (Zn,⊕,⊙) is a general hyperring.

Remark 1. In Theorem 3.8, if n is odd, then (Zn,⊙) is not a semihypergroup, and
so (Zn,⊕,⊙) is not a general hyperring.

Example 3.9. By Theorem 3.8, (Z6,⊕,⊙) is a general hyperring by the following
hyperoperations:

+3 0 1 2 3 4 5
0 {0, 3} {1, 4} {2, 5} {3, 0} {4, 1} {5, 2}
1 {1, 4} {2, 5} {3, 0} {4, 1} {5, 2} {0, 3}
2 {2, 5} {3, 0} {4, 1} {5, 2} {0, 3} {1, 4}
3 {3, 0} {4, 1} {5, 2} {0, 3} {1, 4} {2, 5}
4 {4, 1} {5, 2} {0, 3} {1, 4} {2, 5} {3, 0}
5 {5, 2} {0, 3} {1, 4} {2, 5} {3, 0} {1, 4}

,

·3 0 1 2 3 4 5
0 {0, 3} {0, 3} {0, 3} {0, 3} {0, 3} {0, 3}
1 {0, 3} {1, 4} {2, 5} {3, 0} {4, 1} {5, 2}
2 {0, 3} {2, 5} {4, 1} {0, 3} {2, 5} {4, 1}
3 {3, 0} {0, 3} {3, 0} {0, 3} {3, 0} {0, 3}
4 {0, 3} {4, 1} {2, 5} {0, 3} {4, 1} {2, 5}
5 {0, 3} {5, 2} {4, 1} {3, 0} {2, 5} {1, 4}

.
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Let m ∈ N and R = (Zn,⊕,⊙) be the general hyperring in Theorem 3.8. Define
x ∈ R, 1x = {x},mx = x⊕ x⊕ . . . x⊕ x︸ ︷︷ ︸

m−times

, x1 = {x}, xm = x⊙ x⊙ . . . x⊙ x︸ ︷︷ ︸
m−times

and

(−m)x = m(n− x) and (x)−m = (n− x)m.
So, the following theorem follows.

Theorem 3.10. Suppose p = 2 and 2 ≤ n. Then in the general hyperring
(Zpn ,⊕,⊙):

(i) if 2a = 0, then for any k ∈ N, we have ka = {0, a},

(ii) if 2a = 0, then for any k ∈ N, we have ak = {0, a}.

Proof. (i) By induction on k ∈ N, if k is odd, then ka = a. If k is even, then
ka = 0.

(ii) By Theorem 3.8, a2 = {a2, a2 + a}. If a2 = x, then a2 ≡ x (mod pn)}.
Since 2a = 0, there is t ∈ N, that x = a(a + t) and so a | x (a mids k). So
by item (i), x = 0 or x = a. Then by induction for any k ∈ N, we get that
ak = {0, a}.

Theorem 3.11. Let p be a prime. Then there are hyperoperations “+p” and “·p”,
that (Zp,+p, ·p) is a general hyperring.

Proof. Fix 0 ̸= a ∈ Zn. For x, y ∈ Zn, define “+p” and “·p” as follows:

x+{p,a}y =

{
0 x = y = 0

{x+ y, x+ y + a} otherwise
and x·{p,a}y =

{
0 x = 0 or y = 0

Zp otherwise
.

Let x ∈ Zp. Then

x+{p,a} Zp = {0} ∪
∪

y∈Zp

(x+{p,a} y) = {0} ∪
∪

y∈Zp

a∈Zp

{x+ y, x+ y + a} = Zp.

Since (Zp,+, ·) is a commutative ring, we get that (Zp,+p) is a hypergroup. In
addition, x ·{p,a} Zp is equal to Zp or {0}, so (Zp, ·p) is a semihypergroup. The
distributive property is valid, thus (Zp,+p, ·p) is a general hyperring.

4. Hyperideals of General Hyperrings
Now, we present hyperideals of a general hyperring. In particular, we determine
hyperideals of finite commutative general hyperrings.

