Mathematics Interdisciplinary Research 6 (2021) 235 — 242

Original Scientific Paper

A Remark on the Factorization of Factorials

Mehdi Hassani * and Mahmoud Marie

Abstract

The subject of this paper is to study distribution of the prime factors p
and their exponents, which we denote by vp(n!), in standard factorization
of n! into primes. We show that for each 6 > 0 the primes p not exceeding
n? eventually assume almost all value of the sum > p<n Vp(nl). Also, we
introduce the notion of #-truncated factorial, defined by nlyp = Hpgne pr()

and we show that the growth of log n!% is almost half of growth of logn!;.
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1. Introduction

Letting n! = Hpgn p?»(") | Legendre’s theorem asserts that

vp(nl) = i [”} . (1)

na
a=1 p

Here [z] = max{k € Z : k < z}. This relation enables us to observe several
facts about the distribution of the exponents. It implies that for primes p and ¢
with p < ¢ we have v,(n!) > v,(n!). Primes p satisfying § < p < n assume the
minimum possible exponent v, (n!) = 1. Also, for primes p with p > \/n Legendre’s
sum in (1) assumes only its first term.

*Corresponding author (E-mail: mehdi.hassani@znu.ac.ir)
Academic Editor: Abbas Saadatmandi
Received 5 November 2020, Accepted 22 July 2021
DOI: 10.22052/mir.2021.240348.1254
(©2021 University of Kashan

@ This work is licensed under the Creative Commons Attribution 4.0 International License.



236 M. Hassani and M. Marie
o

These properties show that small primes get larger exponents than large primes.
Our first result yields information about clustering of exponents on small primes.

Theorem 1.1. For given 6 € (0,1] let

Sy(n) = Z vp(nl), and Ag(n) = 611(71) Z vp(nl).

p<n? p<n?

For each integer k > 0, which we keep it fixed, as n — oo, we have

_ r_ n
6%+1(n)—n,loglogn+(M log(l<;+1))n+O<logn>7 (2)

where

M =M+Y (pp-1)" M=y+) (log(1-p7)+p7),  (3)

and v = lim,, oo H, — (logn), with H, = Z;‘L:1 j~1. Also, for each fixed integer
m > 1 we have

m J ni—1
2, =14y D o)

e (loglog n)’ loglogn

Jj=1

To study clustering of exponents on small primes, we introduce the notion of
0-truncated factorial, defined by

nlg = H prr ()
p<nt

Naturally we ask about the growth of nly, more precisely for the values of 6 close
to 0. The following result asserts that the growth of n!% is almost half of growth
of n!y in logarithmic scale.

Theorem 1.2. Let £y9(n) = log (nlp). As n — oo we have

£ (n):log(n%)—vn—kO(L). (5)

logn

Nl

A natural question, for which we have no solution yet, deals with the ap-
proximation of £4(n) for the values of 6 close to 0. If for o, € (0,1] we let
Q(a, f;n) = L4(n)/Ls(n), then (5) and Stirling’s approximation imply

1 1 -3 1
bin) =3 0k
Q(Q " 2 logn+ 1og2n
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For a,f € (0,1] we conjecture that lim,_,. Q(a, B;n) = a/F. Also, if we let
1
By(n) = (nly)™, then Stirling’s approximation and (5) imply respectively

Gi(n) =e 'n+0(logn), and Gy(n)=e" 7\f‘LO(lggfrz)

Hence lim;, 0o &1 (n)/G1(n )2 = ez~7. We ask about the existence and possible
value of lim,, 059( )/®1(n)? for given 6 € (0, 1].

2. Auxiliary Sums over Primes

In this section we approximate several summations running over prime numbers,
for which as a key idea, we relate such summations with the function 7(z), the
number of primes < .

Proposition 2.1. Let f be a positive, strictly decreasing, and continuously dif-
ferentiable function on [2,00), and f(t) = o(}) as t — co. Then, for each z > 1

we have
S 5) < / pyar+ £ (6)

= 10g z 4log” =

Proof. 1f we let w(n) = 1 when n is prime and 0 otherwise, then
(z) =) w(n). (7)
nx

This representation allows us to write summations running over prime numbers
an a Stieltjes integral as follows

x

Y f)= Y wn)fn)= [ ft)dn(t).

Integration by partps\ 'We get o
; f(p) = m(x)f(x) - /; 77(25)(%9) dt.
Hence -

S 0= jim 3 1) = -a(:)7(2) - | 0 (M) a

Rosser and Schoenfeld [4, Theorem 1] proved that

T 3
miw) < log (1 + 210gm) (z>1).
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Since f > 0 is strictly decreasing and f(b) = o(%) as b — oo, by using this bound

we obtain
/:Ow(t)( - %9) dt < /:o il ;;nggﬁ ( — dﬁit)) dt
< e | ()

1+
_ 210gz ( / f dt>
log 2z

Rosser and Schoenfeld [4, Theorem 1] also proved that

x
1 > 5H9).
logr( +2logz) < (=), (2 )

This implies that

x
1-— 1).
logx( 4logx) < (@), (@>1)