Theorem 4.1. Suppose (R,+, ·) is a general hyperring and ∅ ̸= I ⊆ R. Then I
is a hyperideal of R if and only if the following hold:
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(i) for any x ∈ I, x+ I = I + x = I,

(ii) for any r ∈ R and x ∈ I, we have (r · x) ∪ (x · r) ⊆ I.

Proof. Immediate by definition.

Assume (R,+, ·) is a general hyperring. We symbolize the set hyperideals of
R by I(R). Clearly, R ∈ I(R) ̸= ∅ and will call R as a non-proper hyperideal of
any general hyperring.

Example 4.2. (i) Consider general hyperrings in Example 3.6 (i). Then

I(R) = {I1 = {0}, I2 = {0, 1, i, 1 + i}, I3 = {0, 1 + i}}.

(ii) Consider general hyperrings R, in Example 3.6 (ii). Then

I(R) =
{
I1 = {A1}, I2 = {A1, A2}, I3 = {A1, A2, A3, A7}, I4

= {A1, A2, A4, A5}, , I5 = R
}
,

where,

A1 =

[
0 0
0 0

]
, A2 =

[
0 1
0 0

]
, A3 =

[
0 0
0 1

]
, A4 =

[
1 0
0 0

]
, A5 =

[
1 1
0 0

]
,

A6 =

[
1 0
0 1

]
, A7 =

[
0 1
0 1

]
and A8 =

[
1 1
0 1

]
.

Easily, I3 ∪ I4 = {A1, A2, A3, A4, A5, A7} ̸∈ I(R).

Theorem 4.3. Assume (R,+, ·) is a commutative general hyperring and I, I ′ ∈
I(R). Then

(i) I + I ′ ∈ I(R).

(ii) if I ∩ I ′ ̸= ∅, then I ∩ I ′ ∈ I(R).

Proof. (i) Clearly, I + I ′ ̸= ∅. Let a ∈ I and a′ ∈ I ′. Then for any z ∈
((a + a′) + I + I ′), there is b ∈ I, b′ ∈ I ′, that z ∈ (a + a′) + (b + b′) =
(a+b)+(a′+b′) ⊆ I+I ′. If z ∈ I+I ′ be an arbitrary element in I+I ′, then
there are a, b, c ∈ I, and a′, b′, c′ ∈ I ′, that z ∈ c+ c′ ⊆ (a+ b) + (a′ + b′) =
(a+a′)+(b+b′) ⊆ (a+a′)+(I+I ′). Hence (a+a′)+(I+I ′) = I+I ′. Now,
for any r ∈ R, a ∈ I and a′ ∈ I ′, one obtains (r · (a + a′)) ∪ ((a + a′) · r) =
(r · a+ r · a′) ∪ (a · r + a′ · r) = r · a+ r · a′ ⊆ I + I ′. Hence I + I ′ ∈ I(R).

(ii) It is straightforward.

Theorem 4.4. Assume (R,+, ·), (S,+, ·) are general hyperrings, f : R → S be a
homomorphism, and I ∈ I(R) and J ∈ I(S).
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(i) If f is an epimorphism, then f(I) ∈ I(S).

(ii) f−1(J) ∈ I(R).

Proof. (i) Since ∅ ̸= I, we have f(I) ̸= ∅. Let f(a) ∈ f(I). Then for every
f(b) ∈ f(I), there is a′ ∈ I, that b ∈ a+ a′, and so f(b) ∈ f(a+ a′) = f(a)+
f(a′) ⊆ f(a)+I. Hence f(I) ⊆ f(a)+f(I). If c ∈ f(a)+f(I) is an arbitrary
element, then there is a′ ∈ I, that c ∈ f(a)+f(a′) = f(a+a′) ⊆ f(I). Hence,
f(a) + f(I) = f(I). Now, for any s ∈ S and f(a) ∈ f(I), there is r ∈ R,
that

(s · f(a)) ∪ (f(a) · s) = (f(r) · f(a)) ∪ (f(a) · f(r)) = (f(r · a)) ∪ (f(a · r))
= f(r · a ∪ a · r) ⊆ f(I).

(ii) It is straightforward.

4.1 Hyperideals of R = (Zn,⊕,⊙)

At the following the hyperideals of a commutative general hyperring R = (Zn,⊕,⊙)
are obtained and it is shown that they are depended to the divisors elements, say
a, where a ∈ Zn and 2a = 0.

Theorem 4.5. Assume p is a prime. Then I(Zp,+p, ·p) = {{0},Zp}.

Proof. Obviously, I = {0} ∈ I((Zp,+p, ·p). Let {0} ̸= I ∈ I((Zp,+p, ·p) be a
hyperideal and 0 ̸= x ∈ I. Since for any 0 ̸= y ∈ Zp,Zp = x.py ⊆ I, it obtain that
I = Zp. Thus |I(Zp,+p, ·p)| = 2.

Example 4.6. Let a = 2. Then for n = 4, R = (Zn,+n, ·n) is a general hyperrings
and I(Zn,+n, ·n) = {{0},Zn} and otherwise R = (Zn,+n, ·n) is not a hyperring.

Example 4.6, disprove the converse of Theorem 4.5, necessarily is not true.
Assume R = (Zn,⊕,⊙) is the general hyperring in Theorem 3.8 and x ∈ R.

Define
⟨x⟩ =

∪
k∈N

kx.

Thus have next results.

Theorem 4.7. Suppose 2 ≤ n is an even, a ∈ R and x ∈ R. If 2a = 0, then

(i) ⟨x⟩ ∈ I(Zn,⊕,⊙),

(ii) ⟨0⟩ = ⟨a⟩,

(iii) if x ̸= a and gcd(x, a) = d, we have ⟨x⟩ = ⟨d⟩,

(iv) I ∈ I(Zn,⊕,⊙) ⇔ there is x ∈ R, that I = ⟨x⟩.
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Proof. (i) Let x ∈ R. By definition, we have

⟨x⟩ =
∪
k∈N

{kx, kx+ a}.

This shows that it is a hyperideal of R. Let y ∈ ⟨x⟩ and z ∈ y ⊕ ⟨x⟩. Thus
there is k, k′ ∈ N and w ∈ ⟨x⟩, that z ∈ y ⊕ w and hence

z ∈ kx⊕ k′x, z ∈ kx⊕ k′x+ a and z ∈ kx+ a⊕ k′x.

Since 2a = 0, there is k′′ ∈ N, that

z ∈ {k′′x, k′′x+ a} ⊆ ⟨x⟩.

Similarly, it implies that r ∈ Zn and y ∈ ⟨x⟩. Thus

r ⊙ ⟨x⟩ ⊆ ⟨x⟩.

Therefore,
⟨x⟩ ∈ I(Zn,⊕,⊙).

(ii) By Theorem 3.10, we get that

⟨0⟩ = ⟨a⟩ = {0, a}.

Therefore, I is a hyperideal as desired.

(iii) Let y ∈ ⟨x⟩. Then there is k ∈ N, that y = kx or y = kx+ a. Since
gcd(x, a) = d and 2x ̸= 0, by item (i), there is k′ ∈ Z, that x = k′d.
If y = kx, then

y = kx = kk′d ∈ ⟨x⟩,
and if y = kx+ a, then y = kx+ a = kk′d+ a ∈ ⟨x⟩. Hence

⟨x⟩ ⊆ ⟨d⟩.

Let y ∈ ⟨d⟩. Then there is k ∈ N, that y = kd or y = kd+ a. Since
gcd(x, a) = d and 2x ̸= 0 by (i), there is r, s ∈ Z, that rx + as = d, and so
rkx+aks = kd. Applying Theorem 3.10, we get that y = krx or y = krx+ a.
Hence

⟨d⟩ ⊆ ⟨x⟩.