Thus, —7(z)f(z) < —

o3 (1- 4logz)f(z) for each z > 1. Combining the above

bounds we obtain (6). This finishes the proof. O
Corollary 2.2. For s > 1 and x > 2 let B;(z) = Zp<m 57+ Then
1
Bo(2) = P(s) + O ). 8
(@) = P(5)+ O =i )
where P(s) =Y L is an absolute constant, known as the prime zeta function.

p p®

Proof. Let B(z) = P(s) —>_ -, pi Approximation of the last sum is straight-
forward by using Proposition 2.1. O

Proposition 2.3. For each n > 2,

> {2} togn = 1=+ 01, 0

psn

Proof. Let

psn

Lee [3, Lemma 3| obtained the following approximation

> {5} -0 o)

pPrEn
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We observe that

Z{n}_g(n):Z{;}<21:21: m(n¥).

(0%
pesn p

Z W(n%)<< Z lnE < n; Z a < y/nlogn.

log n log n logn
2<a<10g2 2<ag : 2<a<10g2

Hence,

> {Z} (logp) = Zn: {%}W(/@)logk

p<n
dt
t )

() logn — §(27) log2 - | ")

where n(t) = > o, {%} Note that 0 < 7n(t) < 7(f) < lotgt. Combining this

approximation with (10) we deduce
n n " t o\ dt
— (1 =(1- o(——) - o —\)=.
I;n{p}(ogp) =7+ (logn) /2 (logt) t

This is the desired conclusion. O

3. Proof of the Main Results

Proof of Theorem 1.1. First we consider the case k = 0. Approximation of
G4 (n) is related to the average of the function ©(n), which denotes the total num-
ber of prime factors of positive integer n. The function 2 is completely additive.
We recall the known approximation of the sum 3}, ., Q(k) due to Hardy and
Ramanujan [1] to obtain

Si(n) =Q(n!) = ZQ(k):nloglogn—i—M’n—i—O(&). (11)
k<n

Let kK > 1. For primes p satisfying nET < p < n we have n < p**1. Thus, by
using the relation (1) we obtain
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iy
log z

Thus by using the approximation 7(z) < we obtain

Si1(n)—6 1 (n) = Z vp(n!)

nl/(k+1)<p<n

=n Z Z——FO( Z 1)

nl/(k+1) <pn J= 1 nl/(k+1) <pn

k
DY Z%—i—O(ﬂ(n))

J=1pl/(k+1) <p<n
= ng (sBj(”) - %J(n%ﬂ)) + O(lozn)’

where B1(z) =3, 1/p, and B; for j > 2 is defined in Corollary 2.2. By using
) with M as in (3) we

Mertens’ approximation B (x) = loglogz + M + O(
obtain

log x
1/(k+1)\ _ 1
B1(n) — B (n )flog(k+1)+0(@).

Also, for s > 1 we use the approximation (8) to get

1
. 1/(k+1)y _
Bs(n) — Bs(n )= O<n(871)/(’€+1) logn)'
Hence
n

This approximation and (11) imply (2). To obtain (4) we divide the right hand
side of (2) by the right hand side of (11). Let z = logn and M" = M’ —log(k+1).
Hence

1+ 2 + 03

og z Z)
o) = o

3

To deal with the above fraction, we consider the expansion

k+1 1 +

log z

1

1+t

(=17 + o™,

IO

Il
o

J

which is valid for each fixed integer m > 1, ast — 0. If we let t =

then
1 - ) 1
1+1(])\éz+0(zlogz 7:20 logz (log 2) +1

(51082
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Thus,
- " M" 1
; logz +J§ 1ogz J)H +O<(10gz)m+1>.
We simplify to get
_ Zm: T 4 (=1 )y M +o( 1 )
o (log 2)’ (log2)™ 1/
and then
= (log z)” (log z)™ /"
Note that M’ — M" = log(k + 1). This completes the proof. O
Proof of Theorem 1.2. We have
S m=im— Y vy (logp).
Vn<p<n
Stirling’s approximation for n! asserts that
log (n!) = £1(n )—nlog( )+log\/7+0( ) (12)

Also, we have

> vpn)logp= Y [n] (logp) = [Z] (logp) — Y [Z] (logp) -

Vn<p<n Vn<p<n b PN p<V/n
Let us write
n n
> = |logp=nf(n)=> <~ ¢ (logp), (13)
< <n \P
pxn pxn
where )
ogp
R(n) = Z .
p<n p

Landau [2, p. 198] proved that

ﬁ(n):lognJrEJrO( ) (14)

logn

where

po- Yy L

j=2 p
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and ¢ > 0 is a computable constant. Note that the double series defining the
constant E is absolutely convergent. Approximations (9) and (14) imply

n n
Z[} (logp):nlognJr(’erEfl)nJrO(—). (15)
logn
p<n
By using (14) and applying the Chebyshev type approximation > . logp =< 2

with z = y/n we deduce that

Z [n} (logp) = %nlogn—&-En—i—O (vn).
p<Vn b

Combining the relations (12), (15) and the last approximation we get (5). This
finishes the proof. O
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