(iv) Let I ∈ I(Zn,⊕,⊙). Then I ̸= ∅ and so there is x ∈ I. Since I is a
hyperideal, we get that x ⊕ x ⊆ I. By induction on k ∈ N it conclude that
kx ⊆ I, and hence

I =
∪
k∈N

{kx, kx+ a} = ⟨x⟩.

This complete the proof.
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Example 4.8. Consider the general hyperring R = (Z12,⊕,⊙). By Theorem 4.7,

I(Z12,⊕,⊙) = {I1 = {0}, I2 = {0, 2, 4, . . . , 10}, I3 = {0, 3, 6, 9}, I4 = {0, 6}, I5 = Z12}.

Theorem 4.9. Let 2 ≤ n and a ∈ R. If 2a = 0, then

(i) |I(Zn,⊕,⊙)| = |Div(a)|+ 1,

(ii) if for any x ∈ R, x | a, then a ∈ ⟨x⟩.

Proof. (i) Clearly {0} ∈ I. By Theorem 4.7, {0} ̸= I ∈ I if and only if there
is x ∈ R that I = ⟨x⟩. Also for any x ∈ R, gcd(x, a) = d if and only if
⟨x⟩ = ⟨d⟩. So |I(Zn,⊕,⊙)| = |Div(a)|+ 1.

(ii) Let x ∈ R. By definition, we have ⟨x⟩ =
∪
k∈N

{kx, kx+ a}. If x | a (x mids a),

then there is k ∈ N, that a = kx and so a ∈ ⟨x⟩.

Corollary 4.10. Let 2 = p1, p2, . . . , pk be primes, k, α1, α2, . . . , αk ∈ N and n =
k∏

i=1

pαi
i . Then

(Zn,⊕,⊙) = {0}∪{⟨pt11 pt22 . . . p
tj
j ⟩ | 0 ≤ t1 ≤ α1−1, and for all j ̸= 1, 0 ≤ tj ≤ αi}⟩.

Example 4.11. Let 2 = p and q, r be odd primes, m, l, k ∈ N and n = pmqlrk.
Then

I(Zn,⊕,⊙) = {0} ∪ {⟨pt1qt2rt3⟩ | 0 ≤ t1 ≤ m− 1, 0 ≤ t2 ≤ l, 0 ≤ t3 ≤ k}⟩.

Corollary 4.12. Let 2 = p1 and p2, . . . , pk be primes, k, α1, α2, . . . , αk ∈ N and

n =

k∏
i=1

pαi
i . Then |I(Zn,⊕,⊙)| = 1 + α1

k+1∏
i=2

(αi + 1).

Example 4.13. Consider the general hyperring R = (Z36,⊕,⊙). Then we have

I(Z36,⊕,⊙) = {I1 = {0}, I2 = {0, 2, 4, . . . , 34}, I3 = {0, 3, 6, . . . , 33},
I4 = {0, 6, 12, . . . , 30}, I5 = {0, 9, 18, 27}, I6 = {0, 18} and I7 = Z36}.

4.2 Hyperideals of General Hyperring R = (Zn,+
′, ·′)

In this part, all hyperideals of finite commutative general hyperring R = (Zn,+
′, ·′)

are computed and it is proved that every hyperideal of the general hyperring
R = (Zn,+

′, ·′) is characterized by the divisors of cardinal of Zn.
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Let m ∈ N and R = (Zn,+
′, ·′) be the general hyperring in Theorem 3.5.

Then for any x ∈ R define, 1x = {x},mx = x+′ x+′ . . . x+′ x︸ ︷︷ ︸
m−times

, x1 = {x},

xm = x ·′ x ·′ . . . x ·′ x︸ ︷︷ ︸
m−times

and ⟨x⟩ =
∪
k∈N

kx. With this regard to these notations and

definitions, We have the following theorem.

Theorem 4.14. Let n, d ∈ N and x, y ∈ R. Then

(i) ⟨x⟩ ∈ I(Zn,+
′, ·′),

(ii) ⟨0⟩ = {0},

(iii) ⟨x⟩ = ⟨y⟩ ⇔ gcd(x, n) = gcd(y, n) = d.

Proof. (i) Let x ∈ R. By definition, we have ⟨x⟩ =
∪
k∈N

{kx, 0} and show that it

is a hyperideal of R. Let y ∈ ⟨x⟩ and z ∈ y +′ ⟨x⟩. Thus there is k, k′ ∈ N
and w ∈ ⟨x⟩ that z ∈ y +′ w and so z ∈ kx +′ k′x, z ∈ kk′x and z ∈ ⟨0⟩.
There is k′′ ∈ N that z ∈ {k′′x, 0} ⊆ ⟨x⟩. In a similar way, for any r ∈ Zn

and y ∈ ⟨x⟩, we have r +′ ⟨x⟩ ⊆ ⟨x⟩. Hence ⟨x⟩ ∈ I(Zn,+
′, ·′).

(ii) It is straightforward by definition.

(iii) Let z ∈ ⟨x⟩. Then there is k ∈ N, that z = kx or z = 0. Since gcd(x, n) = d
and by item (i), there is k′ ∈ Z, that x = k′d. If z = kx, then z = kx =
kk′d ∈ ⟨x⟩ and if z = 0, then z = k0 = 0 ∈ ⟨x⟩. Hence ⟨x⟩ ⊆ ⟨d⟩. Let z ∈ ⟨d⟩.
Then there is k ∈ N, that z = kd or z = 0. Since gcd(x, n) = d and by item
(i), there is r, s ∈ Z that rx + ns = d, and so rkx + nks = kd. Applying
Theorem 3.10, we get that z = krx or z = 0. Hence ⟨d⟩ ⊆ ⟨x⟩. Also for
gcd(y, n) = d the proof is similarly, then ⟨d⟩ = ⟨y⟩, there for ⟨x⟩ = ⟨y⟩.

Example 4.15. Consider the general hyperring R = (Z45,+
′, ·′). By Theorem

4.14, we have

I(Z45,+
′, ·′) = {I1 = {0}, I2 = {0, 3, 6, . . . , 42}, I3 = {0, 5, 10, . . . , 40},

I4 = {0, 9, 18, 27, 36}, I5 = {0, 15, 30} and I6 = Z45}.

Theorem 4.16. Let n ∈ N. Then

(i) |I(Zn,+
′, ·′)| = |Div(n)|.

(ii) for any x, y ∈ R, ⟨x⟩ ∩ ⟨y⟩ = ⟨lcm(x, y)⟩.

Proof. (i) By Theorem 4.14, I ∈ I if and only if there is sx ∈ R, that I =
⟨x⟩. Also for any x ∈ R, gcd(x, n) = d if and only if ⟨x⟩ = ⟨d⟩. Thus
|I(Zn,+

′, ·′)| = |Div(n)|.
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(ii) Let x ∈ R. By definition, we have ⟨x⟩ =
∪
k∈N

{kx, 0}. Clearly, there is k1, k2 ∈

N that lcm(x, y) = k1x and lcm(x, y) = k2y. Hence lcm(x, y) ∈ ⟨x⟩∩⟨y⟩ and
so ⟨lcm(x, y)⟩ ⊆ ⟨x⟩ ∩ ⟨y⟩. Conversely. let a ∈ ⟨x⟩ ∩ ⟨y⟩. Then a = 0 or there
is k1, k2 ∈ N that a = k1x = k2y. Thus x | a and y | a and so lcm(x, y) | a.
Hence there is k ∈ N that a = k × lcm(x, y) and so ⟨a⟩ ⊆ ⟨x⟩ ∩ ⟨y⟩.

Corollary 4.17. Let n ∈ N. Then I(Zn,+
′, ·′) = {⟨d⟩ | d ∈ Div(n)}.

Example 4.18. Let p, q, r be primes, m, l, k ∈ N and n = pmqlrk. Then

I(Zn,+
′, ·′) = {⟨pt1qt2rt3⟩ | 0 ≤ t1 ≤ m, 0 ≤ t2 ≤ l, 0 ≤ t3 ≤ k}⟩.

Corollary 4.19. Assume p1, p2, . . . , pk are primes, k, α1, α2, . . . , αk ∈ N and n =
k∏

i=1

pαi
i . Then |I(Zn,+

′, ·′)| =
k∑

i=1

(αi + 1).

Example 4.20. Consider the finite general hyperring R = (Z90,+
′, ·′). Based on

corollary 4.17,

I(Z90,+
′, ·′) =

{
I1 = {0}, I2 = {0, 2, 4, . . . , 88}, I3 = {0, 3, 6, . . . , 87},

I4 = {0, 5, 10, . . . , 85}, I5 = {0, 9, 18, . . . , 81}, I6 = {0, 10, 20, . . . , 80},
I7 = {0, 6, 12, . . . , 84}, I8 = {0, 15, 30, . . . , 75}, I9 = {0, 18, 36, . . . , 72},
I10 = {0, 45}, I11 = {0, 30, 60} and I12 = Z90

}
.

4.3 Restriction of General Hyperring to Krasner Hyperring
We consider an especial of general hyperring as Krasner hyperring and construct
this class upon previously section. Now, we construct a Krasner hyperrings based
on quotient of a ring on normal subgroup of its multiplicative semigroup in different
to Krasner way.

Theorem 4.21. Assume (R,+, .) is a ring and N is a normal subgroup of its
multiplicative semigroup. Then there are hyperoperations “+′” and “·′” on R/N ,
that (R/N,+′, ·′) is a Krasner hyperring.

Proof. For all xN, yN ∈ R/N define “+′” and “·′” on R by

xN +′ yN =


{xN} ∪

∪
z∈(x+y)N

zN x ̸= y

R/N x = y

xN y = 0.

and xN ·′ yN = (xy)N.

It is easy to verify that (R/N,+′, ·′) is a commutative Krasner hyperring.
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Theorem 4.22. Let Zξ = Z ∪ {ξ}, where ξ ̸∈ Z. Then there are hyperoperation
“+ξ” and an operation “·ξ”, that (Zξ,+ξ, 0, ·ξ, 1) is a Krasner hyperring.

Proof. Let x, y ∈ Z. Define hyperoperation “+ξ” and operation “·ξ” on Zξ as
follows:

x+ξ y =


{0, ξ} x = −y

x+ y x, y ∈ Z, x ̸= −y

y x = 0

ξ x = y = ξ

and x ·ξ y =

{
x.y x, y ∈ Z
ξ y = ξ.

,

where for any x, y ∈ Zξ, we have x +ξ y = y +ξ x, x ·ξ y = y ·ξ x and 0 ·ξ x =
0. Some modifications and computations show that (Zξ,+ξ, 0, ·ξ, 1) is a Krasner
hyperring.

Theorem 4.23. Let Znξ
= Zn∪{ξ}, where ξ ̸∈ Zn. Then there are hyperoperation

“+ξ” and an operation “·ξ” that (Znξ
,+ξ, 0, ·ξ, 1) is a Krasner hyperring.

Proof. Let x, y ∈ Zn. Define hyperoperation “+ξ” and operation “·ξ” on Znξ
as

follows: x+ξ y =


{0, ξ} x = −y

x+ y x, y ∈ Zn, x ̸= −y

y x = 0 or ( x = ξ and y ̸∈ {ξ})
ξ x = y = ξ

and

x ·ξ y =


x.y x, y ∈ Zn

ξ (y = ξ, gcd(x, n) ̸= 1) or (x = y = ξ)

0 x = ξ, (x, n) = 1

, where for any x, y ∈ Znξ
,

we have x +ξ y = y +ξ x, x ·ξ y = y ·ξ x and 0 ·ξ x = 0. Some modifications and
computations show that (Znξ

,+ξ, 0, ·ξ, 1) is a Krasner hyperring.

4.4 Hyperideals of Krasner Hyperrings

At the following we compute the hyperideals of some class of Krasner hyperrings
based on way introduced at the previous section.

Theorem 4.24. Let Znξ
= Zn ∪ {ξ}, where ξ ̸∈ Zn and n ∈ N. Then

(i) if n is a prime, then I(Znξ
,+ξ, ·ξ) = {I1 = {0, ξ}, I2 = Znξ

},

(ii) if n is an odd non-prime, then I(Znξ,+ξ, ·ξ) = {I1 = {0, ξ}, I2 = {ai | gcd(ai
, n) ̸= 1} ∪ ξ, I3 = Znξ},

(iii) if n is an even, then I(Znξ
,+ξ, ·ξ) = {I1 = {0, ξ}, I2 = {ai | gcd(ai, n) ̸=

1} ∪ ξ, I3 = {0, n
2
, ξ}, I4 = Znξ}.
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Proof. (i) Obviously I = {0, ξ} ∈ I(Znξ
,+ξ, ·ξ). Let {0, ξ} ̸= I ∈ I(Znξ

,+ξ, ·ξ)
be a hyperideal and 0 ̸= x ∈ I. Since for any 0 ̸= y ∈ Zn and Zn = x ·ξ y ⊆ I,
it obtains that I = Zn.

(ii) Obviously I = {0, ξ} ∈ I(Znξ
,+ξ, .ξ). Let {0, ξ} ̸= I = {ai | gcd(ai, n) ̸=

1} ∈ I(Znξ
,+ξ, ·ξ) be a hyperideal then gcd(ai, n) = d concludes that aiZ+

nZ = dZ. Because there are x, y ∈ Z and d = aix+ny, we get d ∈ aiZ+nZ
and hence dZ ⊆ aiZ+nZ. Also d | ai (d mids ai) and d | n (d mids n), then
aiZ ⊆ dZ and nZ ⊆ dZ imply that aiZ+nZ ⊆ dZ and hence aiZ+nZ = dZ.

(iii) It’s similar to (ii).

Example 4.25. For prime, odd non-prime and even numbers 7, 9, 6, we have:

(i) if n = 7, then I(Z7ξ ,+ξ, ·ξ) = {I1 = {0, ξ}, I2 = Z7ξ},

(ii) if n = 9, then I(Z9ξ,+ξ, ·ξ) = {I1 = {0, ξ}, I2 = {0, 3, 6, ξ}, I3 = Z9ξ},

(iii) if n = 6, then I(Z6ξ ,+ξ, ·ξ) = {I1 = {0, ξ}, I2 = {0, 2, 3, 4, ξ}, I3 = {0, 3, ξ}, I4
= Z6ξ}.

Theorem 4.26. Let Zξ = Z∪{ξ}, where ξ ̸∈ Z. Then I(Zξ,+ξ, ·ξ) = {mZξ | m ∈
N}.
Proof. Obviously for any m ∈ N and mZ is a hyperideal of Zξ, because of for any
mk ∈ mZ, n ∈ N, have nmk = mkn ∈ mZξ.

Example 4.27. Consider the Krasner hyperring R = (Z10,+ξ, ·ξ) by Theorem
4.22. So we have

I(Z10,+ξ, .ξ) = {I1 = {0, ξ}, I2 = {0, 2, 4, 6, 8, ξ}, I3 = {0, 5, ξ}, I4 = Z10ξ}.

5. Conclusion
The notion of a general hyperring, as generalization of hyperring as well as classical
ring are introduced. In this regards some ways to extend a classical ring to a general
hyperring was given, also a way to construct a general hyperring from every set
was introduced. Also, the hyperideals of some special classes of general hyperring
such (finite) Krasner hyperring was computed. Moreover, under some certain
condition hyperideals in finite general hyperrings was characterized. In particular
the hyperideals of some finite Krasner hyperrings was obtained. Accordingly, This
paper has been provided a good introduction to construct general hyperrings as
well as to computing its hyperideals, especially for finite case. At the end, the
authors propose to use a computer programming way to construct finite general
hyperring and computing their hyperideals. for future works in this area.
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